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c© Daniel Sjöberg, Lund, June 25, 2001



1

Abstract

Using simple waves and six-vector formalism, the propagation of electromag-
netic waves in nonlinear, bianisotropic, nondispersive, homogeneous media is
analyzed. The Maxwell equations are formulated as an eigenvalue problem,
whose solutions are equivalent to the characteristic directions of the wave
front. Oblique incidence of plane waves in vacuum on a half space of non-
linear material is solved, giving reflection and transmission operators for all
angles of incidence and all polarizations of the incident field. A condition on
Brewster angles is derived.

1 Introduction

Wave propagation in nonlinear media is a wide and quickly expanding area. In
particular, the nonlinear optics field has been very prosperous [1, 3]. One of the
most exciting areas is that of solitons, i.e., pulses which have a very specific shape,
in which the nonlinear steepening effects are precisely balanced by the dispersive
broadening, thereby producing a pulse that is temporally or spatially unchanged
during propagation. This delicate balance can only be understood by studying both
contributing effects. In this paper, we are devoted to the nonlinear effects which
occur in materials with no memory, i.e., no dispersion.

Whereas the linear dispersion has been thoroughly investigated, e.g., [4, 14, 20],
the nonlinear properties may not have received enough attention. Some early works
are summarized in [2], and especially the papers on wave propagation in nonlinear
dielectrics [5, 6, 17, 21, 29] are worthy of attention. A prominent feature of nonlinear
wave propagation, where the nonlinearity acts as an amplitude-dependent wave
speed, is the formation of shock waves. These are discontinuous waves, which must
be interpreted in a generalized way as weak solutions, see e.g., [28, pp. 369–373],
and the theory of these has been thoroughly studied [15, 18, 27, 31]. It is often argued
that the shock waves are eliminated by the linear dispersion, see e.g., [1, pp. 117–
120], but since we are ignoring dispersion in this study, we expect our model to be
accurate only when we are not in the vicinity of any shock formations.

An often encountered problem when studying nonlinear materials is that of find-
ing suitable constitutive relations. In the treatise of Eringen and Maugin [9, 10], the
constitutive relations for virtually every reasonable situation are presented. Some
important thermodynamic restrictions are presented in [8]. The derivation of con-
stitutive relations from a quantum mechanical point of view is presented in [3], and
some theory about nonlinear dielectrics is found in [7].

This paper aims to improve the understanding of a nonlinear optical response,
i.e., an instantaneous nonlinear response. Earlier works, as reported above, have of-
ten made some important restrictions, such as assuming the material to be isotropic
or uniaxial. Here we present a theory describing wave propagation in bianisotropic
materials. We show that a generalized form of plane waves, called simple waves, can
be used to analyze the wave propagation, and we reformulate the Maxwell equa-
tions as an eigenvalue problems. A brief presentation on simple waves in partial
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differential equations is given in [19, p. 52], and a more extensive treatment is given
in [16, Chap. 3]. There are also some related results in [13, p. 47].

The paper is organized as follows: in Sections 2 and 3 we present the simple
wave Ansatz and the six-vector formalism, which are the basic tools used in this
paper. This is applied to the Maxwell equations in Section 4, which transforms the
dynamics into an eigenvalue problem. Special notice is taken to isotropic media.
In Section 5 we introduce the theory on how to classify materials. We then apply
our formalism in Section 6 to the problem of a plane wave obliquely impinging on a
nonlinear half space and solve the problem of finding the reflected and transmitted
fields. Some results on suitable conditions on the Brewster angles are also presented,
as well as a numerical example.

2 Simple wave Ansatz

Plane waves constitute a powerful tool in the analysis of wave phenomena in linear
materials. The concept of plane waves transforms the problem of three spatial
dimensions into a problem along the propagation direction. Simple waves are the
generalization of this concept. They have previously been used in the description of
nonlinear electromagnetic waves [5, 6], and are explained in basic books on partial
differential equations [19, p. 52]. They also define the characteristics of the wave
equation.

