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A note on Isomorphism and Identity
PREPRINT

Staffan Angere

April 16, 2014

Abstract

This note argues that, insofar as contemporary mathematics is con-
cerned, there is overwhelming evidence that if mathematical objects are
structures, then isomorphism should not be taken as their identity condi-
tion. This goes against a common version of structuralism in the philo-
sophical literature. Four areas are presented in which identifying isomor-
phic structures or objects leads to contradiction or inadequacy. This is
followed by a philosophical discussion on possible ways to approach the
distinction, and a section on the possibility of proceeding intensionally, as
is done in e.g. the Univalent Foundations program.

1 Preliminaries

1.1 Isomorphism in category theory

In many versions of structuralism it is assumed, often without argument, that
the proper identity condition for structures is isomorphism. The purpose of this
note is to show that, unless identity is given a rather different treatment than
classically, this makes structuralism inapplicable to mathematics. These lessons
seem to be rather well-known in the mathematics community; we find Barr
and Barr [BB11], in the preface to their translation of Grothendieck’s famous
Tôhoku paper [Gro57], remarking as follows on Grothendieck’s use of ‘=’ for
isomorphism in the 50’s:

The structuralists who founded Bourbaki wanted to make the point
that isomorphic structures should not be distinguished, but category
theorists now understand the distinction between isomorphism and
equality. For example, all of Galois theory is dependent on the au-
tomorphism group which is an incoherent notion in the structuralist
paradigm.

The mentioned understanding does not seem to have spread quite as well to
philosophy yet. It is my hope that this note can help a bit here. 1

1A reader sufficiently damaged by linguistic philosophy may have noted that the quote
mentions ‘equality’ rather than identity. In mainstream mathematics, however, there seems
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As Barr & Barr note, the appropriate framework for discussing isomorphisms
mathematically is category theory. Recall, a category C is a pair of collections
objC ,homC together with mappings cod,dom ∶ homC → objC , a mapping id ∶
objC → homC and a partial binary operation g ○ f on homC , defined wherever
cod f = dom g. Where dom f = A and cod f = B, we write f ∶ A → B, and
we let homC(A,B), for A,B ∈ objC , be the subcollection of homC containing
all f ∶ A → B. The axioms idB ○ f = f ○ idA = f , for all f ∶ A → B, and
(h ○ g) ○ f = h ○ (g ○ f), for all f, g, h such that the compositions are defined, are
imposed.

A commonly occurring example of category in mathematics is the following:

(i) objC is a class of mathematical objects or structures, such as the class of
all sets, the class of all groups, all vector spaces, or all topological spaces.

(ii) homC(A,B) is the set of all structure-preserving mappings from A to B. In
the examples of (i), we may take functions, group homomorphisms, linear
transformations, and continuous functions, which gives us the categories
Set, Grp, Vec and Top, although these are not the only choices for any
of these classes of objects. When the elements of homC are structure-
preserving mappings, they are often referred to as the morphisms of C.

(iii) dom and cod give the domain and codomain (or source and target) of each
mapping in homC .

(iv) idA is the trivial identity mapping on A.

(v) g ○ f is the composition of the mappings f and g.

Specification of a category entails a definition of what it means for two
objects to be isomorphic: A ≅ B holds, by definition, iff there are morphisms
f ∶ A → B and g ∶ B → A such that g ○ f = idA and f ○ g = idB. This
coincides, in all known categories, with the more traditional, “internal” notion
of isomorphism between objects as a mapping that preserves and reflects all
structure. In fact, from the viewpoint of contemporary mathematics, it is the
category theoretical concept of isomorphism that defines what structure is, much
as it is the concept of equinumerousity that defines what numbers are.

This, however, brings with it a certain relativity of structure. The real num-
bers R can be defined as, say, a certain set of Dedekind cuts on the rationals.
Nevertheless, their structure differs a lot depending on whether you treat them
as just a set, an ordered set, a monoid under multiplication, a group under addi-
tion, a ring, a field, or a one-dimensional vector space. Likewise, topology using
open maps is different from the usual topology built on continuous maps, and
first-order model theory with only elementary equivalences describes a different
kind of structure than first-order model theory with the usual model homomor-
phisms. The upshot is that, category-theoretically, an object’s structure is not
something intrinsic to that object, but depends on relations to other objects.

to be no systematic difference in how these words are used, and I will follow this practice and
use the words ‘identity’ and ‘equality’ interchangeably.
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1.2 Structures and objects

Before proceeding, it is important to clarify the possible distinction between
identifying objects and identifying structures. Mathematics treats of many ob-
jects that are intrinsically the same: Dedekind’s natural numbers make up a
set in which we “entriely neglect the special character of the elements” [Ded01,
§73]. Cantor’s cardinalities are sets of “pure ones”, all the same, arrived at by
intellectual projection from sets of distinct elements [Can62, p. 283]. And the
points of a space are, traditionally, considered to be completely similar, and only
distinguishable by their relations to one another. Kant subscribes to a version
of this thesis in the Critique:

