
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Predictive design analysis utilizing ansys in an internet environment

Eriksson, Martin; Burman, Åke

2000

Link to publication

Citation for published version (APA):
Eriksson, M., & Burman, Å. (2000). Predictive design analysis utilizing ansys in an internet environment. Paper
presented at ANSYS 2000 Technical Conference.

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/d11048ad-6142-409c-8289-4c2b8f9bbd5c

ABSTRACT

During recent years the increasing power of computers and

communications has led to the development and use of more
advanced analysis techniques. Design of Experiment (DOE) has
been used together with Finite Element (FE) analysis software
such as ANSYS, see e.g. Johnson and Heald (1998) and
Eriksson et al. (1998). Predictive Design Analysis (PDA) is an
mechanical engineering design, or design for short, approach in
which the final behavior of a product is predicted, at least to
some extent, by combining information from different analysis
techniques, see Eriksson and Burman (1999). This work
presents an implementation of PDA consisting of DOE together
with ANSYS.

The implementation is developed as a World Wide Web
(WWW) Client/Server application. The user interface is
constructed as a standard HTML page that can be viewed in a
standard web. Java scripts and Java Applets are used to verify
the data given by the designers or analysts before it is sent to a
Common Gateway Interface (CGI) application on the server for
evaluation. The result delivered from the CGI application is
VRML files of selected responses along with GIF images and
data based on the statistical evaluation of the studied responses.

The issue of decreasing the computation time is addressed in
this work by running the FE analyses in parallel. The fact that all
analyses based on DOE are performed independently of each
other makes them well suited for distributed processing, for
example on a cluster of computers connected through a
network. Studies of the implementation regarding the
timesaving of distributed computations are performed and
documented. This application serves as a powerful tool for the
designer or analyst at all levels of abstraction in the design
process, when examining the influence of different design
variables on the product studied.

INTRODUCTION

With the increasing power of computers and the development

of efficient analysis techniques, the demand for more detailed
analyses has grown. In order to satisfy the required level of
detail, the analysis models have become more complex and thus
more time-consuming. Techniques such as the statistical
methods DOE and Monte Carlo simulations have successfully
been introduced into the community of FE computing. These
techniques organize a set of independent analyses with the
emphasis on decreasing the required number of FE analyses to
be performed and thus reduce time. The fact that they are
independent makes them well suited for performing them with
some form of parallel or distributed computing on either a
cluster of computers or a Multiprocessor computer. By
combining the mentioned statistical methods and parallel or
distributed computing, the designer or analyst (hereafter referred
to as designer) can take advantage of both the increasing
computer power and also the increased level of knowledge that
results from utilizing statistical methods.

OBJECTIVE

The objective of this paper is to present an implementation in

which a computer network is utilized for performing a set of FE
analyses established by DOE. The Client/Server WWW
interface and DOE are briefly discussed, together with a
thorough evaluation of the current implementation.

PREDICTIVE DESIGN ANALYSIS UTILIZING ANSYS IN
AN INTERNET ENVIRONMENT

Martin Eriksson and Åke Burman

Division of Machine Design, Department of Design Sciences,
 Lund Institute of Technology at Lund University, Sweden

THE CONCEPTUAL APPROACH

The conceptual layout of the current implementation is shown

in Figure 1. An investigation can be subdivided into several
steps as indicated by the digits in Figure 1. In the first step (1) a
designer opens up a standard WWW browser and connects to
the WWW server and retrieves the client-side user interface.
The problem to be evaluated is specified and the analysis data
are submitted to the WWW server. The server starts the CGI
application that handles the FE analyses. If the analyses are to be
performed on a single machine, e. g. on the WWW server itself,
they are sequentially started based on the DOE layout. The
statistical evaluation is carried out by the CGI application the
analyses are completed. When the statistical evaluation is
performed the result is submitted back (5) to the client side
where the designer can view the result. If, on the other hand, the

analyses are chosen to be performed on a cluster of computers,
the FE analyses information is passed on from the CGI
application to the computing distributor (2) for further
processing. The computing distributor establishes the computer
resources available and divides up all the FE analyses (3) on the
available computers in the network. When all FE analyses have
been executed, the computing distributor passes the FE results
back (4) to the WWW server where the CGI application
performs the statistical evaluation. The result of the evaluation is
submitted back (5) to the client side where the engineering
designer can view the result. In both cases of evaluation, the
results are now obtainable for other designers and design teams
from all over the Internet or intranet by connecting (6) to the
WWW server and retrieving data belonging to a specific
evaluation.

