
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Predictive design analysis utilizing ansys in an internet environment

Eriksson, Martin; Burman, Åke

2000

Link to publication

Citation for published version (APA):
Eriksson, M., & Burman, Å. (2000). Predictive design analysis utilizing ansys in an internet environment. Paper
presented at ANSYS 2000 Technical Conference.

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/d11048ad-6142-409c-8289-4c2b8f9bbd5c


ABSTRACT 
 
During recent years the increasing power of computers and 

communications has led to the development and use of more 
advanced analysis techniques. Design of Experiment (DOE) has 
been used together with Finite Element (FE) analysis software 
such as ANSYS, see e.g. Johnson and Heald (1998) and 
Eriksson et al. (1998). Predictive Design Analysis (PDA) is an 
mechanical engineering design, or design for short, approach in 
which the final behavior of a product is predicted, at least to 
some extent, by combining information from different analysis 
techniques, see Eriksson and Burman (1999). This work 
presents an implementation of PDA consisting of DOE together 
with ANSYS.  

The implementation is developed as a World Wide Web 
(WWW) Client/Server application. The user interface is 
constructed as a standard HTML page that can be viewed in a 
standard web. Java scripts and Java Applets are used to verify 
the data given by the designers or analysts before it is sent to a 
Common Gateway Interface (CGI) application on the server for 
evaluation. The result delivered from the CGI application is 
VRML files of selected responses along with GIF images and 
data based on the statistical evaluation of the studied responses.  

The issue of decreasing the computation time is addressed in 
this work by running the FE analyses in parallel. The fact that all 
analyses based on DOE are performed independently of each 
other makes them well suited for distributed processing, for 
example on a cluster of computers connected through a 
network. Studies of the implementation regarding the 
timesaving of distributed computations are performed and 
documented. This application serves as a powerful tool for the 
designer or analyst at all levels of abstraction in the design 
process, when examining the influence of different design 
variables on the product studied.  

INTRODUCTION 
 
With the increasing power of computers and the development 

of efficient analysis techniques, the demand for more detailed 
analyses has grown. In order to satisfy the required level of 
detail, the analysis models have become more complex and thus 
more time-consuming. Techniques such as the statistical 
methods DOE and Monte Carlo simulations have successfully 
been introduced into the community of FE computing. These 
techniques organize a set of independent analyses with the 
emphasis on decreasing the required number of FE analyses to 
be performed and thus reduce time. The fact that they are 
independent makes them well suited for performing them with 
some form of parallel or distributed computing on either a 
cluster of computers or a Multiprocessor computer. By 
combining the mentioned statistical methods and parallel or 
distributed computing, the designer or analyst (hereafter referred 
to as designer) can take advantage of both the increasing 
computer power and also the increased level of knowledge that 
results from utilizing statistical methods. 

 
OBJECTIVE 

 
The objective of this paper is to present an implementation in 

which a computer network is utilized for performing a set of FE 
analyses established by DOE. The Client/Server WWW 
interface and DOE are briefly discussed, together with a 
thorough evaluation of the current implementation. 
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THE CONCEPTUAL APPROACH 
 
The conceptual layout of the current implementation is shown 

in Figure 1. An investigation can be subdivided into several 
steps as indicated by the digits in Figure 1. In the first step (1) a 
designer opens up a standard WWW browser and connects to 
the WWW server and retrieves the client-side user interface. 
The problem to be evaluated is specified and the analysis data 
are submitted to the WWW server. The server starts the CGI 
application that handles the FE analyses. If the analyses are to be 
performed on a single machine, e. g. on the WWW server itself, 
they are sequentially started based on the DOE layout. The 
statistical evaluation is carried out by the CGI application the 
analyses are completed. When the statistical evaluation is 
performed the result is submitted back (5) to the client side 
where the designer can view the result. If, on the other hand, the 

analyses are chosen to be performed on a cluster of computers, 
the FE analyses information is passed on from the CGI 
application to the computing distributor (2) for further 
processing. The computing distributor establishes the computer 
resources available and divides up all the FE analyses (3) on the 
available computers in the network. When all FE analyses have 
been executed, the computing distributor passes the FE results 
back (4) to the WWW server where the CGI application 
performs the statistical evaluation. The result of the evaluation is 
submitted back (5) to the client side where the engineering 
designer can view the result. In both cases of evaluation, the 
results are now obtainable for other designers and design teams 
from all over the Internet or intranet by connecting (6) to the 
WWW server and retrieving data belonging to a specific 
evaluation. 