The conception of a cubic foot of space, however I may think it,
is in itself completely identical. But two cubic feet in space are
nevertheless distinct from each other from the sole fact of their being
in different places [. . . ] [Kan10, p. 203]

In mathematics, identifying all intrinsically similar objects is clearly not ad-
missible. But the traditional “objects” of mathematics, e.g. numbers, elements
and points, are generally not taken to be the objects in a category. In Set, the
objects are sets rather than elements of sets, in Vec and Top, the objects are
spaces rather than points, and in Grp they are groups rather than elements
of groups. Natural numbers are commonly described all at one using a natural
numbers object N , which corresponds to Dedekind’s notion of a simply infinite
system, rather than a single number.2

So we have to be careful not to automatically interpret the philosophical
notion of mathematical object as the category-theoretical one, which is, so to
say, of a higher order. On the other hand, anything that can stand in structural
relationships, such as being isomorphic with X, being embeddable in X, and
being a quotient structure of X, is an object of a category. Furthermore, as we
noted, it is this fact that gives it the structure it has.

Structuralism, as a philosophy of mathematics, will be taken to be a thesis
that all, or at least many, of the objects of mathematics are structures. In
particular, we will take this to hold for groups, sets, topological spaces, vec-
tor spaces, or categories. The informal gloss of isomorphism as sameness of
structure makes it very tempting to interpret the identity conditions of such
objects to be given by isomorphism; in fact, it seems to be a typical case of
Fregean abstraction, much as he takes direction to be abstracted from the re-
lation of parallelism, or number from equinumerosity [Fre53]. Nevertheless, as
the next section will show, there are strong reasons why this temptation should
be resisted.

2In some cases, elements of an object X are representable by morphisms 1 → X, where 1
is the terminal object of the category. But for this representation to be accurate quite a lot
of extra structure on the category is required.
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2 Counterexamples to isomorphism → identity

We will now give four examples of areas where assuming that isomorphism
implies identity leads to contradiction or inadequacy.

2.1 Sets

A full subcategory of a category C is a category C′ whose objects are some of
those of C, such that homC′(A,B) = homC(A,B) for all A,B ∈ objC′. A skeleton
of a category C is a full subcategory C0 of C such that for all A ∈ objC, there is an
element B in objC′ such that A ≅ B (i.e. the inclusion is essentially surjective),
and

A ≅ B ⇒ A = B
holds for all A,B ∈ objC0.

A skeleton is always equivalent to the category it is a skeleton of, and skele-
tons of equivalent categories are themselves equivalent. The isomorphism ⇒
identity thesis can be interpreted as the requirement that all categories should
be skeletal.

Now consider the category Set of sets, and one of its skeletons Set0. Since
isomorphism in Set is just one-to-one correspondence, it follows that Set0 con-
tains just one set of each cardinality. But this structure does not satisfy the
ZFC axioms; we would have, for instance, that

{∅} = {{∅}}
which gives a contradiction with the singleton (or pair) axiom.

One reply to this argument would be that plain functions are not the appro-
priate structure-preserving transformations among sets, so that isomorphism is
something stronger than mere one-to-one correspondence. A different choice
would be to take the membership relation into account, and let hom(A,B) be
those functions f from A to B such that

X ∈ Y ⇔ f(X) ∈ f(Y )
But this is still not strong enough. Consider the function f ∶ {0,1} → {1,2}

defined as f(X) =X +1, with the natural numbers interpreted as von Neumann
numerals. Since X ∈X +1 for all ordinals, we have that X ∈ Y ⇔ f(X) ∈ f(Y ),
and f is clearly one-to-one. But {0,1} = 2, so if we identify {0,1} and {1,2},
we get that

{0,1} = {1,2} = {1,{0,1}}⇔ {0,1} = 0⇔ 0 = 2

which still contradicts ZFC, to say nothing of basic arithmetic.
There are, of course, even stronger conditions one can impose on the mor-

phisms in Set in order to guarantee that all invertible morphisms are identities.
One example is
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∀Y (Y ∈X ↔ Y ∈ f(X))
which, by extensionality, entails that f(X) =X is the only invertible morphism
on its domain. But mathematicians generally do not require this to talk about
sets as isomorphic, and, if anything, such a strong requirement means that the
usefulness of the isomorphism concept is completely lost.

A strong requirement on set morphisms would also “infect” the rest of math-
ematics. Most mathematical structures can be exhibited as concrete categories,
i.e. members of a category C together with a faithful functor U ∶ C → Set, which
is called the forgetful functor. But all functors preserve isomorphisms, so if
U(X) ≇ U(Y ), we must have X ≇ Y , for any X,Y ∈ objC. Thus no two groups,
vector spaces, first-order models, or topologies, with differnt carrier sets, can be
isomorphic either.

In fact, the choice of arbitrary functions as the morphisms of Set is just
right for everyday mathematics. What is not possible is to use these morphisms
to identify isomorphic sets.

