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Robust Distributed Routing in Dynamical Flow Networks

Giacomo Como Ketan Savla Daron Acemoglu Munther A. Dahleh Emilio Frazzoli .

Abstract— Robustness of distributed routing policies is stud-
ied for dynamical flow networks, with respect to adversarial
disturbances that reduce the link flow capacities. A dynamical
flow network is modeled as a system of ordinary differential
equations derived from mass conservation laws on a directed
acyclic graph with a single origin-destination pair and a con-
stant inflow at the origin. Routing policies regulate the way the
inflow at a non-destination node gets split among its outgoing
links as a function of the current particle density, while the
outflow of a link is modeled to depend on the current particle
density on that link through a flow function. The robustness
of distributed routing policies is evaluated in terms of the
network’s weak resilience, which is defined as the infimum sum
of link-wise magnitude of disturbances under which the total
inflow at the destination node of the perturbed dynamical flow
network is positive. The weak resilience of a dynamical flow
network with arbitrary routing policy is shown to be upper-
bounded by the network’s min-cut capacity, independently of
the initial flow conditions. Moreover, a class of distributed
routing policies that rely exclusively on local information on the
particle densities, and are locally responsive to that, is shown
to yield such maximal weak resilience. These results imply that
locality constraints on the information available to the routing
policies do not cause loss of weak resilience.

I. INTRODUCTION

Flow networks provide a fruitful modeling framework for
many applications of interest such as transportation, data, and
production networks. They entail a fluid-like description of
the macroscopic motion of particles, which are routed from
their origins to their destinations via intermediate nodes:
we refer to standard textbooks, such as [1], for a thorough
treatment.

The present paper studies dynamical flow networks, mod-
eled as systems of ordinary differential equations derived
from mass conservation laws on directed acyclic graphs
with a single origin-destination pair and a constant inflow
at the origin. The rate of change of the particle density on
each link of the network equals the difference between the
inflow and the outflow of that link. The latter is modeled to
depend on the current particle density on that link through
a flow function. On the other hand, the way the inflow at
an intermediate node gets split among its outgoing links
depends on the current particle density, possibly on the whole
network, through a routing policy. Such a routing policy is
said to be distributed if the proportion of inflow routed to the
outgoing links of a node is allowed to depend only on local
information, consisting of the current particle densities on the
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outgoing links of the same node. The inspiration for such
a modeling paradigm comes from empirical findings from
several application domains such as transportation networks,
data networks and production networks.

Our objective is the design and analysis of distributed
routing policies for dynamical flow networks that are max-
imally robust with respect to adversarial disturbances that
reduce the link flow capacities. The robustness of distributed
routing policies is evaluated in terms of the network’s weak
resilience, which is defined as the infimum sum of link-wise
magnitude of disturbances under which the total inflow at the
destination node of the perturbed dynamical flow network is
positive. In this paper, we prove that the maximum possible
weak resilience is yielded by a class of locally responsive
distributed routing policies, which rely only on local in-
formation on the current particle densities on the network,
and are characterized by the property that the portion of its
inflow that a node routes towards an outgoing link does not
decrease as the particle density on any other outgoing link
increases. These results are mainly a consequence of the
particular cooperative structure (in the sense of [2], [3]) that
the dynamical flow network inherits from locally responsive
routing policies. Moreover, we show that the maximum weak
resilience of dynamical flow networks with arbitrary, not
necessarily distributed, routing policies equals the min-cut
capacity of the network and hence is independent of the
initial equilibrium flow.

Stability analysis of network flow control policies un-
der non-persistent disturbances, especially in the context
of internet, has attracted a lot of attention, e.g., see [4],
[5], [6], [7]. Recent work on robustness analysis of static
flow networks under adversarial and probabilistic persistent
disturbances in the spirit of this paper include [8], [9]. It is
worth comparing the distributed routing policies studied in
this paper with the back-pressure policy [10], which is one
of the most well-known robust distributed routing policy for
queueing networks. While relying on local information in the
same way as the distributed routing policies studied here,
back-pressure policies require the nodes to have, possibly
unlimited, buffer capacity. In contrast, in our framework,
the nodes have no buffer capacity. In fact, the distributed
routing policies considered in this paper are closely related to
the well-known hot-potato or deflection routing policies [11,
Sect. 5.1], where the nodes route incoming packets immedi-
ately to one of the outgoing links. However, to the best of
our knowledge, the robustness properties of dynamical flow
networks, where the outflow from a link is not necessarily
equal to its inflow have not been studied before. Due to space
limitations, we keep our presentation concise here; detailed
exposition can be found in [12].

