
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Model-Based Deadtime Compensation of Virtual Machine Startup Times

Dellkrantz, Manfred; Dürango, Jonas; Robertsson, Anders; Kihl, Maria

2015

Link to publication

Citation for published version (APA):
Dellkrantz, M., Dürango, J., Robertsson, A., & Kihl, M. (2015). Model-Based Deadtime Compensation of Virtual
Machine Startup Times. Paper presented at 10th International Workshop on Feedback Computing.

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/96eef5a3-648a-4a30-a77f-f426aec4c51e

Model-Based Deadtime Compensation of Virtual Machine
Startup Times

Manfred Dellkrantz
Dept. of Automatic Control

Lund University
Sweden

manfred@control.lth.se

Jonas Dürango
Dept. of Automatic Control

Lund University
Sweden

jonas@control.lth.se
Anders Robertsson

Dept. of Automatic Control
Lund University

Sweden
andersro@control.lth.se

Maria Kihl
Dept. of Electrical and
Information Technology

Lund University
Sweden

maria.kihl@eit.lth.se

ABSTRACT
Scaling the amount of resources allocated to an application
according to the actual load is a challenging problem in cloud
computing. The emergence of autoscaling techniques allows
for autonomous decisions to be taken when to acquire or re-
lease resources. The actuation of these decisions is however
affected by time delays. Therefore, it becomes critical for
the autoscaler to account for this phenomenon, in order to
avoid over- or under-provisioning.

This paper presents a delay-compensator inspired by the
Smith predictor. The compensator allows one to close a sim-
ple feedback loop around a cloud application with a large,
time-varying delay, preserving the stability of the controlled
system. It also makes it possible for the closed-loop sys-
tem to converge to a steady-state, even in presence of re-
source quantization. The presented approach is compared
to a threshold-based controller with a cooldown period, that
is typically adopted in industrial applications.

1. INTRODUCTION
1.1 Background
Cloud computing has in the recent years become the stan-
dard for quickly deploying and scaling Internet applications
and services, as it gives customers access to computational
resources without the need for capital investments. In the
Infrastructure as a Service (IaaS) service model, cloud pro-
viders rent resources to customers in the form of physical
or virtual machines (VMs), which can then be configured
by the customers to run their specific application. For a
cloud customer aiming at providing a service available to
the public, this poses the challenge of renting enough re-

sources for the service to remain available and provide high
quality of service (QoS), and the cost of allocating too much
resources. Pair this with a workload that is time-varying
due to trends, weekly and diurnal access patterns and the
challenge becomes more complex.

For this reason, to cope with varying load, cloud services
often make use of autoscaling, where decisions to adjust re-
source allocation are made autonomously based on measure-
ments of relevant metrics. There is currently a plethora of
different autoscaling solutions available, reaching from sim-
ple threshold-based to highly sophisticated based on for ex-
ample control theory or machine learning. The solutions are
commonly categorized as either reactive or proactive to their
nature. In the former case, decisions are based on current
metric measurements relevant to the load of the cloud ser-
vice, while in the latter case on a prediction of where the
metrics are heading.

Both approaches have in common that they usually do not
distinguish between cases where the metrics are only indi-
rectly related to the actual QoS of the cloud service, such
as the arrival rate, or metrics that are directly coupled to
the QoS, such as response times. From a control theoreti-
cal point of view, we could therefore further categorize the
first case as feedforward approaches and the second case as
feedback approaches. Feedforward control schemes can in
many cases give good performance, but generally requires
excellent apriori knowledge of the system to be controlled,
and lack the ability to detect any changes or disturbances
that affect the system. Feedback solutions on the other hand
are generally more forgiving when it comes to system knowl-
edge requirements. They can also compensate for unforeseen
changes since they base their decisions on metrics directly
related to the QoS.

For cloud services, decisions to add more resources usually
requires starting up a new VM. This in turn means that
the cloud provider needs to place the machine, transfer the
OS data it needs and boot it up. Overall, the time from
decision to a VM to get fully booted typically ranges from a
few tens of seconds up to several minutes [12]. The long time

delays this leads to are an inherently destabilizing factor in
feedback control. The key reason is the following: long time
delays from a scale up decision to a full actuation prompts
the feedback controller to continue commanding increased
resource provisioning due to the fact that it cannot yet see
the effect of its earlier decisions.