2.2 Categories

This is a good place to make a distinction betwen two different versions of the
isomorphism implies identity claim:

(i) Isomorphic objects are identical, i.e. if there is an isomorphism f ∶ A→ B,
then A = B. This is what we referred to in the last subsection as all
categories being skeletal.

(ii) Isomorphisms are identities, i.e. if f is an isomorphism, then f = idA for
some A. This can be referred to as a requirement that objects have no
nontrivial automorphisms.

The second of these is clearly stronger than the first, and it is not hard to
see that it is far too strong. It makes the notion of a nontrivial automorphism
group impossible, as the Barrs note in the quote in the beginning. One slightly
more formal proof of its inadequacy for category theory is the following.

Let C be any category with binary products, i.e. such that for each A,B ∈
objC, there is an object A × B and morphisms πA×BA ∶ A × B → A and πA×BB ∶
A×B → B such that, for any X ∈ objC with morphisms f ∶X → A and g ∶X → B,
there is a unique morphism f × g ∶X → A×B that makes the following diagram
commute:

X
f

||
f×g
��

g

""
A A ×B

πA×B
A

oo
πA×B
B

// B

Whenever (A ×B,πA×BA , πA×BB ) and (B × a, πB×AA , πB×AB ) are products of A
and B, there is a unique isomorphism τ ∶ A × B → B × A, called the twisting
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isomorphism [Bor94, p. 40], such that πB×AA = πA×BA ○ τ and πB×AB = πA×BB ○ τ .
This entails that any two products of A and B are isomorphic.

Let P be a product (B ×B,π1, π2) and let Q be the product (B ×B,π2, π1),
and let f, g ∶ C → B. We then have a commutative diagram

C
f

yy
f×g
||

g×f
""

g

%%
B B ×Bπ1oo

π2

66
τ

// B ×B
π2

hh
π1 //τ−1oo B

Now assume that the only isomorphisms are identities, so that τ = id(B×B).
Then, by the diagram,

f = π1 ○ (f × g) = π2 ○ τ ○ (f × g) = π2 ○ (f × g) = g
But f and g were arbitrary, so we have just shown that any category with

products and no nontrivial automorphisms must be a preorder, i.e. have at
most one morphism between every pair of objects. Partial orders are, however,
definitely not enough for category theory. 3

Thus the second, stronger, condition, i.e. that all isomorphisms are identities,
makes category theory impossible. How about the weaker requirement (i)? Let
Cat be the category of all small categories, with functors as morphisms. For
each pair C,D, there is a functor category DC with the functors F ∶ C → D
as objects, and the natural transformations α ∶ F → G as morphisms. The
endomorphism category CC is a special case of functor category.

Let C andD be any two categories with isomorphic endomorphism categories.
If isomorphism implies equality, we have that CC = DD. But in Cat, distinct
categories have distinct endomorphism categories, so, contrapositively, it follows
that C = D. Is this a reasonable identification to make?

That the answer is no can be seen by considering the full subcategory Grp
of Cat, which has one-object categories in which all morphisms are invertible as
objects. Such a category is easily seen to be the same thing as a group, with the
elements of the group as the morphisms [Awo10, ch. 4]. For a simple group G,
the endomorphism category GG has no non-invertible morphisms, so it is itself
a group, and, in fact, G’s (outer) automorphism group.

But there are several non-isomorphic simple groups that have the same au-
tomorphism group. An example is given by the alternating groups An for n > 4,
which, except when n = 6, have a (the) two-element group as automorphism
group. Thus, identifying these groups would identify almost all alternating
groups, but none of these are even isomorphic.

3This proof is loosely inspired by one attributed to Isbell by MacLane [Mac98, p. 164].
One difference is that MacLane’s proof deals with monoidal categories, while I have attempted
to stay within non-enriched category theory. Although I have not been able to find Isbell’s
original argument, my understanding of the problem has benefited greatly from discussions
with members of the Categories mailing list.
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2.3 Braids

A braid is an arrangement of strings, such as the ones below. Braids are counted
as the same if they can be continuously deformed into one another without
cutting strings or permuting the endpoints; thus braids A and B below are the
same, but not A and C, nor C and D.

A

B

C

D

Braids can be composed in two ways: horizontally, by attaching the right
end of one braid to the left end of another, and vertically, by placing one braid
directly above the other. We write horizontal composition by attaching Y to
the right of X as X ○ Y , and vertical composition by placing Y underneath X
by X⊗Y . Both of these operations are clearly associative. ○ has a unit for each
number n of strings, consisting of just n straight strings (in the case n = 2, it is
braid A above). The unit of ⊗ is the empty braid with no strings at all.

For each number n of strings the ○ operator induces a group structure known
as the braid group Bn. D, above, is the inverse of C, since composing them
horizontally gives the unit braid A of 2 strings.