Before proceeding, we define some preliminary notation



to be used throughout the paper. Let R be the set of real
numbers, R+ := {x ∈ R : x ≥ 0} be the set of nonnegative
real numbers. Let A and B be finite sets. Then, |A| will
denote the cardinality of A, RA (respectively, RA+) the
space of real-valued (nonnegative-real-valued) vectors whose
components are indexed by elements of A, and RA×B the
space of matrices whose real entries indexed by pairs of
elements in A× B. The transpose of a matrix M ∈ RA×B,
will be denoted by MT ∈ RB×A, while 1 the all-one vector,
whose size will be clear from the context. Let cl(X ) be the
closure of a set X ⊆ RA. A directed multigraph is the pair
(V, E) of a finite set V of nodes, and of a multiset E of
links consisting of ordered pairs of nodes (i.e., we allow for
parallel links). Given a a multigraph (V, E), for every node
v ∈ V , we shall denote by E+

v ⊆ E , and E−v ⊆ E , the set
of its outgoing and incoming links, respectively. Moreover,
we shall use the shorthand notation Rv := RE

+
v

+ for the set
of nonnegative-real-valued vectors whose entries are indexed
by elements of E+

v , Sv := {p ∈ Rv :
∑
e∈E+v pe = 1} for

the simplex of probability vectors over E+
v , and R := RE+

for the set of nonnegative-real-valued vectors whose entries
are indexed by the links in E .

II. DYNAMICAL FLOW NETWORKS AND THEIR
RESILIENCE

In this section, we introduce our model of dynamical flow
networks and define the notions of transfer efficiency.
A. Dynamical flow networks

We start with the following definition of a flow network.
Definition 1: A flow network N = (T , µ) is the pair of

a topology, described by a finite directed multigraph T =
(V, E), where V is the node set and E is the link multiset,
and a family of flow functions µ := {µe : R+ → R+}e∈E
describing the functional dependence fe = µe(ρe) of the
flow on the density of particles on every link e ∈ E . The
flow capacity of a link e ∈ E is defined as

fmax
e := sup

ρe≥0
µe(ρe) . (1)

We shall use the notation Fv := ×e∈E+v [0, fmax
e ) for the

set of admissible flow vectors on outgoing links from node
v, and F := ×e∈E [0, fmax

e ) for the set of admissible flow
vectors for the network. We shall write f := {fe : e ∈ E} ∈
F , and ρ := {ρe : e ∈ E} ∈ R, for the vectors of flows and
of densities, respectively, on the different links. The notation
fv := {fe : e ∈ E+

v } ∈ Fv , and ρv := {ρe : e ∈ E+
v } ∈ Rv

will stand for the vectors of flows and densities, respectively,
on the outgoing links of a node v. We shall compactly denote
by f = µ(ρ) and fv = µv(ρv) the functional relationships
between density and flow vectors.

Throughout this paper, we shall restrict ourselves to net-
work topologies satisfying the following:

Assumption 1: The topology T contains no cycles, has a
unique origin (i.e., a node v ∈ V such that E−v is empty),
and a unique destination (i.e., a node v ∈ V such that E+

v is
empty). Moreover, there exists a path in T to the destination
node from every other node in V .

Assumption 1 implies that one can find a (not necessarily
unique) topological ordering of the node set V (see, e.g.,

0 n

E+U
U V\U

0

Fig. 1. An origin/destination cut of the network: U is a subset of nodes
including the origin 0 but not the destination n, and E+

U is the subset of
those edges with tail node in U , and head node in V \ U .