In practice, these time delays need to be considered when
designing feedback based autoscaling solutions in order to
avoid destabilizing the closed loop system. Possible exist-
ing solution include having a low gain in the feedback loop,
essentially making the autoscaler very careful with contin-
uing adding more resources before the effect of past deci-
sions start showing up. Another solution is to implement a
so-called cooldown period, as implemented in [1, 2, 3]. In
autoscalers employing cooldown, any decision to scale re-
sources activates the cooldown period, during which subse-
quent scaling attempts are ignored.

In the current paper, we take a different approach and adopt
a solution that has similarities to the Smith predictor, a
technique commonly used in control theory for controlling
systems with long time delays. In essence, the Smith pre-
dictor works by running a model-based simulation of the
controlled system without the delays, and use the outputs
from this simulation for feedback control. Only if there is a
deviation between the true system output and a delayed ver-
sion of the simulated output are actual measurements from
the real system used for control.

1.2 Related work
As cloud computing has grown more popular, the autoscal-
ing challenge has attracted attention and resulted in nu-
merous proposed solutions, for example [17, 9, 14]. A thor-
ough review of existing autoscaling solutions can be found in
[11]. The level at which reconfiguration delays are explicitly
considered in existing autoscaling solutions varies depend-
ing on the underlying assumption of the magnitude of the
delays and choice between feedforward and feedback con-
trol structures. Ali-Eldin et al [5] use an approach where
scaling down is done reactively and scaling up proactively,
but otherwise assumes that any reconfiguration decision is
actuated immediately. Similarly, Lim et al [10] design a
proportional thresholding controller with hysteresis where a
feedback loop from response times to the number of allo-
cated VMs is closed. Also here the assumption is that VMs
can be started instantaneously.

Berekmeri et al [6] use an empirically identified linear time-
invariant model with a time delay to design a controller for
deploying resources in a MapReduce cluster to handle in-
coming work. The time delay corresponds to the reconfig-
uration delay and is assumed to be constant. As shown by
Mao et al [12], VM startup times can vary heavily, both
depending on application and infrastructure.

In Gandhi et al [8] the authors identify reconfiguration de-
lays as the main reason for poor performance in many reac-
tive and proactive approaches. In their proposed solution,
a feedback scheme from the number of concurrently run-
ning jobs in a key-value based cloud application is used for
scaling up the number of allocated physical servers. Since
starting servers usually takes longer time than shutting them

Cloud
Application

Reconf.
delay

mr
m

mr

T

λ

λ

Figure 1: Schematic diagram of the cloud application as
a dynamic mapping from desired amount of resources m
via deployed resources mr to the performance metric T . λ
is the incoming load of the application and is assumed to
measurable. The signal m is also subject to quantization
before being sent to the infrastructure.

off, they then pack the incoming work on as few servers as
possible and equip each server with a timer. If no requests
arrive at an empty server during the timer duration, the
server is shut down.

1.3 Contribution
In this paper, we present an autoscaling solution using in-
spiration from the Smith predictor. The result is a feedback
controller for cloud services that can quickly reconfigure al-
located resources when faced with load variations that leads
to a lowered QoS. It also avoids the low controller gains and
cooldown solutions otherwise commonly used in feedback
autoscalers.

In section 2 we present how a cloud application can be seen
as a dynamic mapping from resources to a set of performance
metrics, and the proposed delay-compensator. In section 3
we focus on a specific case where we apply our proposed
solution to control response times. Simulation results from
this scenario are shown in section 4. Section 5 concludes the
paper.

2. DELAYS IN CLOUD APPLICATIONS
2.1 Dynamic mapping
Cloud applications can generally be regarded as software ex-
ecuting on a set of virtualized resources. Their purpose is
often to compute a response to requests made to them. This
arrival of requests, usually time-varying in its nature, gener-
ates a load on the cloud application, which affects the perfor-
mance and QoS of a cloud application and can be quantified
by a number of relevant metrics, such as response times. In
order to keep the performance metrics close to some specific
value, as specified by a service level objective (SLO), when
facing time-varying load, cloud applications are required to
be reconfigurable in terms of resources allocated. We have
already outlined how a main challenge for this is the long
delays when reconfiguring the deployed amount of resources.
Further complicating is the fact that virtual resources usu-
ally only can be provisioned in a quantized fashion or are
available in preset configurations. For example, the number
of VMs provisioned must be integer, memory might only be
configured in whole gigabytes, etc.