FIGURE 1. CONCEPTUAL LAYOUT OF THE PRESENTED IMPLEMENTATION.

DESIGN OF EXPERIMENTS

In full factorial experiments the response is calculated at every

combination of design variable levels. Fractional factorial
experiments are based on arrays that define the order in which
the design variables should be altered. They are commonly used
within DOE to achieve a more time- efficient evaluation. When
the number of design variables is increased, the calculation time
can be rapidly decreased by the use of fractional factorial
experiments. In practice the task of finding a useful suitable
array is easily reduced to selecting previously defined arrays that
can be found in many reference books, see e.g. Box et al.
(1978).

The choice of response function depends on the problem. In
structural analysis, for instance, the weight, stresses and
displacements can be chosen as response functions, and in
contact analysis the contact pressure and penetration may also
be interesting. The possibilities are many, and the purpose of the

analysis will be the guideline when selecting the most suitable
response functions.

Whichever analysis and response functions are chosen, the
basic procedure for analyzing the data is the same. First all
essential data must be given by the designer. The design
variables are then used in the usual FE environment as
parameters. The modeling and equation solving phases must be
included in a sequence where the design variables are altered
according to the DOE layout. The chosen response is also
collected within the sequence for further statistical evaluation
after all design variable configurations are performed.

BASICS WITHIN PARALLEL COMPUTING

The general idea of parallel processing is to utilize many

small tasks in order to solve one large problem. The acceptance
of parallel computing has mainly been facilitated by two major
developments: massively parallel processors (MPP) and

WWW
server

computing
distributor

computing
resources

User
request

Other
users

1, 5, 6

2
3

4

6

6

distributed computing. MPPs are currently the most powerful
computers in the world. These machines combine up to
thousands of CPUs in a single large cabinet connected to
thousands of gigabytes of memory. MPPs have massive
computational power and are used to solve challenging
problems such as analyzing complete cars in crashes — see e.g.
Marczyk (1999).

Distributed computing collectively uses a set of computers in
a network to solve a single large problem. By using many
general-purpose workstations interconnected by high-speed
local area networks, the combined computational resources may
exceed the power of a single high-performance computer. To
achieve unequaled computational power, several MPPs can be
combined using distributed computing.

In an MPP, every processor is exactly like every other in
capability, resources, software, and communication speed. This
is not necessarily the case on a network. The computers on a
network may have different types of heterogeneity. The network
can include several different types of architectures such as PC,
Unix workstations, and shared-memory multiprocessors and
vector supercomputers. Computational speed, machine load and
network loads are three additional factors that must be
considered when dealing with network computing.

One thing shared in common by distributed computing and
MPP is the notion of message passing. Data must be exchanged
between cooperating tasks performed with parallel processing.
The message-passing model is the paradigm of choice, from the
perspective of the MPP that supports it, as well as in terms of
applications and software systems that use it. The most
commonly used methods of parallel computing are P4 , see
Butler and Lusk (1993), Express, see Flower et al. (1991),
Linda, see Carriero (1989), the Message Passing Interface
(MPI), see Message Passing Interface Forum (1994) and the
Parallel Virtual Machine (PVM), see Geist et al. (1994). As
mentioned by Geist et al. (1996) the PVM model is built around
the virtual machine concept that provides a set of dynamic
resource managing and process control functions. This, along
with the fact that PVM has good interoperability between
different hosts and different architectures, makes PVM a good
message-passing approach when applications are to be run over
heterogeneous networks, and thus PVM is chosen to handle the
distributing in this work.

Parallel Virtual Machine

PVM can be dated back to 1989 when the development

started at Oak Ridge National Laboratory. PVM is a software
system that permits a heterogeneous collection of computers
networked together to be comprehended as a single parallel
computer by an application program. PVM is designed to link
computing resources and provide users with a parallel platform
for running applications, irrespective of the number of different
computers used and the location of the computers. PVM
transparently handles all message routing, data conversion, and
task scheduling across a network of incompatible computer
architectures. The principles upon which PVM is based include
the following:

User-configured host pool: The application's computational
tasks work on a set of machines that are selected by the user for
a given run of the PVM program. Both single CPU machines
and hardware multiprocessors may be part of the host pool.
Adding and deleting machines during operation may alter the
host pool.