○ is obviously not commutative, and neither is ⊗. However, there is a close
connection between X⊗Y and Y ⊗X: for each vertical composition X⊗Y there
is a transformation γXY ∶X ⊗Y → Y ⊗X called a braiding, obtained by passing
the strings of X over those of Y . Since it is also possible to go the other way
by passing Y ’s strings under X’s, γ is an isomorphism, and so X ⊗ Y ≅ Y ⊗X.
Note, however, that we do not have that

γXY = γ−1Y X
Now consider the following braids, consisting of the braids E, F , their ver-

tical products E ⊗ F and F ⊗E, and the γEF and γFE braidings.
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E

F γEF

F

E γFE

As we have remarked, E ⊗ F and F ⊗ E are isomorphic, but we can not
identify them: that would give γEF = γFE , but these are clearly distinct. γEF
is the braid that passes the uppermost string above the two others, and γFE
is the braid that passes the two uppermost strings above the third. Identifying
E ⊗ F and F ⊗E conflicts with the braid structure.

Braid categories (i.e. categories in which the morphisms are braids) give a
rather visual example of the inadmissibility of identifying isomorphic objects.
But they are also an important subject in their own right, with applications to
group theory, string theory, and topological quantum field theory. The feature
of them that hinders identification of the isomorphic is also closely related to
our last example, that of homotopy theory.4

2.4 Homotopies

Since the mathematics of this section are fairly involved, we will just give an
overview here. Nevertheless, the subject gives an example of an area where, I
believe, the inadequacy of identifying isomorphic objects is connected to actual
problems in contemporary mathematical research.

Homotopy theory is a branch of topology that, roughly, studies spaces and
continuous transformations using higher-order continuous transformations among
the transformations themselves. A homotopy between continuous functions
f, g ∶ X → Y is a continuous function h ∶ [0,1] × X → Y , where [0,1] is the
unit interval, such that h(0, x) = f(x) and h(1, x) = g(x). When there is a
homotopy between continuous functions f, g ∶ X → Y , they are said to be ho-
motopic.

Let X,∗ be a pointed space, i.e. a topological space with a selected base
point ∗. Of special interest are the homotopies of loops, which are continuous
functions f ∶ [0,1]→X such that f(0) = f(1) = ∗. How these behave often tells
us a lot about X. Two loops f, g compose as

(g ○ f)(t) = { f(2t) if t < 1/2
g(2t − 1) if t ⩾ 1/2

4The argument of this section can be given much more generally by using braided monoidal
categories, cf. [Mac98, pp. 260–265]. We have avoided doing so in order to keep the discussion
as concrete as possible, although this brings the disadvantage that the similarity with the next
section is not as apparent.
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The composition of such loops is not associative, and neither are there strict
identity loops, so we do not have a category. However, the quotient space of
such loops under the relation of homotopy is a category, and, in fact, for a
path-connected space, even a group. It is called the fundamental group of X.

From the homotopy definition we have used, we can see that it is iterable:
the paths on X are themselves members of a topological space X[0,1] consisting
of the continuous functions from [0,1] to X.5 What we get when we consider all
iterations is a sequence of groups πn called the homotopy groups. The elements
of these are homotopy classes of transformations

h ∶ [0,1]→ (⋯((X[0,1])[0,1])
⋯
)
[0,1]

where the right-hand side contains n− 1 occurences of [0,1]. But, by the expo-

nential law (ZY )X ≅ ZY ×X , these are reformulable as classes of transformations
h ∶ [0,1]n →X subject to the boundary conditions

h(x1, . . . , xk−1,0, xk+1, . . . , xn) = h(x1, . . . , xk−1,1, xk+1, . . . , xn)
for 1 ⩽ k ⩽ n. Intuitively, these transformtions can be seen functions from
an n-dimensional cube where all of the faces have been identified down to a
single point. These cubes, in turn, are homeomorphic to n-spheres, so the
homotopy groups πn are more often defined directly as the groups arising from
composing homotopy classes of mappings of the n-sphere Sn to X (see, for
example, [May99, p. 63]). The homotopy n-type of a space X is the class of
spaces whose homotopy groups πk, for k ⩽ n, are isomorphic with X’s. Pointed
spaces are weakly equivalent if all their homotopy groups are isomorphic.

The homotopy groups and homotopy n-types of many spaces are notoriously
hard to compute, and attempts to do so have been a driving force in the devel-
opment of algebraic topology during the 20th century. Since the 1980’s, partly
due to Grothendieck’s preliminary investigations [Gro83], higher category the-
ory has often been expected to turn out to be useful here. A category is, after
all, a kind of generalisation of a group. But an interesting deveopment has
taken place: it has turned out, due to arguments structurally rather similar to
those for braids, that strict higher categories are insufficient to model the higher
homotopies of spaces, and, in particular, the n-sphere.