With this in mind, we view a cloud application as a dy-
namic mapping from deployed resources and incoming load
to a set of performance metrics. This gives us the setup
shown in Figure 1. Input is the desired amount of resources

m and outputs are the actual deployed resources mr, the
metric denoted T , and also we assume that we can measure
the incoming load λ. The amount of resources also needs
quantization before being actuated.

2.2 Delay compensation
The Smith predictor [15] is commonly used for controlling
processes with long time delays, and was originally intended
for stable, linear, time-invariant SISO systems with a well-
known constant time delay. A key assumption for the Smith
predictor is the availability of a delay-free model of the sys-
tem to be controlled. Using this model, the system’s re-
sponse to a given input can be predicted by running a sim-
ulation. An identical, but delayed, simulation is also done
using the model. Finally, an aggregated measurement sig-
nal T̂ that adds the output of the real system T and the
delay-free model output T2 and subtracts the delayed model
output T1 can be formed and used for designing a feedback
controller. The result is a situation where the feedback only
consists of the delay-free model output if the delayed model
and system output perfectly matches each other, allowing
for higher control gains. Only when there is a mismatch be-
tween model and system is the actual system output used
for feedback control.

The Smith predictor usually assumes the actuation delays
to be constant, which however, as already mentioned, is
generally not true for cloud services. For cloud applica-
tions, the delays when reconfiguring the deployed resources
are stochastic and may even vary during the day [12]. For
this reason we modify the original formulation of the Smith
predictor so that the delayed model instead uses mr, the
amount of actually deployed resources, as it is not problem-
atic to measure. This gives the setup shown in Figure 2.

As previously mentioned, resources can usually only be de-
ployed in a quantized fashion. But assuming the delay-free
model can handle non-quantized amount of resources (m),
our setup also comes with the benefit that even changes in m
too small to change the output of the quantization actually
has an impact on the compensated response time T̂ through
the delay-free model.

For the remainder of this paper, we focus on applying our so-
lution to a case where we scale the number of homogeneous
VMs allocated to a cloud application to ensure that response
times are kept bounded. Note that the key assumption in
our approach is that we can model the application. There-
fore the compensation should be applicable also to other
types of resources and applications than the one considered
here, such as heterogeneous VMs or MapReduce jobs.

3. RESPONSE TIME CONTROL
In this section we present a case where the delay compen-
sation described in 2.2 is used. The application under con-
sideration is stateless and the VMs are assumed to be ho-
mogeneous. A continuous time dynamic model is derived
using queueing theory and the feedback loop for controlling
the mean response time is closed using a PI controller. For
comparison we also implement a threshold-based autoscaler
with cooldown based on [1].

Reconf.
delay

Cloud
Application

Model
(mr, λ) 7→ T1

Model
(m,λ) 7→ T2

Σ

λ

T

+

−
T1

+

T2

T̂

m
mr

Figure 2: Smith-inspired delay-compensator for cloud ap-
plications. The delayed model uses the measured mr from
the cloud application instead using an implementation of a
estimate of the delay.

Load
Balancer

µλ
mr

µ
λ
mr

µ

λ
mr

T

...

λ
mr

Figure 3: Schematic diagram of the load balancing of mr

running VMs.

3.1 Queueing model
Queueing theory is a commonly used approach for modeling
servers. For example, in [7] measurements from web servers
were found to be consistent with an M/G/1 queueing sys-
tem. In this paper we model each VM as an M/M/1 queueing
system with service rate µ. Traffic is assumed to arrive to
the application according to a Poisson process with intensity
λ. A load balancer is then used to spread the traffic ran-
domly over mr currently running VMs, leading to an arrival
rate of λ

mr
per VM. A schematic diagram of the model is

shown in Figure 3. Response times are recorded and sent to
the feedback controller, responsible for reconfiguration deci-
sions. Decisions to scale up come with a stochastic startup
delay for each VM. Decisions to scale down are effective im-
mediately, as it can be carried out by simply reconfiguring
the load balancer and terminating the VM. The quantiza-
tion effect in this case consists of a ceiling function to make
sure that we get the lowest integer value greater than the
desired number of VMs.