Translucent access to hardware: Application programs may
either view the hardware environment as an attributeless
collection of virtual processing elements, or choose to exploit
the capabilities of specific machines in the host pool by
positioning certain computational tasks on the most appropriate
computers.

Process-based computation: The unit of parallelism in PVM
is a task, an independent thread of control that alternates
between communication and computation. No process-to-
process mapping is implied or enforced by PVM; in particular,
multiple tasks may execute on a single processor.

Explicit message-passing model: Collections of
computational tasks, each performing a part of an application's
workload using data-, functional-, or hybrid decomposition,
cooperate by explicitly sending and receiving messages with
each other.

Heterogeneity support: The PVM system supports
heterogeneity in terms of machines, networks, and applications.
With regard to message passing, PVM permits messages
containing more than one data type to be exchanged between
machines having different data representations.

Multiprocessor support: PVM uses the native message-
passing facilities on multiprocessors to take advantage of the
underlying hardware.

The PVM system is composed of two parts. The first part is a
daemon, which resides on all the computers constituting the
virtual machine. The second part of the system is a library of
PVM interface routines. It contains a functionally complete
repertoire of primitives that are needed for cooperation between
tasks of an application. This library contains user-callable
routines for message passing, spawning processes, coordinating
tasks, and modifying the virtual machine. The original PVM
was developed for Unix platforms only, but today there exist
other implementations such as Windows PVM (WPVM)
running under Windows 95/98/NT on Intel processors. WPVM
is built upon the standard features of PVM.

Parallel programming techniques

Parallel computing with respect to process structure can be

approached from three fundamental viewpoints, based on the
organization of the computing tasks. Within each, different
workload allocation strategies are possible.

The first model is often termed "crowd" computing: a
collection of closely related processes, typically executing the
same code, performs computations on different portions of the
workload. This model can be further subdivided into two
categories depending on programming layout. A master-slave
(or host-node) model is used in which a separate program
termed the master is responsible for process spawning,
initialization, collection and display of results and the other has

the master’s responsibilities built into the node (slave) program
that initiated the computation.

 The second model of parallel computing is termed "tree"
computation, where the processes are spawned (usually
dynamically as the computation progresses) in a tree-like
manner. This model is a natural fit to applications where the
total workload is not known prior to the computation.

The third and last model can be seen as a combination of the
two first models, in which the spawning structure is arbitrary.
Which model to use is of course application-dependent and
should be selected to best match the natural structure of the
paralleled program.

 The issue of workload allocation is subsequent to establishing
process structure. Two general methodologies are commonly
used. The first, termed data decomposition, or partitioning,
assumes that the overall problem involves applying
computational operations or transformational operations or
transformations on one or more data structures. The second,
called function decomposition, divides the work according to
different operations or functions. Generally speaking, function
decomposition can be said to use fundamentally different tasks
to perform different operations, and data decomposition uses
identical tasks to operate on different portions of the data.

IMPLEMENTATION

The implementation presented in this work is a Client/Server

WWW application that combines FE analysis with DOE, in
which computing resources within a network are efficiently
utilized. The Client/Server application makes use of the
advantages of the Internet/intranet in terms of accessibility and
flexibility. The WWW server used in the implementation is the
Sambar Server 4.2 from Sambar Technologies. This server
provides many capabilities to the developer (virtual domains,
document aliases, server-side includes, CGI/WinCGI
programming etc.). The CGI/WinCGI specification of Sambar
Server 4.2 allows server-side applications to be written in almost
any language. The CGI application in this implementation is
written in C.

Figure 2 below shows an example of the pre-processing user
interface, in which the evaluation-input data are to be specified.
The Ansys input file is chosen for upload to the server, and the
appropriate name and values of the design variables are
assigned. The appropriate responses that should be calculated in
the analyses must also be defined. Clicking on the submit button
sends the data to the server and the CGI application is executed.
If the analyses are to be distributed over the network, the master
program of the WPVM is started. The WPVM software is built
upon the standard features of PVM compiled for the MS
Windows operating system. WPVM is compatible with the
original PVM, which means that virtual machines can
simultaneously be composed of UNIX and MS Windows
machines. The master program allocates the necessary or
available computer resources and sends data to each slave
program that executes the FE analyses.

FIGURE 2. CLIENT USER INTERFACE.