One version of higher categories can be modeled as a reflexive globular set :
a tuple Xk of sets for 0 ⩽ k ⩽ n, with functions domk+1, codk+1 ∶Xk+1 →Xk and
idk ∶Xn →Xk+1 for 0 ⩽ k < n.6

5Actually, this is not always true, but requires X to be compactly generated and Hausdorff.
That it is, is a common assumption in algebraic topology. The most widely used topology
for function spaces is the compact-open topology, which for metric spaces coincides with the
common uniform or “sup” topolgy. Cf. the careful discussion in [Bro06, pp. 181–197].

6This approach is used in e.g. [KV91].
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X0
id0

// X1

dom1

zz

cod1

cc id1

// ⋯
dom2

{{

cod2

cc idn−1

// Xn

domn

��

codn

aa

An n-category can be interpreted as such a tuple, with X0 as the collection
of objects. For every pair c, d ∈ X0, dom−1

1 (c) ∩ cod−11 (d) gives the object-set of
an n−1-category, with dom, cod and id restricted to this set in the natural way.

What makes a reflexive globular set an n-category is the presence of compo-
sitions. For each set Xk, there are k composition operators ○

i
, 1 ⩽ i ⩽ k. In a

strict n-category, all of these operators are assumed to be associative, to com-
mute with one another, and to have strict units. In a weak n-category, at least
one of these requirements holds only up to an appropriate equivalence.

A strict 1-category is just a category. An example of a strict 2-category is
Cat, which has all small categories as X0, functors between small categories as
X1, and natural transformations between these functors as X2.

A weak 2-category is also called a bicategory. Explicitly, such a structure
can be represented as a reflexive globular set X0,X1,X2 together with, for
each composable triple of 1-morphisms f, g, h ∈ X1, a natural isomorphism
α ∶ h ○

1
(g ○

1
f) → (h ○

1
g) ○

1
f , and for each f ∈ X1, two natural isomorphisms

ρ ∶ f ○
1
(id0 dom1 f) → f and λ ∶ (id0 cod1 f) ○

1
f → f . These are furthermore re-

quired to satisfy coherence axioms, which guarantee that the diagrams using
them commute.

Every bicategory is equivalent to a strict 2-category, so in 2 dimensions,
there is no obstacle to replacing the isomorphisms α, ρ, λ with identities. But
in three dimensions, this does not hold. The weak 3-categorical analogues of
bicategories, known as tricategories [Gur07], are not all equivalent to strict 3-
categories: there are tricategories in which, although h ○

1
(g ○

1
f) ≅ (h ○

1
g) ○

1
f , the

resulting morphisms cannot be identified without losing desciptive power.
Weak 3-categories model homotopy 3-types, and the fact that they are not

all equivalent to strict 3-categories makes it possible that strict 3-categories
are not enough for this task. As we mentioned, this is in fact the case: the
homotopy 3-type of the 3-dimensional sphere is not representable in terms of
a strict 3−category [Sim11, ch. 4]. This means that at least some kind of
weakening of n-categories will be necessary for homotopy theory. This, in turn,
requires keeping isomorphic objects or morphisms apart.

3 Discussion

The last section gave four examples of why isomorphism should not be taken to
imply identity. The two concepts are related, but clearly distinct. This section
speculates on some possible philosophical reasons for the distinction.
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3.1 Proofs and truthmakers

A good place to start with the analysis of any mathematical relation is to inves-
tiagate how it is proved to hold; proof is, after all, the primary way to obtain
mathematical knowledge. Beginning with isomorphism, this is fairly straight-
forward: to show that A ≅ B, one typically constructs an isomorphism between
them, i.e. in most cases, one defines a mapping, and then one constructs an
inverse to that mapping.

With equality, things are more difficult. In many cases, it depends on con-
ventions already in place:

(i) Among numbers, showing that a = b typically involves transforming a and
b, using the equalities assumed in Peano arithmetic, into the same numeral
n so that a = b is shown to be equivalent to n = n.

(ii) Among sets, showing that a = b typically involves showing that x ∈ a ↔
x ∈ b for all x.

(iii) Among functions, showing that f = g typically involves showing that they
have the same domain and codomain and that f(x) = g(x) for all x in the
domain.

In all of these cases, however, we already have equalities assumed in the
framework that we can use: PA is, essentially, a system of equalities, and ex-
tensionality and function extensionality are necessary to prove equalities among
sets or functions, respectively.

The identity conditions of an axiomatisation are thus part of the axioma-
tisation, and insofar as axiomatisations are conventional, these conditions are
themselves conventions. Nothing stops a mathematician from considering ana-
logues of sets or functions that are not extensional, although she should of course
not call them ‘sets’ or ‘functions’ then, since those words have been reserved for
the extensional notions.