3.2 Continuous dynamic approximation
Queueing models are generally mostly concerned with the
stationary behavior of a system. However in our case, we
are also interested in the cloud application dynamics. By
viewing the queueing models considered here as systems of
flow, we can use the results from [4, 13, 18] to formulate the
following approximative model of the dynamics of a M/M/1

queueing system:

ẋ = f(x,m, λ) = α

(
λ

m
− µ

x

x+ 1

)
T = g(x,m, λ) = µ−1(x+ 1)

(1)

where x corresponds to the queue length, λ/m the arrival
rate per running VM, µ the service rate of each VM, T the
mean response time and α is a constant used in [13] to better
fit the transients of the model to experimental data. It is
easy to verify that the equilibrium points of the system (1)
for any 0 ≤ λ < µ coincide with the results from a stationary
analysis of a M/M/1 system. In [16], Tipper et al show how
system (1) in the case α = 1 provides a reasonable approx-
imation to the exact behavior of the non-stationary M/M/1

queue as found by numerically solving the corresponding
Chapman-Kolmogorov equations under certain conditions.
Based on the stationary queue length and the stationary re-
sponse time of the M/M/1 we can find the output response
time T of the flow model.

From now on we will be using the system (1) and its state
variable x as the average state of all VMs. Since all virtual
machines are equal it is straight-forward to show that

˙̄x =
1

m

m∑
i=1

ẋ ≈ f(x̄,m, λ)

if we assume all xi (the states of the individual virtual ma-
chine) are the same. This is not true for transients in newly
started machines, but as an approximation it is good enough.

Note that system (1) is not dependent on m being integer.

3.3 Control analysis
For control synthesis purposes, we linearize the system equa-
tions (1) around the stationary point corresponding to a
traffic level λ0 and response time reference Tref , where we
can make use of the fact that stationary queue length x0
and the stationary number of machines m0 can be uniquely
determined through the other variables as

x0 = Tref µ− 1

m0 =
Tref λ0

Tref µ− 1

The linearization yields the following system:

∆ẋ = − α

µTref
2 ∆x− α

(Tref µ− 1)2

Tref
2 λ0

∆m

+ α
Tref µ− 1

Tref λ0
∆λ

∆T =µ−1∆x

Note that the dynamics of the linearized system does not
change with varying load, while the input gains do. The
transfer function from number of machines m to response
time T becomes

Gp(s) =
∂g

∂x

(
s− ∂f

∂x

)−1
∂f

∂m

∣∣∣∣∣ x=x0
m=m0
λ=λ0

= − A

s+ a

with A = α(Tref µ − 1)2/(Tref
2 λ0 µ) and a = α/(µTref

2)
both greater than zero.

Since the system is of order one, we conclude that a PI
controller of the form

Gc(s) = Kp +
Ki

s

should suffice, leading us to the following closed loop dy-
namics from Tref to T :

G1(s) =
GcGp

1 +GcGp
=

A(Kps+Ki)

s2 + s(a−AKp) −AKi
.

The closed loop dynamics from λ to T is given by the transfer
function

G2(s) =
Gp

1 +GcGp
= − As

s2 + s(a−AKp) −AKi
.

We require of the controller that G1 and G2 are asymptoti-
cally stable. Furthermore we require that the zero in G1 is
not non-minimum phase. Since this zero also shows up in
the transfer function from ∆λ to ∆m this would otherwise
lead to the controller responding to a step increase in traffic
by transiently turning off VMs. Lastly, we require that the
transfer functions be fully damped, i.e. that all closed loop
poles are real. This is because we want to avoid overshoots
in the control signal when faced with a step shaped distur-
bance or reference change, as it would lead us to starting up
VMs that are almost immediately turned off again. Com-
bining these requirements puts the following constraints on
the controller parameters:

Ki < 0

Kp ≤ 0

−4AKi ≤ (a−AKp)
2

In order to simplify controller design, we can reparameterize
the closed loop poles in the following way:

s = −a−AKp

2
±
√

(a−AKp)2

4
+AKi = −ϕ± ξ, ϕ ≥ ξ ≥ 0

allowing us to find the following expression for the controller
parameters:

Kp =
a− 2ϕ

A
, ϕ ≥ a

2

Ki =
ξ2 − ϕ2

A

where the condition on ϕ makes sure that the zero in G1(s)
is minimum phase.