After all the FE analyses are performed, the resulting data are

collected by the master and sent back to the CGI application for
the statistical evaluation. After the CGI program is finished the
server sends the post processing HTML page back to the user
that requested the evaluation. A collection of different post-
processing data is shown in Figure 3. The central part of the
post-processing is a Java applet, see the center picture in Figure
3. The applet serves as a file manager for all the users’ studied
projects. Every project contains a listing of the chosen analysis
data and a presentation of analysis statistics, see the left pictures
in Figure 3. There are possibilities to choose other values for the
current design variables or to test new design variables.
Submitting the new data to the CGI application will extend the
Java applet tree with a new project. The applet also contains a
subfolder named result containing another subfolder for each of
the chosen response functions. A response result folder includes
a subfolder, named runs, with the FE analyses results visualized
through Virtual Reality Modeling Language (VRML) files that
can be seen in the top right picture in Figure 3. The user has the
possibility to rotate, zoom, translate and seek certain model
locations of the VRML model with the built-in mechanism in
the browser's plugin for handling VRML files. The folder
further contains graphical presentations of the statistical
evaluations through normal probability plots as can be seen in
the bottom right picture in Figure 3.

Effects and their aliases

 lI → mean
 l1 → A
 l2 → B
 l3 → AB+CD
 l4 → C
 l5 → AC+BD
 l6 → BC+AD
 l7 → D

Generator: D=ABC

FIGURE 3. EXAMPLES FROM THE POST PROCESSING USER INTERFACE.

Statistics from the analyses

Finite Element analysis no 1 time 5431.479980 s.
Finite Element analysis no 2 time 6757.366211 s.
Finite Element analysis no 3 time 7873.801758 s.
Finite Element analysis no 4 time 9286.193359 s.
Finite Element analysis no 5 time 5554.077148 s.
Finite Element analysis no 6 time 6483.191895 s.
Finite Element analysis no 7 time 7702.925781 s.
Finite Element analysis no 8 time 9573.816406 s.

Parallel analysis performed
slave analysis time 58673 sec 719000 micro sec
master analysis time 18864 sec 466000 micro sec

Total Finite element time = 58662.852539 s
Total time of the evaluation = 18868 s

Project:variation, Result:seqv1

EXAMPLE

The example chosen to exemplify the application is a support
arm for a transportation vehicle. The support arm is built up
from two RHS profiles made of steel with the dimensions
shown in Figure 5. Bolts with a diameter of 12e-3 m are placed
in both holes. The support arm will be studied with three
different load cases in order to evaluate and sort out the most
important overall variables. The first load case is a standard
linear analysis where the support arm is loaded in the bolts with
a total horizontal load of 11.2 kN and the top surface with a total
load of 1 kN. The equivalent von Mise's stress and the total
displacement are evaluated in the first load case and in the
second case the first six eigen frequencies are studied. The third
load case introduces nonlinear material behavior and contact
between the arm and the surrounding environment as shown in
the top right picture in Figure 3.

In all cases the FE model of the support arm is built up with
shell 93 elements with the thickness of 2.5e-3 m, and the bolts
are modeled with pipe 16 elements. The left-hand side of the
support arm is constrained in all degrees of freedom. In the first

two load cases the bolts are only allowed to move in the
direction of the arm and rotate around their own axes. In the
third load case the bolts are given a 1e-3 m displacement in the
vertical direction. Figure 5 below shows the boundary
conditions of load case 1 and in case 2 the forces are deleted.

FIGURE 4 BOUNDARY CONDITIONS OF CASE 1.

FIGURE 5. DIMENSIONS OF THE STUDIED SUPPORT ARM (IN M).

An analysis, not presented here, was performed with the

objective of sorting out the few variables from a set of 10
studied variables that appeared interesting to evaluate further.
The variables that were found interesting were the ones
presented in Table 1. To evaluate the four variables, a design
layout for four variables at two levels in eight runs is chosen.
The chosen layout, , is of resolution IV, which means that
first order values cannot be separated from third order
combinations of design variables in the statistical evaluation. In
Figure 2 the analysis layout and the estimation of effects along
with the aliases can be seen. The values assigned to the studied
variables are shown in Table 1, and in all load cases the same set
of four design variables are used.

The FE analyses are distributed over a cluster of PC
computers running Windows NT 4.0 connected with an
Ethernet network with 100 Mbps. The computers used have 450
MHz Pentium III processors, contain 256 MB PC100 SDRAM
Internal memory. All computers have the same hardware and

software configuration to guarantee as equal FE execution time
as possible.