FIGURE 1. CONCEPTUAL LAYOUT OF THE PRESENTED IMPLEMENTATION. 
 
DESIGN OF EXPERIMENTS 

 
In full factorial experiments the response is calculated at every 

combination of design variable levels. Fractional factorial 
experiments are based on arrays that define the order in which 
the design variables should be altered. They are commonly used 
within DOE to achieve a more time- efficient evaluation. When 
the number of design variables is increased, the calculation time 
can be rapidly decreased by the use of fractional factorial 
experiments. In practice the task of finding a useful suitable 
array is easily reduced to selecting previously defined arrays that 
can be found in many reference books, see e.g. Box et al. 
(1978). 

The choice of response function depends on the problem. In 
structural analysis, for instance, the weight, stresses and 
displacements can be chosen as response functions, and in 
contact analysis the contact pressure and penetration may also 
be interesting. The possibilities are many, and the purpose of the 

analysis will be the guideline when selecting the most suitable 
response functions.  

Whichever analysis and response functions are chosen, the 
basic procedure for analyzing the data is the same. First all 
essential data must be given by the designer. The design 
variables are then used in the usual FE environment as 
parameters. The modeling and equation solving phases must be 
included in a sequence where the design variables are altered 
according to the DOE layout. The chosen response is also 
collected within the sequence for further statistical evaluation 
after all design variable configurations are performed. 

 
BASICS WITHIN PARALLEL COMPUTING 

 
The general idea of parallel processing is to utilize many 

small tasks in order to solve one large problem. The acceptance 
of parallel computing has mainly been facilitated by two major 
developments: massively parallel processors (MPP) and 
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distributed computing. MPPs are currently the most powerful 
computers in the world. These machines combine up to 
thousands of CPUs in a single large cabinet connected to 
thousands of gigabytes of memory. MPPs have massive 
computational power and are used to solve challenging 
problems such as analyzing complete cars in crashes — see e.g. 
Marczyk (1999).  

Distributed computing collectively uses a set of computers in 
a network to solve a single large problem. By using many 
general-purpose workstations interconnected by high-speed 
local area networks, the combined computational resources may 
exceed the power of a single high-performance computer. To 
achieve unequaled computational power, several MPPs can be 
combined using distributed computing.  

In an MPP, every processor is exactly like every other in 
capability, resources, software, and communication speed. This 
is not necessarily the case on a network. The computers on a 
network may have different types of heterogeneity. The network 
can include several different types of architectures such as PC, 
Unix workstations, and shared-memory multiprocessors and 
vector supercomputers. Computational speed, machine load and 
network loads are three additional factors that must be 
considered when dealing with network computing.  

One thing shared in common by distributed computing and 
MPP is the notion of message passing. Data must be exchanged 
between cooperating tasks performed with parallel processing. 
The message-passing model is the paradigm of choice, from the 
perspective of the MPP that supports it, as well as in terms of 
applications and software systems that use it. The most 
commonly used methods of parallel computing are P4 , see 
Butler and Lusk (1993), Express, see Flower et al. (1991), 
Linda, see Carriero (1989), the Message Passing Interface 
(MPI), see Message Passing Interface Forum (1994) and the 
Parallel Virtual Machine (PVM), see Geist et al. (1994). As 
mentioned by Geist et al. (1996) the PVM model is built around 
the virtual machine concept that provides a set of dynamic 
resource managing and process control functions. This, along 
with the fact that PVM has good interoperability between 
different hosts and different architectures, makes PVM a good 
message-passing approach when applications are to be run over 
heterogeneous networks, and thus PVM is chosen to handle the 
distributing in this work. 