3.4 Threshold-based controller
For comparison we also implement a threshold-based con-
troller with cooldown, based on the autoscaling solution used
in Amazon Web Services [1]. The controller measures the
average response times over a time period h, and compares
it to two given thresholds, one upper Tupper and one lower
Tlower. Whenever ht measurements in a row are either above
the upper or below the lower threshold, an autoscaling event
is triggered, either trying to start or shut down one VM.

Successfully executing an autoscaling event (shutting down
or starting up a VM) also starts a cooldown period, with
length hcooldown. Whenever a cooldown period is running
no new autoscaling events are triggered.

4. EXPERIMENTAL RESULTS
4.1 Delay-compensated control
To evaluate the delay-compensator described in Section 2.2
we run a set of discrete event-based simulation experiments.

0 100 200 300 400
0

1

2

Time [s]

R
es
p
o
n
se

ti
m
e
[s
]

Reference, Tref

Delay-free, T2

Delayed, T1

Compensated, T̂

Response time, T

(a) Response time results from simulation of step up. The com-
pensated response times reach the reference much before the actual
response times.

0 100 200 300 400

32

33

34

35

Time [s]

M
a
ch
in
es

[1
]

Control signal, m

Running VMs, mr

(b) Control signals from simulation of step up. The controller man-
ages to respond to the change in load with little overshoot, which
is important.

Figure 4: Results from simulating a step-shaped increase in traffic.

0 100 200 300 400
0

0.2

0.4

Time [s]

R
es
p
o
n
se

ti
m
e
[s
]

Reference, Tref

Delay-free, T2

Delayed, T1

Compensated, T̂

Response time, T

(a) Response time results from simulation of step down. The dif-
ference between delayed and delay-free is that the delay-free model
has no quantization.

0 100 200 300 400

32

33

34

35

Time [s]

M
a
ch
in
es

[1
]

Control signal, m

Running VMs, mr

(b) Control signals from simulation of step down. The controller
gradually turns off machines to find the equilibrium.

Figure 5: Results from simulating a step-shaped decrease in traffic.

The cloud application is an implementation of the model
described in Section 3.1. The PI controller derived in section
3.3 is implemented in discrete time as such:

ek = Tref − T̂k

ik = ik−1 +Ki h ek

mk = Kp ek + ik

0 100 200 300 400
0

0.2

0.4

Time [s]

R
es
p
o
n
se

ti
m
e
[s
]

Reference, Tref

Compensated, T̂

Response time, T

Figure 6: Steady state with λ = 630. The controller finds
the lowest number of machines to come below Tref and then
compensates for the difference.

where mk is the control signal, ik is the integrator state and
T̂k is the mean of all delay-compensated response times be-
tween sampling points k−1 and k. For this implementation
we omit anti-windup since the only saturation in the system
is m > 0, and all experiments are designed to stay far away
from that point. The VMs have a service rate µ = 22 and
uniformly distributed startup delays in the interval [80, 120]
seconds, while shutting down a VM is immediate. The lin-
earization point is chosen as λ0 = 630 and Tref = 0.5 s, and
the controller parameters are chosen so that ϕ = 0.0545,
ξ = 0.0432. The controller runs every h = 2 s. Experimen-
tal trial showed that using α = 0.5 in our cases provided a
reasonable transient fit.

The delay compensator updates the state of the delayed and
the delay-free model on every request leaving the cloud ap-
plication. The continuous models are discretized using the
Runge-Kutta method.

In the first experiment, the incoming traffic to the appli-
cation is changed as a step from 630 to 690 requests per
second. We perform a set of 25 step response experiments,
and aggregate the results to calculate the average response
times and number of VMs over a window of 4 seconds. The
results are shown in Figure 4.