TABLE 1. VARIABLES FOR THE FE ANALYSES.

Design
variable Description

Low
value
(m)

High
value
(m)

A Height of the RHS
profiles (rhsh) 20e-3 30e-3

B Width of the RHS
profiles (rhsw) 60e-3 60e-3

C Distance between the
two RHS profiles (barh) 20e-3 30e-3

D
Length of the parallel
part of the middle
section (lhigh)

180e-3 220e-3

ba
rh

75e-3 200e-3 lhigh 200e-3 75e-3

rh
sh

/2

37.5e-3
20

0e
-3

 4 x ∅ 12e-3

rhsw

rh
sh

rh

sh

142 −
IV

RESULTS

Verification of the implementation

To verify the implementation, the first load case was

performed with all design variables at their lower values. Table
2 below shows the resulting execution times for different
computer setups. The first row is results from the case when all
analyses are performed sequentially on a single computer. The
following rows show results from distributed analysis with the
number of active computers in the first column. The following
eleven columns contain the actual FE analysis time for that

setup along with a summation and the calculation of mean value
and standard deviation. Columns twelve and thirteen presents
both the master and slave execution times for the distributed
calculation. The last three columns contain data related to the
total execution time of the CGI application, i.e. the total
evaluation time. The first of these three columns shows the total
evaluation time of the CGI application. The column named
"FE_time" shows the value calculated as

and the last column named "relative" shows the following value

TABLE 2. RESULT SUMMARY FOR THE FIRST LOAD CASE WITH SAME VARIABLE VALUES (IN S).

FE analysis times Distribution Evaluation No of

Computers 1 2 3 4 5 6 7 8 total Mean standarddev Slave master total FE_time Relative
1 253 252 254 254 249 251 251 249 2013 252 2.0 sequential 2017 252 1.00
1 256 255 255 256 255 256 251 251 2036 254 2.1 2041 2042 2045 256 1.00
2 258 249 250 252 248 253 247 257 2013 252 4.0 2022 1023 1027 257 0.51
4 259 247 249 249 249 250 248 258 2009 251 4.7 2014 519 522 261 0.26
8 259 250 251 248 250 252 253 250 2015 252 3.3 2017 260 263 263 0.13

The small standard deviation in Table 2 indicates that all FE

analyses have similar execution times. Table 2 further indicates
that the distributed implementation is correct since the
"FE_time" differs very little. The fact that the value FE_time
increases as the number of computers increases is related to the
nature of distributed computing. This can also be seen from the
value of "relative" in which the value is close to the optimal
sequence of (1, 1, 0.5, 0.25, 0.125) as it should be if the

properties of distributed computing had no effect on the total
execution time. Table 3 shows results from an evaluation of the
same load case with the design variables chosen according to
the values in Table 1. In Table 3 the standard deviation has
higher values, which indicates that the execution times of the FE
analyses differ. The total evaluation time is still decreased
considerably by using 8 computers, but the relative values are
further away from the optimal values.

TABLE 3. RESULT SUMMARY FOR THE FIRST LOAD CASE WITH VARITIONAL VARIABLE VALUES (IN S).

FE analysis times Distribution Evaluation No of
Computers 1 2 3 4 5 6 7 8 total Mean Standarddev Slave master Total FE_time Relative

1 264 297 322 348 274 290 318 364 2477 310 34.9 sequential 2482 310 1.00
1 255 300 328 346 274 295 325 362 2484 310 36.3 2492 2493 2497 312 1.01
2 254 295 328 340 275 288 320 356 2457 307 34.7 2464 1284 1287 322 0.52
4 252 297 316 341 275 289 314 361 2445 306 35.1 2451 703 706 353 0.29
8 260 294 323 348 272 294 318 365 2472 309 36.2 2477 366 367 367 0.15

In Figure 6 four graphs show the data from the distributed
analyses discussed above along with results from the
distributed modal analyses and contact analyses. The
graphs show the total evaluation time along with the mean
values and standard deviations of all FE analyses. These
values and the calculated "FE_time" value are presented as
bars, and the "relative" value is shown as lines. All load
cases have individually similar mean values independent of
computer configuration, which indicates that all computers
used behave equally. The influence of the standard
deviation is once more highlighted in the contact load cases

where the values are notably higher than in the other load
cases. The calculation of the relative value is higher as a
result of this fact. Throughout all load cases the
configuration of four computers is further away from the
optimal value then the other configurations. This is related
to the order in which the design variables are organized and
the different FE analyses are performed. In this example the
most time-consuming analyses are 4 and 8 for all load
cases, which can be seen in Table 3. When the
configuration of four computers is used, one single
computer will execute both these time-consuming analyses.

