Fluid Behavior Through a Simulated PEMFC Gas Diffusion Layer

Espinoza Andaluz, Mayken; Andersson, Martin; Sundén, Bengt

2015

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Fluid Behavior Through a Simulated PEMFC Gas Diffusion Layer

Mayken Espinoza*, M. Anderssonb, and B. Sundén(c),
Department of Energy Sciences, Lund University, Lund, SE-221 00, Sweden,
*Mayken.Espinoza_Andaluz@energy.lth.se, bMartin.Andersson@energy.lth.se, cBengt.Sunden@energy.lth.se

Scientific approach

- Lattice Boltzmann Method.
- Scheme used: D2Q9.
- Momentum conservation equation.
- Fluid captured at different time steps.
- Tortuosity calculated using the 2D velocity field.

Model Characteristics

- **FLOW PLANE**
- **GDL – Gas Diffusion Layer**
- **CL – Catalyst Layer**
- **Land region (L)**
- **Channel region (C)**
- **Carbon fibers**
- **Pore spaces**
- **Layer thickness = L**

\[
\frac{\partial f_i(r,t)}{\partial t} + c_i \nabla f_i(r,t) = \frac{1}{\tau} \left[f_i^{eq}(r,t) - f_i(r,t) \right]
\]

\[
f_i^{eq}(r) = w_i \rho(r) \left[1 + 3 \frac{c_i \cdot u}{c^2} + \frac{9}{2} \left(\frac{c_i \cdot u}{c^2} \right)^2 - \frac{3 u^2}{2 c^2} \right]
\]

\[
\varphi_{2D} = \frac{\text{Void area}}{\text{Total area}} = \frac{\text{Void area}}{\text{Void area} + \text{Solid area}}
\]

\[
\tau_{\text{gas-phase}} = \frac{\text{Actual path}}{\text{Shortest distance}} = \frac{\sum_{i,j} u_{\text{max}}(i,j)}{\sum_{i,j}|u_i(i,j)|}
\]

Conclusions

- The velocity field using D2Q9 LBM scheme was obtained at different time steps.
- The behavior of the fluid through the microstructures can be observed.
- Porosity (0.7770) and tortuosity (1.1916) are evaluated for the implemented model.

Velocity Field

<table>
<thead>
<tr>
<th>Time_step=100</th>
<th>U_{max}</th>
<th>Time_step=500</th>
<th>U_{max}</th>
<th>Time_step=2000</th>
<th>U_{max}</th>
<th>Time_step=4000</th>
<th>U_{max}</th>
<th>Time_step=10000</th>
<th>U_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0</td>
<td></td>
<td>1.0</td>
<td></td>
<td>1.0</td>
<td></td>
<td>1.0</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>0.0</td>
<td></td>
<td>0.2</td>
<td></td>
<td>0.2</td>
<td></td>
<td>0.2</td>
<td></td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>

Average Velocity - Tortuosity

- **Step = 100**
- **Step = 500**
- **Step = 2000**
- **Step = 4000**
- **Step = 10000**

Gas-phase Tortuosity obtained at different time_step

\[
\text{Porosity} = 0.7770
\]