On the distribution of the output error burst lengths for Viterbi decoding of convolutional codes

Höst, Stefan; Johannesson, Rolf; Zigangirov, Dimitrij K.; Zigangirov, Kamil; Zyablov, Viktor V.

Published in: [Host publication title missing]

DOI: 10.1109/ISIT.1997.613023

1997

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
On the Distribution of the Output Error Burst Lengths for Viterbi Decoding of Convolutional Codes

Stefan Höst(1), Rolf Johannesson(1), Dmitrij K. Zigangirov(2),
Kamil Sh. Zigangirov(1), and Viktor V. Zyablov(2)

(1) Dept. of Information Technology
Lund University
P.O. Box 118
S-221 00 Lund, Sweden
stefanh@it.lth.se, rolf@it.lth.se, kamil@it.lth.se

(2) Inst. for Problems of Information Transmission
of the Russian Academy of Science
B. Karetnyi per., 19, GSP-4
Moscow, 101447 Russia
zig@ippi.ac.msk.su, zyablov@ippi.ac.msk.su

Abstract — The distribution of the output error burst lengths from a Viterbi decoder is of particular interest in connection with concatenated coding systems, where the inner code is convolutional. From the expurgated, random, and sphere-packing exponents for block codes an upper bound on this distribution for the ensemble of periodically time-varying convolutional codes is obtained. Finally, the distribution obtained from simulating time-invariant convolutional codes is presented.

I. INTRODUCTION

It is well-known that the errors in the output from the Viterbi decoder are grouped in error bursts. In concatenated coding systems using inner convolutional codes, the distribution of the errors in the output from the inner decoder is of particular importance. This distribution can be used to determine the optimal size of the buffer between the outer and inner encoders, and for estimating the overall error probability of the concatenated system.

In this paper we investigate the distribution of output error burst lengths from the Viterbi decoder starting at time t. We define the error burst length exponent from the expurgation, random, and sphere-packing bounds.

Finally, we compare our theoretical results for periodically time-varying convolutional codes with simulations of Viterbi decoding of time-invariant convolutional codes. For time-invariant convolutional codes we define the error burst length exponent as

$$B(l) \{ \log_2 P(j) \over mc \}$$

where $l = (j+1)/m$ and $P(j)$ is the measured probability distribution for the burst lengths.

In Fig. 1 we show the error burst length exponent for the probability distribution of burst lengths at the output of a decoder for a rate $R = 1/2$, memory $m = 9$ convolutional encoder with generating polynomials [5664,7664]. The cross-over probability for the BSC used in the simulations was $p = 0.1$.

II. ERROR BURST LENGTH EXPONENT

Let $B_t(j)$ denote the event that an error burst starting at time t has length $j+1$. Then we have

Theorem 1 There exists a periodically time-varying, rate $R = b/c$, convolutional code encoded by a polynomial, periodically time-varying generator matrix of memory m and period T such that the probability that the length of an output error burst from a Viterbi decoder starting at time t is $j+1$ is upper bounded by

$$P(B_t(j)) \{ 2^{-B(l)mc+o(m)} \} , 0 \leq j < T \text{ and } t \geq 0,$$

where $l = (j+1)/m$.

The error burst length exponent $B(l)$ can be constructed geometrically from the error rate exponent $E(r)$ for block codes.

REFERENCES