[13]). We shall assume to have fixed one such ordering,
identifying V with the integer set {0, 1, . . . , n}, where n :=
|V| − 1, in such a way that

E−v ⊆
⋃

0≤u<v
E+
u , ∀v = 0, . . . , n . (2)

In particular, (2) implies that 0 is the origin node, and n
the destination node in the network topology T . An origin-
destination cut (see, e.g., [1]) of T is a partition of V into
U and V \ U such that 0 ∈ U and n ∈ V \ U . Let

E+
U := {(u, v) ∈ E : u ∈ U , v ∈ V \ U} (3)

be the set of all the links pointing from some node in U to
some node in V \ U (see Fig. 1). The min-cut capacity of a
flow network N is defined as

C(N ) := min
U

∑
e∈E+U

fmax
e , (4)

where the minimization runs over all the origin-destination
cuts of T . Throughout this paper, we shall assume a constant
inflow λ0 ≥ 0 at the origin node. Let us define the set of
admissible equilibrium flows associated to an inflow λ0 as

F∗(λ0) :=
{
f∗ ∈ F :

∑
e∈E+0

f∗e = λ0,∑
e∈E+v

f∗e =
∑

e∈E−v
f∗e , ∀ 0 < v < n

}
.

Then, it follows from the max-flow min-cut theorem (see,
e.g., [1]), that F∗(λ0) 6= ∅ whenever λ0 < C(N ). That
is, the min-cut capacity equals the maximum flow that can
pass from the origin to the destination node while satisfying
capacity constraints on the links, and conservation of mass
at the intermediate nodes.

Throughout the paper, we shall make the following as-
sumption on the flow functions:

Assumption 2: For every link e ∈ E , the map µe :
R+ → R+ is continuously differentiable, strictly increasing,
has bounded derivative, and is such that µe(0) = 0, and
fmax
e < +∞.

Thanks to Assumption 2, one can define the median
density on link e ∈ E as the unique value ρµe ∈ R+ such
that

µe(ρµe ) = fmax
e /2. (5)

We now introduce the notion of a distributed routing policy
used in this paper.



Definition 2: A routing policy for a flow network N is
a family of differentiable functions G := {Gv : R →
Sv}0≤v<n describing the ratio in which the particle flow
incoming in each non-destination node v gets split among its
outgoing link set E+

v , as a function of the observed current
particle density. A routing policy is said to be distributed
if, for all 0 ≤ v < n, there exists a differentiable function
G : Rv → Sv such that Gv(ρ) = G

v
(ρv) for all ρ ∈ R,

where ρv is the projection of ρ on the outgoing link set E+
v .

The salient feature in Definition 2 is that a distributed
routing policy depends only on the local information on the
particle density ρv on the set E+

v of outgoing links of the
non-destination node v, instead of the full vector of current
particle densities ρ on the whole link set E . Throughout this
paper, we shall make a slight abuse of notation and write
Gv(ρv), instead of G

v
(ρv), for the vector of the fractions in

which the inflow of node v gets split into its outgoing links.
We are now ready to define a dynamical flow network.
Definition 3: A dynamical flow network associated to a

flow network N satisfying Assumption 1, a distributed
routing policy G, and an inflow λ0 ≥ 0, is the dynamical
system
d
dt
ρe(t) = λv(t)Gve(ρ(t))− fe(t) , ∀ 0 ≤ v < n , ∀ e ∈ E+

v ,

(6)
where fe(t) := µe(ρe(t)) and

λv(t) :=
{
λ0 if v = 0∑
e∈E−v fe(t) if 0 < v ≤ n. (7)

Equation (6) states that the rate of variation of the particle
density on a link e outgoing from some non-destination node
v is given by the difference between λv(t)Gve(ρ(t)), i.e., the
portion of the inflow at node v which is routed to link e,
and fe(t), i.e., the particle flow on link e. Observe that the
(distributed) routing policy Gv(ρ) induces a (local) feedback
which couples the dynamics of the particle flow on the the
different links. We now introduce the following notion of
transfer efficiency of a dynamical flow network.

