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Abstract

This paper reports on some peculiarities associated with a recently published
summation rule for scattering of electromagnetic waves. The summation rule
states that the extinction cross section integrated over all frequencies is equal
to the low-frequency response of the target. Although the summation rule is
intriguing by itself, it becomes even more paradoxical when a static conduc-
tivity model or the PEC boundary condition is introduced. The paradoxical
character lies in the fact that the extinction cross section integrated over all
frequencies is independent of the static conductivity as long as it is non-zero.
This puzzling result is explained by rejecting the static conductivity model at
zero frequency as suggested by numerical simulations of a homogeneous and
isotropic sphere. In addition, the low-frequency behavior of diamagnetic ma-
terials is investigated using Herglotz functions and arguments from the theory
of special relativity.

1 Introduction

Under the assumption of linearity, passivity, and time-translational invariance, a
summation rule for scattering of electromagnetic waves is derived in Refs. 7 and 8
from the holomorphic properties of the forward scattering dyadic. The result states
that the extinction cross section (i.e., the sum of the scattering and absorption cross
sections) integrated over all frequencies is equal to the static polarizability dyadics
of the target. As a consequence, for a given target, there is only a limited amount
of scattering and absorption available in any frequency interval. This far-reaching
conclusion is applicable to a broad range of problems in theoretical physics involving
wave interaction with matter. The summation rule also holds with minor changes
to a large class of causal and reciprocal antennas [3|. Compared with the classical
antenna bounds, the theory set forth in Ref. 3 yields sharper inequalities, and, more
importantly, a new fundamental understanding of antenna dynamics solely based
on its low-frequency expansion.

Consider a homogenous and isotropic sphere of radius a, and let k = ka, where
k denotes the angular wave number in free space. Introduce v(k) = 0o (k) /ma® as
the extinction cross section normalized with the geometrical cross section area wa?.
Let € = ¢(k) and p = p(k) measure the permittivity and permeability of the target
relative to free space, and assume € and p are continuous at k = 0. The summation
rule in Ref. 7 then reads

“v(k) , €e(0)—1 wu(0)—1
/0 e d/{—27r<€<0)+2+'u<0)+2>. (1.1)

Although the integral in (1.1) has a simple closed-form expression, this is generally
not true for the integrand v(k)/k? for a fixed k. In particular, note that the right
hand side of (1.1) is independent of any temporal dispersion (although the integrand
is not), depending only on the low-frequency response of the target. As expected,
the right hand side of (1.1) vanishes for €(0) = p(0) = 1 which means that the target
reduces to free space, cf., the Kramers-Kronig relations in Ref. 9. More generally,



if the equality in (1.1) is replaced by a less than or equal to, the new inequality
holds also for any isotropic and homogeneous scatterer circumscribed by a sphere of
radius a [7].

Under the assumption of continuity in the low-frequency limit, it follows from
the Kramers-Kronig relations that ¢(0) and p(0) are bounded from below by the
instantaneous responses €., = lim, .o, €(k) > 1 and po = lim, . (k) > 1, respec-
tively. Since €., and pis are non-unique from a modeling point of view, see Ref. 4,
it is sufficient to put €, = pioo = 1. Thus, €(0) and u(0) are bounded from below
by unity, and it follows that the right hand side of (1.1) is non-negative . This
conclusion is consistent with the fact that the integrand v(x)/x* by definition is
non-negative [7,9].

However, the summation rule (1.1) is not valid if either € or x are discontinuous
at £ = 0 which is the case for the static conductivity model |2, pp. 14-19]. Numerical
results in Ref. 8 with temporal dispersive material parameters in the form of a Drude
model, i.e., a difference between a static conductivity model and a Debey model,
suggest that the left hand side of (1.1) is independent of the static conductivity
as long as it is non-zero. Furthermore, diamagnetic materials have a low-frequency
permeability less than unity which seem to contradict (1.1) since the second term
on the right hand side then becomes negative. The objective of this paper is to
clarify the effects of static conductivity (including the PEC boundary condition)
and diamagnetic material parameters in the context of (1.1) and the theory set
forth in Refs. 7 and 8.