 
Parallel Virtual Machine 

 
PVM can be dated back to 1989 when the development 

started at Oak Ridge National Laboratory. PVM is a software 
system that permits a heterogeneous collection of computers 
networked together to be comprehended as a single parallel 
computer by an application program. PVM is designed to link 
computing resources and provide users with a parallel platform 
for running applications, irrespective of the number of different 
computers used and the location of the computers. PVM 
transparently handles all message routing, data conversion, and 
task scheduling across a network of incompatible computer 
architectures. The principles upon which PVM is based  include 
the following: 

User-configured host pool: The application's computational 
tasks work on a set of machines that are selected by the user for 
a given run of the PVM program. Both single CPU machines 
and hardware multiprocessors may be part of the host pool. 
Adding and deleting machines during operation may alter the 
host pool. 

Translucent access to hardware: Application programs may 
either view the hardware environment as an attributeless 
collection of virtual processing elements, or choose to exploit 
the capabilities of specific machines in the host pool by 
positioning certain computational tasks on the most appropriate 
computers. 

Process-based computation: The unit of parallelism in PVM 
is a task, an independent thread of control that alternates 
between communication and computation. No process-to-
process mapping is implied or enforced by PVM; in particular, 
multiple tasks may execute on a single processor. 

Explicit message-passing model: Collections of 
computational tasks, each performing a part of an application's 
workload using data-, functional-, or hybrid decomposition, 
cooperate by explicitly sending and receiving messages with 
each other. 

Heterogeneity support: The PVM system supports 
heterogeneity in terms of machines, networks, and applications. 
With regard to message passing, PVM permits messages 
containing more than one data type to be exchanged between 
machines having different data representations. 

Multiprocessor support: PVM uses the native message-
passing facilities on multiprocessors to take advantage of the 
underlying hardware. 

The PVM system is composed of two parts. The first part is a 
daemon, which resides on all the computers constituting the 
virtual machine. The second part of the system is a library of 
PVM interface routines. It contains a functionally complete 
repertoire of primitives that are needed for cooperation between 
tasks of an application. This library contains user-callable 
routines for message passing, spawning processes, coordinating 
tasks, and modifying the virtual machine. The original PVM 
was developed for Unix platforms only, but today there exist 
other implementations such as Windows PVM (WPVM) 
running under Windows 95/98/NT on Intel processors. WPVM 
is built upon the standard features of PVM.  

 
Parallel programming techniques 

 
Parallel computing with respect to process structure can be 

approached from three fundamental viewpoints, based on the 
organization of the computing tasks. Within each, different 
workload allocation strategies are possible.  

The first model is often termed "crowd" computing: a 
collection of closely related processes, typically executing the 
same code, performs computations on different portions of the 
workload. This model can be further subdivided into two 
categories depending on programming layout. A master-slave 
(or host-node) model is used in which a separate program 
termed the master is responsible for process spawning, 
initialization, collection and display of results and the other has 



the master’s responsibilities built into the node (slave) program 
that initiated the computation. 

 The second model of parallel computing is termed "tree" 
computation, where the processes are spawned (usually 
dynamically as the computation progresses) in a tree-like 
manner. This model is a natural fit to applications where the 
total workload is not known prior to the computation. 

The third and last model can be seen as a combination of the 
two first models, in which the spawning structure is arbitrary. 
Which model to use is of course application-dependent and 
should be selected to best match the natural structure of the 
paralleled program. 

 The issue of workload allocation is subsequent to establishing 
process structure. Two general methodologies are commonly 
used. The first, termed data decomposition, or partitioning, 
assumes that the overall problem involves applying 
computational operations or transformational operations or 
transformations on one or more data structures. The second, 
called function decomposition, divides the work according to 
different operations or functions. Generally speaking, function 
decomposition can be said to use fundamentally different tasks 
to perform different operations, and data decomposition uses 
identical tasks to operate on different portions of the data. 