Definition 4: Consider a dynamical flow network N satis-
fying Assumptions 1 and 2. Given some flow vector f◦ ∈ F ,
and α ∈ [0, 1], the dynamical flow network (6) is said to be
α-transferring with respect to f◦ if the solution of (6) with
initial condition ρ(0) = µ−1(f◦) satisfies

lim inf
t→+∞

λn(t) ≥ αλ0 . (8)
In particular, a dynamical flow network is said to be

partially transferring if the total inflow at the destination
node is asymptotically bounded away from zero, i.e., if it
is α-transferring for any α ∈ (0, 1].

Remark 1: Standard definitions in the literature are typi-
cally limited to static flow networks describing the particle
flow at equilibrium via conservation of mass. In fact, they
usually consist (see e.g., [1]) in the specification of a
topology T , a vector of flow capacities fmax ∈ R, and
an admissible equilibrium flow vector f∗ ∈ F∗(λ0) for
λ0 < C(N ) (or, often, f∗ ∈ cl(F∗(λ0)) for λ0 ≤ C(N )).
In contrast, in our model, we focus on the off-equilibrium
particle dynamics on a flow network N , induced by a
(distributed) routing policy G.

We now present an illustrative application of the dynami-
cal flow network framework in the context of transportation

networks; connections to other application domains are ex-
plained in [12].

In transportation networks, particles represent drivers and
distributed routing policies correspond to their local route
choice behavior in response to the locally observed link
congestions. A desired route choice behavior from a social
optimization perspective may be achieved by appropriate
incentive mechanisms. The robust distributed routing policies
designed in this paper would correspond to the ideal node-
wise route choice behavior of the drivers. The flow function
µe(ρe) presented in this paper is related to the notion of
fundamental diagram in traffic theory, e.g., see [14]. Note that
in our formulation, we assume that the density of drivers is
homogeneous over a link. One can refer to [14] for models
that incorporate inhomogeneity, although such models are
developed under non-feedback routing policies.

Remark 2: While there are many examples of congestion-
dependent throughput functions and clearing functions that
satisfy Assumption 2, typical fundamental diagrams in trans-
portation systems have a ∩-shaped profile. While we do not
study the implications of this analytically, some simulations
are provided in [15] illustrating how the results of this paper
could be extended to this case.

Remark 3: It is worth stressing that, while distributed
routing policies depend only on local information on the
current congestion, their structural form may depend on some
global information on the flow network which might have
been accumulated through a slower time-scale evolutionary
dynamics. A two time-scale process of this sort has been
analyzed in our related work [16] in the context of transporta-
tion networks. Multiple time-scale dynamical processes have
also been analyzed in [17] in the context of communication
networks.

B. Perturbed dynamical flow networks and resilience
We shall consider persistent perturbations of the dynamical

flow network (6) that reduce the flow functions on the links,
as per the following1:

Definition 5: An admissible perturbation of a flow net-
work N = (T , µ), satisfying Assumptions 1 and 2, is a
flow network Ñ = (T , µ̃), with the same topology T , and
a family of perturbed flow functions µ̃ := {µ̃e : R+ →
R+}e∈E , such that, for every e ∈ E , µ̃e satisfies Assumption
2, as well as µ̃e(ρe) ≤ µe(ρe) for all ρe ≥ 0 . We accordingly
let f̃max

e := sup{µ̃e(ρ̃e) : ρ̃e ≥ 0}. The magnitude of an
admissible perturbation is defined as

δ :=
∑

e∈E
δe , δe := sup {µe(ρe)− µ̃e(ρe) : ρe ≥ 0} .

(9)
The stretching coefficient of an admissible perturbation is
defined as

θ := max{ρ̃µe /ρµe : e ∈ E} , (10)

where ρµe , and ρ̃µe are the median densities associated to the
unperturbed and the perturbed flow functions, respectively,
on link e ∈ E , as defined in (5).

Given a dynamical flow network as in Definition 3, and an
admissible perturbation as in Definition 5, we shall consider

1In this paper, we use disturbance and perturbation interchangeably.



the perturbed dynamical flow network

d
dt
ρ̃e(t) = λ̃v(t)Gve(ρ̃(t))−f̃e(t) , ∀ 0 ≤ v < n , ∀ e ∈ E+

v ,

(11)
where f̃e(t) := µ̃e(ρ̃e(t)) and

λ̃v(t) :=
{ ∑

e∈E−v f̃e(t) if 0 < v < n
λ0 if v = 0 .