2 Static conductivity in the low-frequency limit

Introduce the dimensionless quantity ¢ = oan > 0, where o denotes the static
conductivity and 7 is the wave impedance in free space. Let € = € (k) be an arbitrary
complex-valued permittivity such that € is continuous at x = 0. Consider the target
introduced in Sec. 1 with the following permittivity model which is singular at xk = 0:

e(k) = (k) +i. (2.1)
K
Without loss of generality, let the target be non-magnetic in the sense that p =1
independent of x.! Then it follows that the transition matrix is diagonal with
electrical 2°-pole (dipole, quadrupole, ...) elements given by [10]

bar(r) = — AV ieln/eR) = e(r) (Kie(#)) je(r\/e(R)) 22)
b (k) (k/e(w)je (kn/€(R)))' — e(k) (KD (k) je(Kr/e(R))

! This assumption is justified by the fact that electric and magnetic effects decouple in the
low-frequency limit, cf., the right hand side of (1.1).




where ¢ = 1,2, ..., and a prime denotes differentiation with respect to either rky/e(k)

or k depending on the arguments of j, and hgl).z Here, j, and hﬁl) denote the spherical
Bessel and Hankel functions of first kind, respectively [1, §10]. The normalized
extinction cross section is related to the transition matrix via v(k) = —2Re ) ,(20+
1)(t1e(k) + t20(r)) /K>, cf., the classical Mie series solution.

For the homogeneous and isotropic sphere, the right hand side of (1.1) is equal to
~/2, where v denotes the degenerate eigenvalues of the high-contrast polarizability
dyadic [7,8]. This quantity is defined by the following low-frequency limit for the
lowest order (¢ = 1) transition matrix element:

t
= i lim 2.
k—0 K

(2.3)

For a permittivity model which is continuous at x = 0, it is straightforward to
prove that «/2 reduces to the right hand side of (1.1). The corresponding limit
for the perm1tt1v1ty model (2.1) is somewhat more complicated as the asymptotic
expansion y/e(k) = e‘“/4\/§/7 + O(y/k) when k — 0 must be inserted into (2.2).
Together with the asymptotics jo(r ) = 2%/@6/(2@ + 1) + O(k**?) and hgl)(/@) =
—i(20)1/280k + O(k~%1) as k — 0, see p. 437 in Ref. 1, it is not hard to show
that v = 47. Thus, as that the left hand side of (1.1) is equal to /2, it is concluded

that -
/ v(r) dk = 2. (2.4)

So, as long as an arbitrarily small static conductivity ¢ > 0 is present in the target,
the integral on the left hand side of (1.1) is equal to 27 independent of the choice
of €(0) and ¢. Here, the paradoxical character lies in the fact that the integral on
the left hand side of (1.1) is discontinuous in the limit as ¢ — 0. This is a severe
restriction in the sense that there is no longer a freedom to model an electrical
insulator as having a low value of ¢ or no static conductivity at all.

The transition matrix method described above is used to verify (2.4) by com-
puting the extinction cross section. The result is depicted on the left hand side
of Fig. 1 (the right figure is a close-up of the left figure for low frequencies) for

= 1 and ¢ € {0.1,1,10,10%} independent of k. A numerical integration shows
that the integral in (2.4) indeed is equal to 27 (within relative errors less than 1%
by integrating up to x = 34) for the four curves in Fig. 1. The fifth curve marked
by PEC is discussed in Sec. 3, and it can be shown to this curve has an integral
which is 7 rather than 27 when weighted with 1/x% At a first glance, one might
not expect that the four curves for the static conductivity have the same integral of
v(k) /K% However, the left figure in Fig. 1 makes it plausible that the curves with a
low value of ¢ are shifted toward lower frequencies in such a manner that the integral

2The corresponding magnetic elements elements are [10]

je(R)(ky/€(r)je(rn/€(k))) — (Kje(k)) je(kr\/€(K))
h(l)(m V(v €(R)je(ry/€(K))) I{h(l):‘{)/((lﬁ e(k))

tlg(lﬁ)
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Figure 1: The extinction cross section in units of ma? for a homogeneous and
isotropic sphere with ¢ = 1. The right figure is a close-up of the left figure for low
frequencies, and as a consequence of (2.4), all curves (except for the one labeled
PEC) have the same value of the integral when weighted with 1/x?%.

is preserved. This behavior can further be understood by examining the zeros of
the nominator in (2.2) in the vicinity of the negative imaginary axis in the complex
k-plane.