The simple wave Ansatz is suitable for materials which respond instantaneously
to excitation, and states that the fields depend only upon a scalar parameter, which
we denote φ. This parameter is a function of space and time. For an isotropic, linear
media the simple wave Ansatz reduces to the usual phase function, φ(r, t) = k·r−ωt.

It is obvious that if a quantity u depends on space and time as u(r, t) = u(φ(r, t)),
the spatial gradient ∇φ representents a propagation direction. We identify the
quantity − ∇φ/φt

|∇φ/φt| as the propagation direction and |φt|/|∇φ| as the propagation
speed, where φt denotes the time derivative of φ. The minus sign comes from
implicit differentiation of the equation φ(r, t) = constant, which is the equation of
the wave front.

3 Six-vector formalism

When describing bianisotropic phenomena, it is often advantageous to use the six-
vector formalism, see e.g., [24]. In this approach, we make no real distinction between
the electric and magnetic fields, but rather treat them as components of a single
field. We define our fields as 


e =

( √
ε0E√
µ0H

)

d =

(
1√
ε0

D
1√
µ0

B

)
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where ε0 and µ0 denote the permittivity and permeability of vacuum, respectively.
The six-vector fields now both have the same dimension, i.e.,

√
energy/volume.

The scalar product between two six-vectors a and b is defined as a·b =
∑6

i=1 aibi.
Operations with three-vectors on six-vectors are understood in the obvious manner,
i.e., the scalar and cross products are

v · e =

(
v · √ε0E
v · √µ0H

)
, and v × e =

(
v ×√

ε0E
v ×√

µ0H

)
.

Using the operator J =

(
0 −I
I 0

)
, which is formed from the three-dimensional

spatial identity operator I, we write the source free Maxwell equations as

∇× e − 1

c0

J · ∂td = 0,

where c0 denotes the wave speed in vacuum, 1/
√

ε0µ0. The spatial differential op-
erator ∇ is treated as a three-vector, and is sometimes merged with the operator J
to form the symmetric operator ∇× J, as in [12]. This approach will be beneficial
later on in this work.

4 The Maxwell equations as an eigenvalue prob-

lem

The constitutive relation for a material with no memory, i.e., where the fluxes d
depend only upon the present values of the field strengths e, can be written

d(r, t) = d(e(r, t)). (4.1)

We now apply the simple wave Ansatz together with the constitutive relation,{
e(r, t) = e(φ(r, t))

d(r, t) = d(e(φ(r, t))).

This means that the curl operator turns into a cross product, ∇×e = ∇φ×e′, and
the time derivative becomes ∂td = φt[∇ed] · e′, where the prime denotes differenti-
ation with respect to φ. The operator ∇e denotes the field gradient operator, i.e.,
[∇ed]nm = ∂

∂em
dn(e). Since we write the linear constitutive relations as d = ε · e,

where ε is a six-dyadic, we denote [∇ed] by ε(e), and often suppress the argument
to obtain a less cumbersome notation.

With the simple wave Ansatz, the Maxwell equations contain the generic field
e′ = d

dφ
e. However, for reasons that become more obvious below we prefer to use

the time derivative, ė = ∂te = φte
′. This choice also becomes advantageous when

implementing the equations later on. Since φ(r, t) = constant is the equation for
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the wave front, we identify the wave slowness 1/c and the propagation direction k̂
of the simple wave by the following expressions,


1

c
=

|∇φ|
|φt|

k̂ = − ∇φ/φt

|∇φ/φt|
= −∇φ

φt

c.

Using these expressions, we write the Maxwell equations as

1

c
k̂ × ė +

1

c0

J · ε · ė = 0.

This is an eigenvalue problem, which becomes more obvious in the form

c

c0

ė = ε−1 · [k̂ × J] · ė, (4.2)

which follows from J−1 = −J and J · [k̂ × I] = [k̂ × J]. Observe that [k̂ × J]
is a symmetric operator. The dyadic ε is postulated to be positive definite and
symmetric, and is thus invertible. In the linear case, it is possible to show that ε
has to be a symmetric, positive definite dyadic in order to model passive media [12].
The assumptions made on the dyadic ε is a natural generalization of the result in
the linear case.