0 100 200 300 400
0

1

2

Time [s]

R
es
p
o
n
se

ti
m
e
[s
]

Reference, Tref

Response time, T

(a) Response times for the step up scenario when using the thresh-
old controller with cooldown

0 100 200 300 400

32

33

34

35

Time [s]

M
a
ch
in
es

[1
]

Control signal, m

Running VMs, mr

(b) Number of machines for the step up scenario when using the
threshold controller with cooldown

Figure 7: Results from simulating a step-shaped increase in traffic for the threshold-based controller.

As we can see in Figure 4a the real response times reach its
highest point about the same time as the first newly started
VM becomes active. Figure 4b shows the average control
signal (m) and running VMs (mr). The controller man-
ages to respond to the change in load, without significant
overshoot, which is the typical problem caused by actuation
delays.

Plots of simulations of the step down from 690 to 630 per
second is shown in Figure 5. The difference between delayed
and delay-free model while scaling down is that the delay-
free model has no quantization. In less than 300 seconds we
reach the theoretical stationary value mr = 32.

Shown in Figure 6 is a plot of the average behavior when the
system is approaching steady state with λ = 630. As can
be seen, response times are not varying around Tref , but
slightly below. This is because m0 = Tref λ0/(Tref µ− 1) =
31.5 is not an integer. Since we can only run integer num-
ber of machines and the ideal number is a fraction, an un-
compensated PI controller would oscillate between the two
values 31 and 32 for mr. The compensated controller on
the other hand finds the smallest integer mr larger than m0

and compensates away the part of the error that can not
be removed without exceeding Tref . T approaches T0 =
µ−1(λ0

µ dm0e−λ0
+ 1) ≈ 0.43 s instead of Tref = 0.5 s.

With this controller, for all 25 experiments, we use on aver-
age 33.7 machine hours per hour. The mean response time
during scale-up is 0.804 seconds and during scale-down 0.373
seconds.

4.2 Threshold-based controller
For comparison we also run the same experiment as previ-
ously described with the threshold controller described in
3.4. The controller is run with the parameters Tlower =
0.35 s, Tupper = 0.6 s, ht = 20 s

h
, hcooldown = 120 s.

The mean response times and number of running VMs are
shown in Figure 7 respectively. As we can see the controller
does not even manage to get the response times back to
the reference value before 400 seconds have passed. Due to
the fact that the controller cannot act while in a cooldown
period, we respond too slowly to the increase in traffic.

With this controller, for the full experiment, we use 33.3
machine hours per hour. Mean response time during scale-
up is 1.224 seconds and during scale-down 0.327 seconds.

4.3 Discussion
As can be seen in Figures 4 and 7 the delay-compensated
controller manages to quickly respond to changes in the in-
coming load. The control signal m reaches its final value
of 34 < m < 35 before the first actual machine has even
started. Since the threshold controller needs to wait for its
cooldown to pass it is slow to respond. This is also why the
delay-compensated controller uses more resources on aver-
age.

In Figure 6 we see how we are left with a stationary off-
set between the response times T and Tref . Since no integer
number of virtual machines will result in stationary response
times at Tref , the controller finds the lowest amount of ma-
chines needed to stay below Tref and then compensates away
the error which can’t be controlled away.

5. CONCLUSIONS
In this paper we have extended the, in the control com-
munity, commonly used Smith predictor for compensating
for VM startup delay. The classic Smith predictor needs
knowledge about the length of the time delay, but since it
is reasonable to assume that we can at all times know the
number of currently running VMs we don’t need to know or
implement the delay. The only thing we need is a model of
the behavior of the cloud application after the delay.

Through simulations we show that the compensator can
compensate for the startup delay of VMs and that the re-
source management can be solved using a simple PI con-
troller. Thanks to the delay-compensation the controller can
reach the final number of machines before the first machine
has even started. The compensator picks the lowest number
of VMs which gives response times below the reference.

6. ACKNOWLEDGMENTS
This work was supported by the Swedish Research Coun-
cil (VR) for the project “Cloud Control”, and through the
LCCC Linnaeus and ELLIIT Excellence Centers.