The puzzling identity (2.4) is partially explained by rejecting the conductivity
model in the low-frequency limit. For example, this is done by introducing a fre-
quency dependent static conductivity ¢ = ¢(k) for sufficiently low frequencies, or
by a regularization (i.e., replacing is/k by is/(k + ie) for € > 0) of the static con-
ductivity model in the low-frequency limit. This is analogous to the procedure of
letting the relaxation time 7 in the Debey model approach infinity. Alternatively,
one may transform (2.4) into an inequality by removing a portion of the integral in
the neighborhood of k = 0, viz., for any € > 0,

* v(k)
The left hand side of (2.5) now depends on both € and ¢, and generally it is no

longer true that the integral is equal to 27.

3 A comparison with the PEC boundary condition

The transmission boundary conditions associated with (2.2) are formulated such
that the tangential components of the electric and magnetic fields are continuous
over the boundary surface. The corresponding PEC boundary condition states that
the tangential component of the electric field vanishes on the target. For a fixed x >
0, (2.2) approaches the transition matrix element for the PEC boundary condition
as the magnitude of e (for example, by letting ¢ — oo in the presence of a static
conductivity term) tends to infinity independent of p. This is generally not true
in the low-frequency limit as it is required that the index of refraction y/e(k)u(r)
should be bounded as k — 0. Instead, the PEC boundary condition is obtained



in the low-frequency limit by simultaneously letting €(0) — oo and p(0) — 0 as
suggested by the discussion in Ref. 7.

4 Diamagnetic materials in the low-frequency limit

Under the assumption that diamagnetic materials exist with p(0) less than unity,
at a first glance it seems to contradict (1.1) since the second term on the right
hand side then becomes negative |6, p. 283]. However, the negative value of 1(0)
is compensated by a positive value of ¢(0) as seen below. Use the fact that ke(k)
and rp(k) are Herglotz functions, i.e., holomorphic functions in the upper half of
the complex r-plane, there satisfying Imre(k) > 0 and Imkpu(k) > 0 |9]. Now,
K(n(Kk) — Ny ) defines a new Herglotz function, where ny, = lim, . n(x) and n(k) =
Ve(k)u(k) denotes the index of refraction. Hence, n(0) is bounded from below by
Nso, and from the inequality between the geometric and arithmetic means, one have
(equality on the left hand side of (4.1) if and only if €(0) = ©(0)) [5, pp. 16-18]

(0) +p(0) _

5 =
Now, since the relativistic causality condition postulates that no signal can propa-
gate with a phase velocity greater than the phase velocity in free space, it is con-
cluded that n. is bounded from below by unity (alternatively, one may use the
Kramers-Kroing relations; like €., and fis, also n, is non-unique from a modeling
point of view), and (4.1) yields that €(0) + p(0) > 2. Under the assumption that
€(0) is positive (or more generally, not less than 1(0)), the parenthesis on the right
hand side of (1.1) can be estimated from below by (€(0) 4 1(0) —2)/(e(0) +2) which
indeed is non-negative. It is thus concluded that the right hand side of (1.1) is non-
negative in the presence of diamagnetic effects in the low-frequency limit, and there
is no contradiction with the non-negative nature of the extinction cross section.

€(0)(0) > noe. (4.1)

5 Conclusions

It is concluded that the extinction cross section integrated over all frequencies is
independent of the choice of static conductivity ¢ as long as it is non-zero. The
PEC boundary condition is obtained in the low-frequency limit by letting not only
the magnitude of €(0) approach infinity, but simultaneously sending u(0) to zero
such that n(0) = /€(0)u(0) is well-defined. Furthermore, diamagnetic material
parameters in the low-frequency limit cause no problem in (1.1) since any p(0) less
than unity is compensated by a positive €(0) such that the right hand side of (1.1)
remains non-negative.
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