The solution to (4.2) gives conditions on the wave speed and propagation direc-
tion in terms of the fields. In the linear case, only the directions of the field will be
important, but for nonlinear materials there is also a dependence on the amplitude.
For an isotropic material, where

ε(e) =

(
ε(E)I 0

0 µ(H)I

)
,

the conditions are

c =
c0√

ε(E)µ(H)
and k̂ · ė = 0 ⇒ ė =

( 1√
ε
v

1√
µ
k̂ × v

)
, (4.3)

where the three-vector v is orthogonal to k̂. Observe that it is the direction of the
derivatives of the fields that are important, not the fields themselves.

For a given propagation direction k̂ the operator ε−1 · [k̂×J] has six eigenvectors
ėj, j = 1, . . . , 6. Since the operator is not symmetric, these solutions are not
guaranteed to be mutually orthogonal. We symmetrize the operator by

c

c0

(
√

ε · ėj) =
[√

ε
−1 · [k̂ × J] ·

√
ε
−1

]
· (
√

ε · ėj),

where we have used the square root of the positive definite and symmetric dyadic ε,
which is also positive definite and symmetric. It is concluded that the eigenvectors√

ε · ėj are real and orthogonal, which imply that the eigenvectors ėj are real and
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linearly independent. The operator
√

ε
−1 · [k̂ × J] · √ε

−1
is a congruence transfor-

mation (see e.g., [11, p. 251]) of [k̂ × J], which has the (double) eigenvalues −1,
0 and 1. Since the signs are preserved under congruence transforms, we conclude
that for a given propagation direction k̂ there are two modes propagating in the
+k̂-direction (positive eigenvalues) and two modes propagating in the −k̂-direction
(negative eigenvalues), while two modes do not propagate with respect to k̂ at all

(zero eigenvalue). The last two can be written explicitly as ė5,6 =
(±k̂

k̂

)
.

5 Classification of materials

Materials are often classified as, e.g., isotropic, bi-isotropic or uniaxial depending
on the invariance under symmetry transformations. In our formulation, the natural
way to classify the materials is by the corresponding invariance of the dyadic ε(e).
This is motivated by the following way of writing the constitutive relations (4.1):

d(e) =

∫ e

0

ε(e′) · de′,

where the integral should be understood in terms of integration along a parametrized
curve in R

6. The prime is not to be confused with time differentiation, it is only
denoting the integration variable. When applying a spatial transformation S on the
field strength e, we get

d(S · e) =

∫ S·e

0

ε(e′) · de′ =

∫ e

0

ε(S · e′′) · S · de′′,

where we have made the change of variables e′ = S · e′′. Materials are classified
depending on which group of transformations S that satisfies d(S · e) = S · d(e),
i.e., which group of transformations that commutes with ε.

Since this must hold for all transformations in the bi-isotropic case, we see that
an ε(e) as

ε(e) =

(
ε(E, H)I ξ(E, H)I
ζ(E, H)I µ(E, H)I

)
,

describes a bi-isotropic material, where ε, ξ, ζ and µ are scalar functions of the field
strengths. Common restrictions on constitutive relations, [8, 12], say that ξ = ζ,
and if they are equal to zero, the material is said to be isotropic.

6 Oblique incidence

To demonstrate the possible application of the simple wave approach, we analyze
the problem of a plane electromagnetic wave obliquely impinging from vacuum on a
nonlinear half space. The problem has been studied to some extent in [5, 6], though
they specialize their treatment to a uniaxial material with nonlinearity in electric
field only, where the optical axis is in a special direction.
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Vacuum Nonlinear media

Incident field

Reflected field

Transmitted field

z

y

n

θ

Figure 1: The geometry of the problem of oblique incidence.

6.1 Geometry and boundary conditions

The geometry of the problem is depicted in Figure 1. The incident field is a plane
wave, and we make the Ansatz


ei(r, t) = e(k̂i · r − c0t)

er(r, t) = e(k̂r · r − c0t)

et(r, t) =
∑

et
j(φj(r, t)),

where c0 denotes the wave speed in vacuum. We thus assume that the transmit-
ted field may consist of several simple waves, as we can expect from the linear,
anisotropic case. The number of those is restricted to two in Section 6.5. The usual
boundary conditions apply, i.e., the tangential components of the field strengths
should be continuous and the normal component of the fluxes should be continuous
(no sources at the interface). We write this as{

ei
‖ + er

‖ = et
‖

ẑ · (di + dr) = ẑ · dt.
(6.1)

The latter condition is not used in the present analysis.