 
IMPLEMENTATION 

 
The implementation presented in this work is a Client/Server 

WWW application that combines FE analysis with DOE, in 
which computing resources within a network are efficiently 
utilized. The Client/Server application makes use of the 
advantages of the Internet/intranet in terms of accessibility and 
flexibility. The WWW server used in the implementation is the 
Sambar Server 4.2 from Sambar Technologies. This server 
provides many capabilities to the developer (virtual domains, 
document aliases, server-side includes, CGI/WinCGI 
programming etc.). The CGI/WinCGI specification of Sambar 
Server 4.2 allows server-side applications to be written in almost 
any language. The CGI application in this implementation is 
written in C. 

Figure 2 below shows an example of the pre-processing user 
interface, in which the evaluation-input data are to be specified. 
The Ansys input file is chosen for upload to the server, and the 
appropriate name and values of the design variables are 
assigned. The appropriate responses that should be calculated in 
the analyses must also be defined. Clicking on the submit button 
sends the data to the server and the CGI application is executed. 
If the analyses are to be distributed over the network, the master 
program of the WPVM is started. The WPVM software is built 
upon the standard features of PVM compiled for the MS 
Windows operating system. WPVM is compatible with the 
original PVM, which means that virtual machines can 
simultaneously be composed of UNIX and MS Windows 
machines. The master program allocates the necessary or 
available computer resources and sends data to each slave 
program that executes the FE analyses. 

 
 

  
FIGURE 2. CLIENT USER INTERFACE. 

 
After all the FE analyses are performed, the resulting data are 

collected by the master and sent back to the CGI application for 
the statistical evaluation. After the CGI program is finished the 
server sends the post processing HTML page back to the user 
that requested the evaluation. A collection of different post-
processing data is shown in Figure 3. The central part of the 
post-processing is a Java applet, see the center picture in Figure 
3. The applet serves as a file manager for all the users’ studied 
projects. Every project contains a listing of the chosen analysis 
data and a presentation of analysis statistics, see the left pictures 
in Figure 3. There are possibilities to choose other values for the 
current design variables or to test new design variables. 
Submitting the new data to the CGI application will extend the 
Java applet tree with a new project. The applet also contains a 
subfolder named result containing another subfolder for each of 
the chosen response functions. A response result folder includes 
a subfolder, named runs, with the FE analyses results visualized 
through Virtual Reality Modeling Language (VRML) files that 
can be seen in the top right picture in Figure 3. The user has the 
possibility to rotate, zoom, translate and seek certain model 
locations of the VRML model with the built-in mechanism in 
the browser's plugin for handling VRML files. The folder 
further contains graphical presentations of the statistical 
evaluations through normal probability plots as can be seen in 
the bottom right picture in Figure 3. 

Effects and their aliases  
   
  lI → mean 
  l1 → A 
  l2 → B 
  l3 → AB+CD 
  l4 → C 
  l5 → AC+BD 
  l6 → BC+AD 
  l7 → D 
 
Generator: D=ABC 



 
 
 

FIGURE 3. EXAMPLES FROM THE POST PROCESSING USER INTERFACE. 

Statistics from the analyses 

 
Finite Element analysis no 1 time 5431.479980 s.  
Finite Element analysis no 2 time 6757.366211 s.  
Finite Element analysis no 3 time 7873.801758 s.  
Finite Element analysis no 4 time 9286.193359 s.  
Finite Element analysis no 5 time 5554.077148 s.  
Finite Element analysis no 6 time 6483.191895 s.  
Finite Element analysis no 7 time 7702.925781 s.  
Finite Element analysis no 8 time 9573.816406 s.  
 