8/.*_ computersnoevaluationtotaltimeFE =

timeanalysisFEtotalevaluationtotalrelative /=

FIGURE 6. GRAPHS ON THE EXECUTION TIME OF THE STUDIED LOAD CASES.

Standard Analyses, with variations

0

500

1000

1500

2000

2500

3000

No. Computers

Ti
m

e
(s

)

0,00

0,20

0,40

0,60

0,80

1,00

1,20

re
la

tiv
e

tim
e

evaluation 2497 1287 706 367

FE_time 312 322 353 367

mean 310,5 307,1 305,6 309,0

standarddev 36,3 34,7 35,1 36,2

relative 1,01 0,52 0,29 0,15

1 2 4 8

Standard Analyses, no variations

0

500

1000

1500

2000

2500

No. Computers

Ti
m

e
(s

)

0,00

0,20

0,40

0,60

0,80

1,00

1,20

re
la

tiv
e

tim
e

evaluation 2045 1027 522 263

FE_time 256 257 261 263

mean 254,5 251,7 251,2 251,8

standarddev 2,1 4,0 4,7 3,3

relative 1,00 0,51 0,26 0,13

1 2 4 8

Modal Analyses, with variations

0

500

1000

1500

2000

2500

3000

No. Computers

Ti
m

e
(s

)

0,00

0,20

0,40

0,60

0,80

1,00

1,20

re
la

tiv
e

tim
e

evaluation 2641 1334 750 378

FE_time 330 334 375 378

mean 328,3 325,4 325,9 326,9

standarddev 40,3 39,8 38,7 38,3

relative 1,01 0,51 0,29 0,14

1 2 4 8

Contact Analyses, with variations

0

10000

20000

30000

40000

50000

60000

70000

No. Computers

Ti
m

e
(s

)
0,00

0,20

0,40

0,60

0,80

1,00

1,20

re
la

tiv
e

tim
e

evaluation 59324 32144 18868 9523

FE_time 7416 8036 9434 9523

mean 7412,7 7356,0 7332,9 7331,3

standarddev 1575,3 1572,5 1562,9 1541,2

relative 1,00 0,55 0,32 0,16

1 2 4 8

Statistical evaluation

The statistical evaluation of the support arm is summarized in

Table 4. Mean values of all studied responses are given in the
second column. Along with the mean values, the
implementation presents all individual values of the studied
variables. Thus, if a particular variable combination is of interest
that specific response value can easily be accessed. The last
column shows the significant variables. The Letters correspond
to the Letters assigned to each design variable in Table 1.

TABLE 4. RESULT OF THE STATISTICAL
EVALUATION.

Analysis types and
studied response

functions
Mean value Significant

variables

Linear analysis
 Von Mises Stress 210 MPa A, C
 Displacement 0.29e-3 m A
Modal analysis
 1 eigen frequence 307 Hz A, D
 2 eigen frequence 404 Hz A
 3 eigen frequence 506 Hz A
 4 eigen frequence 660 Hz
 5 eigen frequence 807 Hz A
 6 eigen frequence 950 Hz
Contact analysis
 Von Mises Stress 182 MPa A
 Displacement 1.0e-3 m A, C
 Contact pressure 21 MPa A, C, D
 Contact penetration 0.23e-3 m A

Figure 7 shows the normal probability plot that is the result

reported by the implementation. All variables and combinations
of them that fall off a line through x-value 0 and y-value 4
should be interpreted as significant. Figure 7 shows that
variables A and D are significant for the first eigen frequency.
Table 4 contains the result from all evaluations performed and
shows that design variable A (Height of the RHS profile) is a
significant variable for almost all other load cases also.
Variables C and D are significant in some of the studied
responses. The data representation in the normal probability plot
is abstract but nevertheless an essential part of the evaluation, as
it is the basis for further statistical evaluation of the results.
Based on the significant variables in the normal probability plot,
the more concrete representation of cube plots can be produced.
The cube plot presented in Figure 8 shows the result from the
first eigen frequency. It can easily be seen in Figure 8 that the
influence from variable B is much smaller then from the other
two variables. The normal probability plots and the cube plots
are important tools to the designer in the evaluation of the
results. The results have also increased the designer's insights on
which the subsequent decision-making procedures are based.