6.2 Reflection law and Snell’s law

Since the boundary conditions (6.1) must hold for all times on the surface z = 0,
we can differentiate them with respect to both time and y. The simple wave Ansatz
implies that the operator ∂y equals 1

c
ky∂t, where ky = ŷ · k̂. Using this result and

et(r, t) =
∑

et
j(φj(r, t)) we write the time and y derivative of the tangential fields



7

as 


ėi
‖ + ėr

‖ =
∑

(ėt
j)‖

1

c0

ki
yė

i
‖ +

1

c0

kr
yė

r
‖ =

∑ 1

cj(et)
kt

yj(ė
t
j)‖.

These conditions are satisfied if the following holds:

ki
y = kr

y =
c0

cj(et)
kt

yj, (6.2)

for all values of j, cf. phase-matching [22, p. 104]. The quotient between the wave
speeds corresponds to the refractive index, and since ki

y and kt
yj are the sines of the

angles of incidence and transmission, respectively, (6.2) is the well-known Snell’s
law. This is a purely kinematic law, so it is not surprising that it is valid also in the
nonlinear case. Note that since there are several possible values for the wave speed
cj, there are several possible angles of transmission.

Since the propagation directions are normalized and there is no propagation in
the x-direction, we now also have the normal reflection law for the reflected field,
i.e.,

k̂r = ki
yŷ − ki

z ẑ.

The transmitted field is more complicated, since it involves the wave speed, which
may depend on the field strength.

6.3 Decomposition of the propagation direction

It seems natural to consider a decomposition of the propagation direction k̂ in (4.2)
in a y and z part. Using Snell’s law and |k̂t

j| = 1, we find

c0

cj

k̂t
j =

c0

cj

kt
yj ŷ +

c0

cj

kt
zj ẑ = ki

yŷ +
c0

cj

√
1 − (

cj

c0

ki
y)

2 ẑ.

Using the eigenvalue problem (4.2) for each simple wave in the nonlinear material,
we get

ε · ėt
j =

c0

cj

[k̂t
j × J] · ėt

j

[ε − ki
yŷ × J] · ėt

j =
c0

cj

kt
zj[ẑ × J] · ėt

j

cj

c0

1

kt
zj

ėt
j = [ε − ki

yŷ × J]−1 · [ẑ × J] · ėt
j.

Since the operator [ε − ki
yŷ × J]−1 · [ẑ × J] is independent of j, all simple waves in

the nonlinear material are found from the same eigenvalue problem,

λjaj = [ε − ki
yŷ × J]−1 · [ẑ × J] · aj, (6.3)
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where λj denotes the number cj/(c0k
t
zj) and aj is shorthand for ėt

j. The correspond-
ing problem for the vacuum fields is easily found,

± 1

ki
z

ėi,r = [I − ki
yŷ × J]−1 · [ẑ × J] · ėi,r, (6.4)

where the ± comes from kr
z = −ki

z. The operator [I− ki
yŷ×J]−1 is positive definite,

since |ki
y| < 1. If all eigenvalues to ε are greater than one, i.e., the material is denser

than vacuum, the operator [ε − ki
yŷ × J]−1 is also positive definite.

6.4 Properties of the eigenvectors

The eigenvalue problem (6.3) is put in a symmetric form in the same manner as
in Section 4. We observe that [ε − ki

yŷ × J] is positive definite and symmetric. In

this section we temporarily denote this operator C. By multiplying (6.3) with
√

C,
which is also positive definite and symmetric, we obtain

λj

√
C · aj =

√
C

−1 · [ẑ × J] ·
√

C
−1 ·

√
C · aj

λjuj =
[√

C
−1 · [ẑ × J] ·

√
C

−1
]
· uj.