Parallel analysis performed  
slave analysis time 58673 sec 719000 micro sec  
master analysis time 18864 sec 466000 micro sec  
 
Total Finite element time = 58662.852539 s  
Total time of the evaluation = 18868 s  

Project:variation, Result:seqv1 



EXAMPLE 
 

The example chosen to exemplify the application is a support 
arm for a transportation vehicle. The support arm is built up 
from two RHS profiles made of steel with the dimensions 
shown in Figure 5. Bolts with a diameter of 12e-3 m are placed 
in both holes. The support arm will be studied with three 
different load cases in order to evaluate and sort out the most 
important overall variables. The first load case is a standard 
linear analysis where the support arm is loaded in the bolts with 
a total horizontal load of 11.2 kN and the top surface with a total 
load of 1 kN. The equivalent von Mise's stress and the total 
displacement are evaluated in the first load case and in the 
second case the first six eigen frequencies are studied. The third 
load case introduces nonlinear material behavior and contact 
between the arm and the surrounding environment as shown in 
the top right picture in Figure 3. 

In all cases the FE model of the support arm is built up with 
shell 93 elements with the thickness of 2.5e-3 m, and the bolts 
are modeled with pipe 16 elements. The left-hand side of the 
support arm is constrained in all degrees of freedom. In the first 

two load cases the bolts are only allowed to move in the 
direction of the arm and rotate around their own axes. In the 
third load case the bolts are given a 1e-3 m displacement in the 
vertical direction. Figure 5 below shows the boundary 
conditions of load case 1 and in case 2 the forces are deleted. 

FIGURE 4 BOUNDARY CONDITIONS OF CASE 1. 

 

 
FIGURE 5. DIMENSIONS OF THE STUDIED SUPPORT ARM (IN M). 

 
An analysis, not presented here, was performed with the 

objective of sorting out the few variables from a set of 10 
studied variables that appeared interesting to evaluate further. 
The variables that were found interesting were the ones 
presented in Table 1. To evaluate the four variables, a design 
layout for four variables at two levels in eight runs is chosen. 
The chosen layout,       , is of resolution IV, which means that 
first order values cannot be separated from third order 
combinations of design variables in the statistical evaluation. In 
Figure 2 the analysis layout and the estimation of effects along 
with the aliases can be seen. The values assigned to the studied 
variables are shown in Table 1, and in all load cases the same set 
of four design variables are used. 

The FE analyses are distributed over a cluster of PC 
computers running Windows NT 4.0 connected with an 
Ethernet network with 100 Mbps. The computers used have 450 
MHz Pentium III processors, contain 256 MB PC100 SDRAM 
Internal memory. All computers have the same hardware and 

software configuration to guarantee as equal FE execution time 
as possible. 

 
TABLE 1. VARIABLES FOR THE FE ANALYSES. 
 

Design 
variable Description 

Low 
value 
(m) 

High 
value 
(m) 

A Height of the RHS 
profiles (rhsh) 20e-3 30e-3 

B Width of the RHS 
profiles (rhsw) 60e-3 60e-3 

C Distance between the 
two RHS profiles (barh) 20e-3 30e-3 

D 
Length of the parallel 
part of the middle 
section  (lhigh) 

180e-3 220e-3 

ba
rh

 

75e-3 200e-3 lhigh 200e-3 75e-3 

rh
sh

/2
 

37.5e-3 
20

0e
-3

 4 x ∅ 12e-3 

rhsw 

rh
sh

 
rh

sh
 

142 −
IV



RESULTS 
 

Verification of the implementation 
 
To verify the implementation, the first load case was 

performed with all design variables at their lower values. Table 
2 below shows the resulting execution times for different 
computer setups. The first row is results from the case when all 
analyses are performed sequentially on a single computer. The 
following rows show results from distributed analysis with the 
number of active computers in the first column. The following 
eleven columns contain the actual FE analysis time for that 

setup along with a summation and the calculation of mean value 
and standard deviation. Columns twelve and thirteen presents 
both the master and slave execution times for the distributed 
calculation. The last three columns contain data related to the 
total execution time of the CGI application, i.e. the total 
evaluation time. The first of these three columns shows the total 
evaluation time of the CGI application. The column named 
"FE_time" shows the value calculated as 

 
and the last column named "relative" shows the following value 

 

 
TABLE 2. RESULT SUMMARY FOR THE FIRST LOAD CASE WITH SAME VARIABLE VALUES (IN S). 