This means that equality among a class of terms is generally to be seen as
part of the meaning explanation of these terms.7 The imposition of identity
conditions, given the other axioms, is however not entirely free, but is subject
to the indiscernibility of identicals

a = b⇒ ∀X (X(a)↔X(b))
The indiscernibility of identicals, in turn, fixes what it takes to prove dis-

tinctness of a and b: the existence of a relevant property X such that X(a)
but ¬X(b), which we will refer to as a separating property for a, b. This is not
conventional in the same way as rules for establishing identity. In particular, it
is not dependent on any convention explicitly relying on identity itself. Already

7This is even an explicit requirement in some frameworks, such as Martin-Löf type theory,
which we will discuss briefly below.
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when those axioms of a theory that do not mention identity are specified, we
have what we need to be able to prove distinctness.8

This indicates that one difference between isomorphism and identity is that,
for isomorphism, the epistemologically fundamental notion is indeed isomor-
phism, since we can prove that by constructing an appropriate mapping. By
contrast, for equality, it is distinctness that is epistemologically fundamental,
since that is what we typically can give independent proof of.

This argument can be transposed to the ontological sphere by talking of
truthmakers rather than proofs.9 A truthmaker for a ≅ b would then be an
isomorphism between a and b, while a ≇ b holds simply if there are no such
truthmakers. A truthmaker for a ≠ b would be a property X such that X(a)
but ¬X(b), while a = b merely indicates the absence of such a truthmaker.

With one possible exception, the truthmakers of a ≅ b and a ≠ b should
be seen as logically independent of one another: the existence of a separating
property for a, b does not imply the existence of an isomorphism between them,
and neither does the existence or the non-existence of an isomorphism imply
the existence of a separating property.

However, we do usually have that if a ≄ b, then a ≠ b. This is a result of
isomorphism being defined as an equivalence relation, and thus reflexive. The
“deeper” category-theoretic reason is that, in defining a type of mathematical
structure, we are obliged to also define the structure-preserving mappings (i.e.
morphisms) between objects of this type, and to do so in a way that provides
an identity morphism for each object a. It is a simple exercise to show that
identity morphisms are always isomorphisms, so the condition that well-behaved
structures make up categories is sufficient to guarantee that a = b⇒ a ≅ b. Thus,
on this conception, while a = b needs no truthmaker, the identity morphism of
a (or b) is a truthmaker for a ≅ b.

This also indicates that when we do not have strict identities, there is no
reason to expect identity to imply isomorphism either. This could turn out to
be the case in certain forms of weak categories. In some cases, we may have
canonical isomorphisms that, while not identities, still associate an automor-
phism with each object. Consider, for example, a space X with morphisms
being paths [0,1] → X, as in section 2.4, but without identifying homotopic
paths. The constant path f(t) = a connects a to itself, but it is not an iso-
morphism: composing it with its converse (or pseudo-inverse) g(t) = f(1 − t)
does not get us to an identity, and as we mentioned, there are no strict identity
morphisms in X at all.

This does not mean that a = a does not hold for all a ∈ X, of course. But
since there are no identity morphisms, and, a fortiori, no isomorphisms, identity
does not imply isomorphism in this structure. We thus have a case in which the

8Is there a corresponding method of showing that a = b by using the identity of indis-
cernibles? Not that I am aware of; the possible relevant properties are usually infinitely many,
so showing that they are all instantiated in a iff they are in b seems hopeless without having
some kinds of general principles to start with, such as extensionality axioms.

9For intuitionistic mathematics this would not make a difference at all since truthmakers,
under the BHK interpretation, are proofs. See [Sun94].
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two concepts are entirely separate.

3.2 UF and the intensionality of structure

The discussion so far has been relying on classical extensional logic: it is
classical-logical identity which cannot be the same as isomorphism. When we
leave the safe confines of classical logic, however, the landscape of possibilities
expands. The current programme of Univalent Foundations [Voe10] builds on a
principle called the Univalence Axiom, which entails, for many algebraic struc-
tures, that isomorphism implies identity [CD12]. But the logic of UF is not
classical logic, but intensional Martin-Löf type theory. In this logic, we have, as
Martin-Löf [Mar84, pp. 59] explains, four different forms of identity:

(i) The definitional equality a =df. b. This is “the equivalence relation gen-
erated by abbreviatory definitions, changes of bound variables and the
principle of substituting equals for equals” [Mar84, p. 31]. It is a purely
syntactic notion.

(ii) The equality of elements a = b ∈ X, where X is a type of which a and b
are elements. This is perhaps the version most like classical identity in
that it allows replacing equals for equals arbitrarily, subject only to type
restrictions.

(iii) The equality of types X = Y , which consists in them having equal elements.

(iv) The identity type IdX(a, b): every pair of elements of X has specific type
IdX(a, b) of proofs that a = b, and if a ∈ X, there is a canonical element
r(a) of this type called the reflexivity proof, interpretable as the canonical
proof that a = a.

In extensional M-L type theory, the existence of an element of IdX(a, b)
implies a = b ∈ X. In the intensional version, however, the non-emptiness of
IdX(a, b) is strictly weaker than a = b ∈ X, and instead motivates a type of
induction principle [NPS90, pp. 57–60].