The λj:s are now eigenvalues to a symmetric operator, which implies that they are

real. The symmetric operator
√

C
−1 · [ẑ × J] ·

√
C

−1
is a congruence transformation

of [ẑ × J], which has the (double) eigenvalues −1, 0 and 1. Since the signs are
preserved under congruence transformations, the eigenvalues can be characterized
by

λ1,2 > 0

λ3,4 < 0

λ5,6 = 0.

Since the uj:s are eigenvectors to a symmetric operator, they are real and mutually

orthogonal. This implies that aj =
√

C
−1 · uj are linearly independent vectors.

The eigenvectors corresponding to λ5,6 can be constructed from a5,6 =
(±ẑ

ẑ

)
, which

implies that a1,2,3,4 are the only eigenvectors needed to form the tangential fields.
The sign of the eigenvalue indicates in which direction each mode represented

by an eigenvector is propagating, i.e., a1,2 represent waves propagating in the +z-
direction and a3,4 represent waves propagating in the −z-direction, while a5,6 rep-
resent waves which do not propagate with respect to z at all.

6.5 Transmission operator

Temporarily introduce the dyadic

A = ki
z[I − ẑẑ] · [I − ki

yŷ × J]−1 · [ẑ × J].
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From (6.4) we see that ėi,r
‖ = ±A · ėi,r

‖ . By multiplying the boundary condition

ėi
‖ + ėr

‖ = ėt
‖ with A we now have

ėi
‖ − ėr

‖ = A · ėt
‖.

In the previous section, we found that only the eigenvectors a1,2,3,4 involve the
tangential fields. Specifically, a1,2 correspond to waves travelling in the +z-direction.
To this end, the transmitted tangential field is expanded as

ėt
‖ =

2∑
j=1

αj[I − ẑẑ] · aj, (6.5)

provided there are no sources in the region z > 0, i.e., no waves travelling in the
−z-direction. We have now restricted the number of simple waves in the nonlinear
material to two. From (6.3) follows

A · [I − ẑẑ] · aj = ki
z[I − ẑẑ] · [I − ki

yŷ × J]−1 · [ẑ × J] · [I − ẑẑ] · aj

= λjk
i
z[I − ẑẑ] · [I − ki

yŷ × J]−1 · [ε − ki
yŷ × J] · aj,

where we have used [ẑ × J] · [I − ẑẑ] = [ẑ × J]. The operator

B = [I − ki
yŷ × J]−1 · [ε − ki

yŷ × J]

= I + [I − ki
yŷ × J]−1 · [ε − I]

(6.6)

is positive definite with eigenvalues greater than one. The boundary conditions are


ėi
‖ + ėr

‖ =
2∑

j=1

αj[I − ẑẑ] · aj

ėi
‖ − ėr

‖ =
2∑

j=1

αjλjk
i
z[I − ẑẑ] · B · aj.

(6.7)

By adding these equations, we eliminate the reflected field, and obtain

2ėi
‖ =

2∑
j=1

αj[I − ẑẑ] · [I + λjk
i
zB] · aj. (6.8)

The only unknown quantities in this equation are the coefficients αj. If we multiply
the equation by a1,2 from the left, we obtain a 2×2 system, which is used to extract
the coefficients α1,2:{

2a1 · ėi
‖ = α1a1 · [I − ẑẑ] · [I + λ1k

i
zB] · a1 + α2a1 · [I − ẑẑ] · [I + λ2k

i
zB] · a2

2a2 · ėi
‖ = α1a2 · [I − ẑẑ] · [I + λ1k

i
zB] · a1 + α2a2 · [I − ẑẑ] · [I + λ2k

i
zB] · a2.

(6.9)
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This system is always solvable provided the following determinant is non-zero:

∆ =(a1 · [I − ẑẑ] · [I + λ1k
i
zB] · a1)(a2 · [I − ẑẑ] · [I + λ2k

i
zB] · a2)

− (a2 · [I − ẑẑ] · [I + λ1k
i
zB] · a1)(a1 · [I − ẑẑ] · [I + λ2k

i
zB] · a2)

=(a1 · v1)(a2 · v2) − (a2 · v1)(a1 · v2)

=a1 · (v1v2 − v2v1) · a2,

where we have introduced the vectors v1,2 = [I− ẑẑ] · [I+λ1,2k
i
zB] ·a1,2 = R1,2 ·a1,2.