7. REFERENCES
[1] Auto scaling concepts — Amazon Web Services

documentation.
https://web.archive.org/web/20140729191545/

http://docs.aws.amazon.com/AutoScaling/latest/

DeveloperGuide/AS_Concepts.html. Accessed:
2014-08-27.

[2] Google compute engine autoscaler — Google Cloud
Platform Documentation. https:
//web.archive.org/web/20141201094332/https:

//cloud.google.com/compute/docs/autoscaler/.
Accessed: 2014-12-01.

[3] How auto scale cooldowns work — Rackspace
Knowledge Center.
https://web.archive.org/web/20141117122211/

http://www.rackspace.com/knowledge_center/

article/how-auto-scale-cooldowns-work. Accessed:
2014-11-17.

[4] Carson E Agnew. Dynamic modeling and control of
congestion-prone systems. Operations research,
24(3):400–419, 1976.

[5] Ahmed Ali-Eldin, Johan Tordsson, and Erik Elmroth.
An adaptive hybrid elasticity controller for cloud
infrastructures. In Network Operations and
Management Symposium (NOMS), 2012 IEEE, pages
204–212. IEEE, 2012.

[6] Mihaly Berekmery, Damian Serrano, Sara Bouchenak,
Nicolas Marchand, Bogdan Robu, et al. A control
approach for performance of big data systems. 2014.

[7] Jianhua Cao, Mikael Andersson, Christian Nyberg,
and Maria Kihl. Web server performance modeling
using an M/G/1/K* PS queue. In
Telecommunications, 2003. ICT 2003. 10th
International Conference on, volume 2, pages
1501–1506. IEEE, 2003.

[8] Anshul Gandhi, Mor Harchol-Balter, Ram
Raghunathan, and Michael A Kozuch. Autoscale:
Dynamic, robust capacity management for multi-tier
data centers. ACM Transactions on Computer
Systems (TOCS), 30(4):14, 2012.

[9] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. Press:
Predictive elastic resource scaling for cloud systems.
In Network and Service Management (CNSM), 2010
International Conference on, pages 9–16. IEEE, 2010.

[10] Harold C Lim, Shivnath Babu, Jeffrey S Chase, and
Sujay S Parekh. Automated control in cloud
computing: challenges and opportunities. In
Proceedings of the 1st workshop on Automated control
for datacenters and clouds, pages 13–18. ACM, 2009.

[11] Tania Lorido-Botrán, José Miguel-Alonso, and
Jose Antonio Lozano. Auto-scaling techniques for
elastic applications in cloud environments. Department
of Computer Architecture and Technology, University
of Basque Country, Tech. Rep. EHU-KAT-IK-09,
12:2012, 2012.

[12] Ming Mao and Marty Humphrey. A performance
study on the VM startup time in the cloud. In Cloud
Computing (CLOUD), 2012 IEEE 5th International
Conference on, pages 423–430. IEEE, 2012.

[13] Kenneth Lloyd Rider. A simple approximation to the
average queue size in the time-dependent M/M/1
queue. Journal of the ACM (JACM), 23(2):361–367,

1976.

[14] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and
John Wilkes. Cloudscale: elastic resource scaling for
multi-tenant cloud systems. In Proceedings of the 2nd
ACM Symposium on Cloud Computing, page 5. ACM,
2011.

[15] Otto J M Smith. Closer control of loops with dead
time. In Chem. Eng. Progr., volume 53, pages
217–219, 1957.

[16] David Tipper and Malur K Sundareshan. Numerical
methods for modeling computer networks under
nonstationary conditions. Selected Areas in
Communications, IEEE Journal on, 8(9):1682–1695,
1990.

[17] Bhuvan Urgaonkar, Prashant Shenoy, Abhishek
Chandra, Pawan Goyal, and Timothy Wood. Agile
dynamic provisioning of multi-tier internet
applications. ACM Transactions on Autonomous and
Adaptive Systems (TAAS), 3(1):1, 2008.

[18] Wei-Ping Wang, David Tipper, and Sujata Banerjee.
A simple approximation for modeling nonstationary
queues. In INFOCOM’96. Fifteenth Annual Joint
Conference of the IEEE Computer Societies.
Networking the Next Generation. Proceedings IEEE,
volume 1, pages 255–262. IEEE, 1996.