In M-L type theory as used in Homotopy Type Theory, which is the inter-
pretation of type theory in which UF is implemented, the identity type takes
center stage. The univalence axiom entails that is that if A and B are isomor-
phic, then the identity type IdU(A,B), where U is a universe, is non-empty.
Properties P (x) where x ∈ A are, roughly, identified with functions from A to
U , with the informal explanation that P (x), for any x, is the type of proofs
that x satisfies P .10 An induction theorem guarantees that if f ∈ IdA(a, b) and
P (a) is non-empty, then so is P (b). This gives a kind of internal version of the
indiscernibility of identicals for the elements of A [Pro13, p. 48].

The general indiscernibility of identicals does not follow from the existence of
an element of IdX(a, b), however. Suppose that a, b ∈X, and that p ∈ IdX(a, b).

10More exactly, properties are types dependent on A. But for the purposes of this discussion
it is handy to just think of them as functions into U .
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We have that r(a) ∈ IdX(a, a), but unless a = b ∈ X, we cannot have r(a) ∈
IdX(b, b). The induction principle for IdX gives us only that f(r(a)) ∈ IdX(b, b)
for a function f ∶ IdX(a, a)→ IdX(b, b).

What inhabitance of IdX(a, b) does is to allow us to transport structures on a
to structures on b while retaining some of of their properties, the most important
one being inhabitedness of types. It does not mean that structures defined on a
are themselves defined on b as well, unlike classical equality. This can be framed
as an issue of covariance vs. invariance: if p ∈ IdX(a, b), then structures on a
covary with structures on b, with p giving the method of covariation. On the
other hand, if a = b ∈ X, then structures on a are invariant with respect to
replacing a with b.11

Awodey [Awo13] has recently argued for the use of UF and HTT as a foun-
dation for structuralism which does satisfy the principle that isomorphic objects
are equal. As he points out, the principle is not attained by collapsing classes of
isomorphic objects, but by the weakening of the relation of identity. M-L type
theory with intensional identity but without the Univalence axiom is indeed so
weak that type checking becomes decidable. Since each proposition P is a type
(i.e. the type of its proofs), being able to check whether P is the empty type
0 furthermore allows one to decide any statement. It remains to be seen how
much of classical mathematics can still be represented in this foundation, and
to what extent the addition of the Univalence axiom increases its power.

We have, in this note, been concerned with classical extensional identity, so
our critique of identifying isomorphism and equality on itself poses no obstacles
to the viability of the Univalent Foundations program, or programs like it. In
intensional logics, equality often comes out as weaker. This may even be taken
as a definition of what intensionality consists in, as Quine does when discussing
opaque contexts [Qui80, pp. 139–159]. Since isomorphism is, as we have argued,
also strictly weaker than classical identity, it is not implausible that it should
be possible to model it using weaker forms of identity.

When Univalence is added, however, UF does not give a weaker system than
classical type theory, but one incompatible with it. UF is proof relevant : unlike
in extensional intuitionistic mathematics, not only is the existence of objects
dependent on the existence of proofs, but the identity conditions of those objects
depend non-trivially on the identity conditions of the proofs as well. This gives
a radical form of non-extensionality, which is evinced in the fact that adding the
Univalence Axiom to classical type theory, which validates ¬¬A → A, results
in all types being inhabited. Given the internal interpretation of properties,
this would mean that all elements of all types have all properties, which would
trivialize the system [Pro13, pp. 106–107].

Thus, if we follow this path, and base mathematics thoroughly on intensional
logic, we will end up with a very different view of mathemamatics than the usual
structuralist one, as it has been described in e.g. [Hel94, Res97, Sha00]. As far
as I know, even structuralists advocating constructive methods, such as [Chi04],

11For a long, careful discussion on covariance and invariance, and the relationship to struc-
turalism, see [Rod14], esp. chapter 8.
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have generally assumed identity to be extensional. In UF, however, rather than
being inherent to an object, what properties an object have will have to be
treated as dependent on how the object in question is referred to. Although,
in the internal language of HTT, we can prove that P (a) iff P (b) as soon as
IdX(a, b) is non-empty, we cannot prove the more general principle of arbitrary
substitution of equals for equals.

According to Awodey, equality in HTT means having the same structural
properties, and ‘property definable in HTT’ gives an explication of what ‘struc-
tural property’ might mean, so that any p ∈ IdX(a, b) can be interpreted as a
proof that a and b have the same structural properties. Like any explication,
however, I believe that we should not expect it to be universal. In contrast,
I would like to point out that it is very useful for mathematics to be able to
not have a single notion of what counts as structural properties, and a fortiori,
what counts as isomorphism.

Quite apart from our reliance on extensional identity, this indicates a sig-
nificant difference between the way we have been working with structure here,
and the way Awodey does in his work on UF. We have, freely, allowed ourselves
to talk about the same object being in two different categories. This is what
gives rise to the relativity of structure I alluded to in the first section: the same
object can be structured in various ways by being considered as a member of
different categories. In any type theory, including HTT, if we take categories to
be types, such talk makes no sense.