The operators R1,2 are obviously positive semi-definite, where the semi-definiteness
comes from the projection [I − ẑẑ]. It is conjectured that these properties imply
∆ > 0.

Using the explicit inverse of a 2× 2-matrix, we can write the solution to (6.9) as


α1 =
2

∆

{
(a2 · [I − ẑẑ] · [I + λ2k

i
zB] · a2)(a1 · ėi

‖)

−(a1 · [I − ẑẑ] · [I + λ2k
i
zB] · a2)(a2 · ėi

‖)
}

α2 =
2

∆

{
(a1 · [I − ẑẑ] · [I + λ1k

i
zB] · a1)(a2 · ėi

‖)

−(a2 · [I − ẑẑ] · [I + λ1k
i
zB] · a1)(a1 · ėi

‖)
}

.

(6.10)

This can be written as α1,2 = 2
∆

b1,2 · ėi
‖ by introducing the vectors{

b1 = (a2 · [I − ẑẑ] · [I + λ2k
i
zB] · a2)a1 − (a1 · [I − ẑẑ] · [I + λ2k

i
zB] · a2)a2

b2 = (a1 · [I − ẑẑ] · [I + λ1k
i
zB] · a1)a2 − (a2 · [I − ẑẑ] · [I + λ1k

i
zB] · a1)a1.

(6.11)

The map between a1,2 and b1,2 has the same determinant as the map between the
coefficients α1,2 and the incident field, i.e., ∆, which was assumed greater than zero
previous in this section. This implies that the vectors b1,2 are linearly independent.
We now formulate the relation ėt

‖ =
∑2

j=1 αj[I− ẑẑ] ·aj as a dyadic relation between
incident and transmitted fields,

ėt
‖ =

2

∆
[I − ẑẑ] · [a1b1 + a2b2] · ėi

‖

=T‖ · ėi
‖,

(6.12)

where we have introduced the notation T‖ for the transmission operator acting on
the tangential fields. Since the transmitted field consists of only the modes a1,2, the
transmission operator extends to the total transmitted field:

ėt =
2

∆
[a1b1 + a2b2] · ėi

‖ = T · ėi
‖. (6.13)

Since the vectors b1,2 are linearly independent, they represent the two different
polarizations of the incident field which generate the two possible modes a1,2 in the
nonlinear material.
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6.6 Reflection operator and Brewster angles

It is well known that at certain angles and polarizations of the incident field there
is no reflected field at all — the Brewster angles [22, 25, 26]. From (6.7) we see that
the reflected field can be written

2ėr
‖ =

2∑
j=1

αj[I − ẑẑ] · [I − λjk
i
zB] · aj.

Using α1,2 = 2
∆

b1,2 · ėi
‖ we find the following relationship between the reflected and

incident field:

2ėr
‖ =

2

∆

[{
[I − ẑẑ] · [I − λ1k

i
zB] · a1

}
b1

+
{
[I − ẑẑ] · [I − λ2k

i
zB] · a2

}
b2

]
· ėi

‖

=
2

∆
[I − ẑẑ] · [b′

1b1 + b′
2b2] · ėi

‖

=2R‖ · ėi
‖.

This is the reflection operator R‖ for the tangential fields, which is represented as a
factorization in the simple dyads b′

1b1 and b′
2b2, where b′

1,2 = [I − λ1,2k
i
zB] · a1,2.