(12)

Observe that the perturbed dynamical flow network (11) has
the same structure of the original dynamical flow network
(6), as it describes the rate of variation of the particle density
on each link e outgoing from some non-destination node v
as the difference between λ̃v(t)Gve(ρ̃(t)), i.e., the portion
of the perturbed inflow at node v which is routed to link
e, minus the perturbed flow on link e itself. Notice that
the only difference with respect to the original dynamical
flow network (6) is in the perturbed flow function µ̃e(ρe) on
each link e ∈ E , which replaces the original one, µe(ρe). In
particular, the (distributed) routing policy G is the same for
the unperturbed and the perturbed dynamical flow networks.
In this way, we model a situation in which the routers
are not aware of the fact that the flow network has been
perturbed, but react to this change only indirectly, in response
to variations of the local density vectors ρ̃v(t).

We are now ready to define the following notion of
resilience of a dynamical flow network as in Definition 3
with respect to an initial flow.

Definition 6: LetN be a flow network satisfying Assump-
tions 1 and 2, G be a distributed routing policy, and λ0 ≥ 0
be a constant inflow at the origin node. Given α ∈ (0, 1],
θ ≥ 1 and f◦ ∈ F , let γα,θ(f◦,G) be equal to the infimum
magnitude of all the admissible perturbations of stretching
coefficient less than or equal to θ for which the perturbed dy-
namical flow network (11) is not α-transferring with respect
to f◦. Also, define γ0,θ(f◦,G) := limα↓0 γα,θ(f◦,G) . For
α ∈ [0, 1], the α-resilience with respect to f◦ is defined as2

γα(f◦,G) := limθ→+∞ γα,θ(f◦,G) . The 0-resilience will
be referred to as the weak resilience. The 1-resilience, which
is the focus of our related work [15] is referred to as the
strong resilience.

Remark 4: The notions of resilience are with respect to
adversarial perturbations. Therefore, one can provide a zero-
sum game interpretation as follows. Let the strategy space
of the system planner be the class of distributed routing
policies and the strategy space of an adversary be the set
of admissible perturbations. Let the utility function of the
adversary be MΘ − δ, where M is a large quantity, e.g.,∑
e∈E f

max
e , and Θ takes the value 1 if the network is not α-

transferring under given strategies of the system planner and
the adversary, and zero otherwise. Let the utility function
of the system planner be δ − MΘ. As stated in Section
III, a certain class of locally responsive distributed routing
policies characterized by Definition 7, is maximally robust.
This will then show that the locally responsive distributed

2It is easily seen that the limits involved in this definition always exist, as
γα,θ(f

◦,G) is clearly nonincreasing in α (the higher α, the more stringent
the requirement of α-transfer) and θ (the higher θ, the more admissible
perturbations are considered that may potentially make the dynamical flow
network to be not α-transferring).

routing policies correspond to approximate Nash equilibria
in this zero-sum game setting.

In the remainder of the paper, we shall focus on the
characterization of the weak resilience of dynamical flow
networks. Before proceeding, let us elaborate a bit on
Definition 6. Notice that, for every α ∈ (0, 1], the α-
resilience γα(f◦,G) is simply the infimum magnitude of
all the admissible perturbations such that the perturbed
dynamical network (11) is not α-transferring with respect
to the equilibrium flow f◦. In fact, one might think of
γα(f◦,G) as the minimum effort required by a hypothetical
adversary in order to modify the dynamical flow network
from (6) to (11), and make it not α-transferring, provided
that such an effort is measured in terms of the magnitude of
the perturbation δ =

∑
e∈E ||µe( · )− µ̃e( · )||∞. For α = 0,

trivially the perturbed network flow is always 0-transferring
with respect to any initial flow. For this reason, the definition
of the weak resilience γ0(f◦,G) involves the double limit
limθ→+∞ limα↓0 γα,θ(f◦,G): the introduction of the bound
on the stretching coefficient of the admissible perturbation
is a mere technicality whose necessity will become clear in
Section IV.