3.3 Conclusion

We can state the message of this paper as a trilemma. One of the following has
to be false:

(i) Mathematical objects such as groups, categories and spaces are structures.

(ii) Isomorphic structures are identical.

(iii) Identity in mathematics is extensional.

The conjunction of (i) and (ii) imply what Awodey [Awo13] calls the Princi-
ple of Structuralism, i.e. that isomorphic objects are identical. Non-structuralists
such as set-theoretic foundationalists discard (i) (and, in most cases, (ii) as
well). One can also consider dropping (ii) alone. Doing so means that one can
be a structuralist and still use extensional logic. The downside, however, is that
it invites the question: given that there is not just one 2-element group, how
many are there? The set-theoretic foundationalist has an easy answer: one for
each two-element set. But if we are to give a non-substantialist answer, what
could we say?

One possibility is to stay close to the substiantialist, and posit one “copy” of
a structure for everything that instantiates it. This will mean that structures,
rather than being universals, will be more like tropes in that every instance of
a structure will be its own entity. Perhaps this would be the minimal way to

15



change classic structuralism in order to accommodate extensional identity. But
it means that the mathematical objects in question will not be independent,
but necessarily tied to the things that have them.

A different way out, which comes closer to the intensionalist paradigm, would
be to deny structures objecthood, and thus identity conditions, altogether. How-
ever, doing so will make it hard to take account of actual mathematics, which
does treat groups, categories, and other mathematical entities as objects.

For myself, I suspect that all three propositions might be wrong, or at least
not good assumptions to make. While one could possibly create a theory of
structure which is wide enough to cover all mathematical objects, it may still
be useful to be able to differentiate between an object and its structure in some
cases, so we should not assume (i). And while extensional identity has been the
norm in 20th century mathematics, much good mathematics is done by logicians
and computer scientists without that assumption, so we should not make that
one either.

If we deny (i) or (iii), it is possible to hold (ii) to be true. But this should be
interpreted as saying that we can give an explication of the notion of structure on
which (ii) holds, rather than that any explication has to satisfy it. A category-
theoretic way to approach the problem would be to define a category Str of all
(small) structurestogether with functors from each other (small) category to Str
which are interpreted as assigning each object a structure. (ii) then reduces to
the question of whether Str should be assumed to be skeletal or not. As such
a theory does not yet exist, I do not wish to presuppose either answer.

Much of what I have argued here is based on a rather straightforward in-
terpretation of categories and the isomorphisms in them. As I have noted fre-
quently, the structure of an object is dependent on what category it is considered
as an element of. This, in turn, means that assigning an object to a category
gives us a structural interpretation of what it is. What is special about cate-
gory theory is that it does so by comparison with other objects rather than by
reference to any internal constitution.

Taking structure to be category-relative lets us identify objects of differ-
ent structures, although we do not, of course, have to make such identifications.
Rather, it allows us to work with structure as something we impose on the math-
ematical world, rather than something that objects come with already assigned.
A simple example of a view of this type a principle would be a combination
of Frege’s insight that number is concept-relative with a non-Platonist under-
standing of concepts. In fact, cardinality is itself a type of structure, namely
the type of structure expressed by isomorphisms in Set. So just as whether we
treat something as one deck of cards or 52 cards is up to us, whether we treat
an object as a group, a set, or a topological space, can be taken to be so as well.

There is something rather Kantian, or perhaps neo-Kantian, about this ap-
proach. Kant was, after all, one of the first modern structuralists (see, for
example, [Kan10, p. 204]), although Poicaré’s advocacy of the thesis now seems
to be more well-known. Contemporary structuralists tend to follow much of the
rest of contemporary philosophy in treating metaphysical and epistemological
questions separately. In contrast, on the neo-Kantian view I have indicated here,
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a category in the mathematical sense can be seen as a kind of schema though
which we can understand and interpret the mathematical world, or in other
words, a category in the Kantian sense. This would make MacLane’s purloining
of that word for his and Eilenberg’s theory of natural equivalences a particularly
happy one.
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in Martin-Löf’s Type Theory. Oxford University Press, 1990.

[Pro13] The Univalent Foundations Program. Homotopy Type Theory: Univa-
lent Foundations of Mathematics. The Univalent Foundations Program,
2013.

[Qui80] Willard van Quine. From a Logical Point of View. Harvard University
Press, third edition, 1980.

[Res97] Michael Resnik. Mathematics As a Science of Patterns. Oxford Uni-
versity Press, 1997.

[Rod14] Andrei Rodin. Axiomatic Method and Category Theory. Springer, 2014.
Preprint available at http://arxiv.org/abs/1210.1478.

[Sha00] Stewart Shapiro. Philosophy of Mathematics: Structure and Ontology.
Oxford University Press, 2000.

[Sim11] Carlos Simpson. Homotopy Theory of Higher Categories. Cambridge
University Press, 2011.
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