FIGURE 7. NORMAL PROBABILITY PLOT CORRE-
SPONDING TO THE FIRST EIGEN FREQUENCE.

FIGURE 8. CUBE PLOT OF THE FIRST EIGEN
FREQUENCY SHOWING VARIABLES A, B, AND D.

CONCLUSIONS

The example presented shows that additional time introduced

by distributing the FE analyses over a network is small in
comparison to the total evaluation time. On the other hand, the
total evaluation time decreases rapidly when the number of
computers utilized increases. The implementation highlights an
example of efficient use of existing computing resources. In a
company the computing resources can effectively be allocated
whenever the computers are not allocated for other duties. By
using this analysis structure the computer resources can grow in
stages and take advantage of the latest computational and
network technologies. The Client/Server application also makes
it possible for designers in different design teams connected to
the Internet or intranet to view and evaluate the statistical result.
The implementation facilitates the possibilities for design teams
located all over the world to evaluate the result simultaneously.
An improvement of the implementation that would further
enhance the capabilities of collaborative engineering between
different design teams would be an interactive channel for "chat-
like" discussion concerning the results. A load balancing routine
would in some cases decrease the total evaluation time even
further.

REFERENCES

Box, G. E. P., Hunter, W. G. and Hunter , J. S., Statistics for
Experimenters, John Wiley & Sons, New York, 1978

R. Butler and E. Lusk, Monitors, messages, and clusters: The p4
parallel programming system., Technical Report Preprint MCS-
P362-0493, Argonne National Laboratory, Argonne, IL,1993.

Nicholas Carriero and David Gelernter, LINDA in context,
communications of the ACM, 32(4): 444-458, April 1989.

Eriksson, M., Andersson, P. O., Burman, Å.,”Using Design-of-
experiments techniques for an efficient finite element study of
the influence of changed parameters in design”, 1998 Ansys
Conference Proceedings Vol.2, Ansys Inc., 1998, pp.63-72

Eriksson M., Burman Å., ”The Role of Design of Experiments
in Predictive Design Analysis”, 1999 ICED Conference
Proceedings Vol.1, WDK 26, Munich, 1999, pp. 385-388.

J. Flower, A. Kolawa, and S. Bharadwaj, The Express way to
distributed processing, Supercomputing Review, pages 54-55,
May 1991.

Geist, Al et. al, PVM: Parallel Virtual Machine, A Users' Guide
and Tutorial for Networked Parallel Computing, The MIT Press,
Cambridge, Massachusetts, USA, 1994.

Geist, G.A, J.A. Kohl, P.M. Papadopoulos, `` PVM and MPI: A
Comparison of Features '', Calculateurs Paralleles , 8(2), pp.
137--150, June, 1996.

Johnson, D.H., Heald, E. E., “Design of experiments methods
for a nonlinear buckling FEA study”, 1998 Ansys Conference
Proceedings Vol.1, Ansys Inc., 1998, pp. 513-520

Marczyk, J., Recent Trends in FEM, Proceedings of the
NAFEMS World Congress’99 on Effective Engineering
Analysis, vol. 2, Newport RI, 1999, pp. 1327-1342.

Message Passing Interface Forum, Mpi: A message-passing
interface standard. Computer Science Dept. Technical Report
CS-94-230, University of Tennessee, Knoxville, TN, April 1994

GLOSSARY

CGI — Common Gateway Interface
CPU — Central Processing Unit
DOE — Design of Experiments
FE — Finite Element
GIF — Graphics Interchange Format
HTML — Hypertext Markup Language
JAVA — Object-orientated program language
Mbps — Megabits per second (one million bits per second)
MHz — Megahertz
MPI — Message Passing Interface
MPP — Massively Parallel Processors
PDA — Predictive Design Analysis
PVM — Parallel Virtual Machine
RHS — Rectangular Hole Section
SDRAM — Synchronous Dynamic Random Access Memory
VRML — Virtual Reality Modeling Language
WINCGI — Windows Common Gateway Interface
WWW — World Wide Web
WPVM — Windows Parallel Virtual Machine

VARIABLES USED IN THE EXAMPLE
barh — Distance between the two RHS profiles
lhigh — Length of the parallel part of the middle section
rhsh — Height of the RHS profiles
rhsw — Width of the RHS profiles