Since the vectors b1,2 are linearly independent, we see that the Brewster angles
are characterized by{

ėi
‖ = β[I − ẑẑ] · bj

0 = [I − ẑẑ] · [I − λjk
i
zB] · aj

j = 1, 2, (6.14)

where β is a scalar. This means that if the incident field is polarized along bj and
aj is in the null space of [I − ẑẑ] · [I − λjk

i
zB], there is no reflected field. These

conditions determine the possible Brewster angles. We have

0 = [I − ẑẑ] · [I − λjk
i
zB] · aj

= [I − ẑẑ] · [I − cj

c0

ki
z

kt
zj

(I + [I − ki
yŷ × J]−1 · [ε − I])] · aj

= [I − ẑẑ] · [I − cj

c0

ki
z

kt
zj

(I +
1

(ki
z)

2
[I + ki

yŷ × J − (ki
y)

2ŷŷ] · [ε − I])] · aj,

where we have introduced the explicit inverse [I − ki
yŷ × J]−1 = 1

(ki
z)2

[I + ki
yŷ × J −

(ki
y)

2ŷŷ], which can be verified by straightforward calculations. The y-component of
this equation is

0 = ŷ · aj −
cj

c0

ki
z

kt
zj

(ŷ +
1

(ki
z)

2
[ŷ − (ki

y)
2ŷ] · [ε − I]) · aj

= ŷ · aj −
cj

c0

ki
z

kt
zj

(ŷ + ŷ · [ε − I]) · aj

= ŷ · aj −
cj

c0

ki
z

kt
zj

ŷ · ε · aj.
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In Section 4 it was shown that a propagating field in an isotropic material is described
by aj = ( 1√

ε
vj,

1√
µ
k̂×vj), where the three-vector vj is orthogonal to k̂, and the only

possible wave speed is
cj

c0
= 1√

εµ
. In the remainder of this section, we suppress the

index j, and separate the two modes in the end. The Brewster angles can now be
found from the y-component defined above. By explicitly considering both electric
and magnetic fields we have

ŷ ·
( 1√

ε
v

1√
µ
k̂t × v

)
=

1√
εµ

ki
z

kt
z

ŷ ·
( √

εv
√

µk̂t × v

)
( 1√

ε
ŷ · v

1√
µ
k̂t · (v × ŷ)

)
=

ki
z

kt
z

( 1√
µ
ŷ · v

1√
ε
k̂t · (v × ŷ)

)
( 1√

ε
ŷ · v

1√
µ
kt

z ẑ · (v × ŷ)

)
=

ki
z

kt
z

( 1√
µ
ŷ · v

1√
ε
kt

z ẑ · (v × ŷ)

)
.

It is now obvious that one of the following sets of conditions have to be satisfied in
order to satisfy the Brewster angle criterion.{

ŷ · v = 0
√

εkt
z =

√
µki

z

or

{
ẑ · (v × ŷ) = 0

√
µkt

z =
√

εki
z.

Observe that ẑ · (v × ŷ) = 0 is equivalent to x̂ · v = 0, i.e., the first set of conditions
corresponds to TE-polarization and the second to TM-polarization. Remember
that ki

z = cos θi and kt
z = cos θt, where θi,t denote the angles of incidence and

transmission, respectively, and we have recovered the well known results for linear
isotropic materials. Since we in general have θt < θi, only one of the above possible
Brewster angles is feasible.

An interesting question is whether it always suffices to study the y-component of
our original Brewster-angle-condition in (6.14). This is a problem that goes beyond
the scope of this paper.

6.7 Algorithm for the direct problem

In this section we summarize the algorithm for solving the direct problem of prop-
agating the incident field through a boundary between vacuum and a nonlinear,
nondispersive, homogeneous, bianisotropic halfspace.

We have to calculate the eigenvectors a1,2, the eigenvalues λ1,2 and the operator
B to obtain the reflection and transmission dyadics. These quantities are determined
from the relations {

λjaj = [ε − ki
yŷ × J]−1 · [ẑ × J] · aj

B = [I − ki
yŷ × J]−1 · [ε − ki

yŷ × J],

i.e., we have to solve an eigenvalue problem (first row), extract the eigenvectors
corresponding to positive eigenvalues, and calculate the operator B. These calcula-
tions are evaluated at the transmitted field values at a specific time. The operators
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are supposed to act on time derivatives of the fields. We discretize the problem
with central differences in time, and use the previously calculated values for the
transmitted fields in the solution of the eigenvalue problem.

Once we have calculated the tangential fields, it is an easy task to obtain the
normal components of the fields. For the transmitted fields these are already given
by the transmission operator, see (6.13), and for the reflected field they are given

by the relation k̂r · ėr = 0, which implies ėr
z = −kr

y

kr
z
ėr

y.
The algorithm can be summarized as follows, where the indices denote at which

time level the different quantities are to be evaluated.