 
FE analysis times Distribution Evaluation No of 

Computers 1 2 3 4 5 6 7 8 total Mean standarddev Slave master total FE_time Relative
1 253 252 254 254 249 251 251 249 2013 252 2.0 sequential 2017 252 1.00 
1 256 255 255 256 255 256 251 251 2036 254 2.1 2041 2042 2045 256 1.00 
2 258 249 250 252 248 253 247 257 2013 252 4.0 2022 1023 1027 257 0.51 
4 259 247 249 249 249 250 248 258 2009 251 4.7 2014 519 522 261 0.26 
8 259 250 251 248 250 252 253 250 2015 252 3.3 2017 260 263 263 0.13 

 
 
The small standard deviation in Table 2 indicates that all FE 

analyses have similar execution times. Table 2 further indicates 
that the distributed implementation is correct since the 
"FE_time" differs very little. The fact that the value FE_time 
increases as the number of computers increases is related to the 
nature of distributed computing. This can also be seen from the 
value of "relative" in which the value is close to the optimal 
sequence of (1, 1, 0.5, 0.25, 0.125) as it should be if the 

properties of distributed computing had no effect on the total 
execution time. Table 3 shows results from an evaluation of the 
same load case with the design variables chosen according to 
the values in Table 1. In Table 3 the standard deviation has 
higher values, which indicates that the execution times of the FE 
analyses differ. The total evaluation time is still decreased 
considerably by using 8 computers, but the relative values are 
further away from the optimal values. 

 
TABLE 3. RESULT SUMMARY FOR THE FIRST LOAD CASE WITH VARITIONAL VARIABLE VALUES (IN S). 
 

FE analysis times Distribution Evaluation No of 
Computers 1 2 3 4 5 6 7 8 total Mean Standarddev Slave master Total FE_time Relative

1 264 297 322 348 274 290 318 364 2477 310 34.9 sequential 2482 310 1.00 
1 255 300 328 346 274 295 325 362 2484 310 36.3 2492 2493 2497 312 1.01 
2 254 295 328 340 275 288 320 356 2457 307 34.7 2464 1284 1287 322 0.52 
4 252 297 316 341 275 289 314 361 2445 306 35.1 2451 703 706 353 0.29 
8 260 294 323 348 272 294 318 365 2472 309 36.2 2477 366 367 367 0.15 

 
In Figure 6 four graphs show the data from the distributed 
analyses discussed above along with results from the 
distributed modal analyses and contact analyses. The 
graphs show the total evaluation time along with the mean 
values and standard deviations of all FE analyses. These 
values and the calculated "FE_time" value are presented as 
bars, and the "relative" value is shown as lines. All load 
cases have individually similar mean values independent of 
computer configuration, which indicates that all computers 
used behave equally. The influence of the standard 
deviation is once more highlighted in the contact load cases 

where the values are notably higher than in the other load 
cases. The calculation of the relative value is higher as a 
result of this fact. Throughout all load cases the 
configuration of four computers is further away from the 
optimal value then the other configurations. This is related 
to the order in which the design variables are organized and 
the different FE analyses are performed. In this example the 
most time-consuming analyses are 4 and 8 for all load 
cases, which can be seen in Table 3. When the 
configuration of four computers is used, one single 
computer will execute both these time-consuming analyses. 

8/.*_ computersnoevaluationtotaltimeFE =

timeanalysisFEtotalevaluationtotalrelative /=



 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 6. GRAPHS ON THE EXECUTION TIME OF THE STUDIED LOAD CASES.
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Statistical evaluation 
 
The statistical evaluation of the support arm is summarized in 

Table 4. Mean values of all studied responses are given in the 
second column. Along with the mean values, the 
implementation presents all individual values of the studied 
variables. Thus, if a particular variable combination is of interest 
that specific response value can easily be accessed. The last 
column shows the significant variables. The Letters correspond 
to the Letters assigned to each design variable in Table 1. 
 

TABLE 4. RESULT OF THE STATISTICAL 
EVALUATION. 

 
Analysis types and 
studied response 

functions 
Mean value Significant 

variables 

Linear analysis   
   Von Mises Stress 210 MPa A, C 
   Displacement 0.29e-3 m A 
Modal analysis   
   1 eigen frequence 307 Hz A, D 
   2 eigen frequence 404 Hz A 
   3 eigen frequence 506 Hz A 
   4 eigen frequence 660 Hz  
   5 eigen frequence 807 Hz A 
   6 eigen frequence 950 Hz  
Contact analysis   
   Von Mises Stress 182 MPa A 
   Displacement 1.0e-3 m A, C 
   Contact pressure 21 MPa A, C, D 
   Contact penetration 0.23e-3 m A 

 
Figure 7 shows the normal probability plot that is the result 

reported by the implementation. All variables and combinations 
of them that fall off a line through x-value 0 and y-value 4 
should be interpreted as significant. Figure 7 shows that 
variables A and D are significant for the first eigen frequency. 
Table 4 contains the result from all evaluations performed and 
shows that design variable A (Height of the RHS profile) is a 
significant variable for almost all other load cases also. 
Variables C and D are significant in some of the studied 
responses. The data representation in the normal probability plot 
is abstract but nevertheless an essential part of the evaluation, as 
it is the basis for further statistical evaluation of the results. 
Based on the significant variables in the normal probability plot, 
the more concrete representation of cube plots can be produced. 
The cube plot presented in Figure 8 shows the result from the 
first eigen frequency. It can easily be seen in Figure 8 that the 
influence from variable B is much smaller then from the other 
two variables. The normal probability plots and the cube plots 
are important tools to the designer in the evaluation of the 
results. The results have also increased the designer's insights on 
which the subsequent decision-making procedures are based. 
 

 
 
FIGURE 7. NORMAL PROBABILITY PLOT CORRE-
SPONDING TO THE FIRST EIGEN FREQUENCE. 

 

 
 

FIGURE 8. CUBE PLOT OF THE FIRST EIGEN 
FREQUENCY SHOWING VARIABLES A, B, AND D. 



CONCLUSIONS 
 
The example presented shows that additional time introduced 

by distributing the FE analyses over a network is small in 
comparison to the total evaluation time. On the other hand, the 
total evaluation time decreases rapidly when the number of 
computers utilized increases. The implementation highlights an 
example of efficient use of existing computing resources. In a 
company the computing resources can effectively be allocated 
whenever the computers are not allocated for other duties. By 
using this analysis structure the computer resources can grow in 
stages and take advantage of the latest computational and 
network technologies. The Client/Server application also makes 
it possible for designers in different design teams connected to 
the Internet or intranet to view and evaluate the statistical result. 
The implementation facilitates the possibilities for design teams 
located all over the world to evaluate the result simultaneously. 
An improvement of the implementation that would further 
enhance the capabilities of collaborative engineering between 
different design teams would be an interactive channel for "chat-
like" discussion concerning the results. A load balancing routine 
would in some cases decrease the total evaluation time even 
further. 
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GLOSSARY 

 
CGI — Common Gateway Interface 
CPU — Central Processing Unit 
DOE — Design of Experiments 
FE — Finite Element 
GIF — Graphics Interchange Format 
HTML — Hypertext Markup Language 
JAVA — Object-orientated program language 
Mbps — Megabits per second (one million bits per second) 
MHz — Megahertz 
MPI — Message Passing Interface 
MPP — Massively Parallel Processors 
PDA — Predictive Design Analysis 
PVM — Parallel Virtual Machine 
RHS — Rectangular Hole Section 
SDRAM  — Synchronous Dynamic Random Access Memory 
VRML — Virtual Reality Modeling Language 
WINCGI — Windows Common Gateway Interface 
WWW — World Wide Web 
WPVM — Windows Parallel Virtual Machine 
 
VARIABLES USED IN THE EXAMPLE 
barh — Distance between the two RHS profiles 
lhigh — Length of the parallel part of the middle section 
rhsh — Height of the RHS profiles 
rhsw — Width of the RHS profiles 
 

 