(eigenvalue problem)j ⇒ (λ1,2)j, (a1,2)j

(B)j = B((et)j)

(T)j = T((λ1,2)j, (a1,2)j, (B)j)

(R‖)j = R‖((λ1,2)j, (a1,2)j, (B)j)

(ėi
‖)j =

(ei
‖)j+1 − (ei

‖)j−1

2∆t
(et)j+1 = (et)j−1 + 2∆t(T)j · (ėi

‖)j

(er
‖)j+1 = (er

‖)j−1 + 2∆t(R‖)j · (ėi
‖)j

(er
z)j+1 = −

kr
y

kr
z

(er
y)j+1

6.8 Numerical example

The algorithm in the previous section has been implemented for a nonlinear, aniso-
tropic material, and the result is depicted in Figure 2. We have scaled the fields to
obtain dimensionless field strengths and substantial nonlinearities for field strengths
of a few units, see e.g., [23, 30]. The constitutive relation is characterized by the
dyadic ε, which is represented in the xyz-coordinate system as

ε =




2 + E2 0 0 0 0 0
0 3 + E2 0 0 0 0
0 0 4 + E2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




.

Thus, the material is non-magnetic, anisotropic with principal axis in the xyz-
directions, and has a nonlinear permittivity depending on the square of the electric
field strength. The angle of incidence is 70◦, and the incident field has the magnetic
field perpendicular to the plane of incidence, i.e., in the x-direction,

ei(r, t) = f(t − k̂i · r/c0)

(−k̂i × x̂

x̂

)
, f(t) =

{
e0

√
t t ≥ 0

0 t < 0.
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Figure 2: Oblique incidence on an anisotropic Kerr material. Observe that the
horizontal scales can be used both as time and energy of the incident field. The
diagrams show the squares of the incident, reflected and transmitted fields, and the
two possible transmission angles.

The time dependence of the amplitude of the incident field is chosen so that its
square, which is proportional to the field energy in vacuum, depends linearly on time.
This implies that the horizontal scales in Figure 2 can be used both as time and
energy. We see that the reflected field displays a strong dependence on the incident
field energy, whereas the transmitted field has a more moderate dependence.

It is clearly seen that the Brewster angle occurs when the incident energy is
approximately 18. Had the principle axis of the material not been in the xyz-
directions, we would have needed another polarization of the incident field to obtain
a reflected field that is zero.

The possible transmission angles start off as clearly separated, as can be expected
for an anisotropic material, but become more and more equal as the incident energy
increases. This can be interpreted from the material dyadic: when the electric field
strength grows, the diagonal elements become essentially E2. Thus the material
becomes more and more isotropic, i.e., it has only one possible angle of transmission.
Observe that due to our choice of polarization of the incident field, only one of the
modes is excited.
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7 Conclusions

In this paper, we have introduced the concept of simple waves, as a means to analyze
wave propagation problems in nonlinear materials with instantaneous response. We
have applied the method to the problem of oblique incidence of a plane electromag-
netic wave on a nonlinear material, and found that the direct problem can be solved
for all materials and all possible polarizations of the incident wave.

The drawback of the simple wave solutions, is that they do not apply to mate-
rials with dispersion, i.e., materials with memory. Our mathematical model with
instantaneous nonlinearity, predicts that all reasonable waves eventually turn into
shocks. It is often argued that the presence of linear dispersion eliminates these
shocks, see e.g., [1, pp. 117–120]. Therefore, we can expect our model to be accu-
rate only when there is no shock-like behaviour and the dispersion effects are small,
i.e., for sufficiently smooth and slowly varying pulses. It is possible to calculate
what propagation distances are necessary for the shock to develop, which means we
can estimate the region of validity for our model.

The methods presented in this paper may be useful to propagate the wave front
when studying wave propagation in more advanced materials. Temporal disper-
sion and inhomogeneous media may appear as lower order terms in the Maxwell
equations, and can be treated as sources to the fields treated here.
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