We conclude this section with the following result, proven
in [12], providing an upper bound on the weak resilience
of a dynamical flow network driven by any, not necessarily
distributed, routing policy G, in terms of the min-cut capacity
of the network. Tightness of this bound will follow from
Theorem 2 in Section III, which will show that, for a partic-
ular class of locally responsive distributed routing policies,
the dynamical flow network has weak resilience equal to the
min-cut capacity.

Proposition 1: Let N be a flow network satisfying As-
sumptions 1 and 2, λ0 > 0 a constant inflow, and G an
arbitrary routing policy. Then, for any initial flow f◦, the
weak resilience of the associated dynamical flow network
satisfies γ0(f◦,G) ≤ C(N ) .

III. MAIN RESULTS AND DISCUSSION

In this paper, we shall be concerned with a family of
maximally robust distributed routing policies. Such a family
is characterized by the following:

Definition 7: A locally responsive distributed routing pol-
icy for a flow network topology T = (V, E) with node set
V = {0, 1, . . . , n} is a family of continuously differentiable
distributed routing functions G = {Gv : Rv → Sv}v∈V such
that, for every non-destination node 0 ≤ v < n:

(a)
∂

∂ρe
Gvj (ρ

v) ≥ 0 , ∀j, e ∈ E+
v , j 6= e , ρv ∈ Rv ;

(b) for every nonempty proper subset J ( E+
v , there

exists a continuously differentiable map GJ :
RJ → SJ , where RJ := RJ+ , and SJ := {p ∈
RJ :

∑
j∈J pj = 1} is the simplex of probability

vectors over J , such that, for every ρJ ∈ RJ , if
ρve → +∞ , ∀e ∈ E+

v \ J , ρvj → ρJj , ∀j ∈ J ,
then
Gve(ρ

v)→ 0, ∀e ∈ E+
v \J , Gvj (ρv)→ GJj (ρJ ),

∀j ∈ J .
Property (a) in Definition 7 states that, as the particle

density on an outgoing link e ∈ E+
v increases while the



particle density on all the other outgoing links remains
constant, the fraction of inflow at node v routed to any link
j ∈ E+

v \ {e} does not decrease, and hence the fraction
of inflow routed to link e itself does not increase. In fact,
Property (a) in Definition 7 is reminiscent of Hirsch’s notion
of cooperative dynamical systems [2], [3]. On the other hand,
Property (b) implies that the fraction of incoming particle
flow routed to a subset of outgoing links K ⊂ E+

v vanishes
as the density on links in K grows unbounded while the
density on the remaining outgoing links remains bounded.

Example 1: Let ηv , for 0 ≤ v < n, and ae, for e ∈ E , be
positive constants. Define the routing policy G by

Gve(ρ) =
ae exp(−ηvρe)∑

j∈E+v aj exp(−ηvρj)
, ∀e ∈ E+

v , ∀0 ≤ v < n .

(13)
Clearly, G is distributed, as it uses only information on
the particle density on the links outgoing from a node v
in order to compute how the inflow at node v gets split
among its outgoing links. It is easy to check that (13)
satisfies the properties of locally responsive routing policies.
In the context of transportation networks, the example in
(13) is a variant of the logit function from discrete choice
theory emerging from utilization maximization perspective
of drivers, where the utility associated with link e is the sum
of −ρe+log ae/ηv and a double exponential random variable
with parameter ηv (see, e.g., [18]).

We are now ready to state our main results.
Theorem 1: Let N be a flow network satisfying Assump-

tions 1 and 2, λ0 ≥ 0 a constant inflow, and G a locally
responsive distributed routing policy. Then, there exists a
unique limit flow f∗ ∈ cl(F) such that, for every initial
condition ρ(0) ∈ R, the dynamical flow network (6) satisfies
limt→+∞ f(t) = f∗ .

Theorem 1, which is proven in [12], states that, when the
routing policy is distributed and locally responsive, there is
a unique globally attractive limit flow f∗. Such a limit flow
may be in F , in which case it is not hard to see that it is
necessarily an equilibrium flow, i.e., f∗ ∈ F∗(λ0) (because
of the continuity of the right hand side of (6)); or belong to
cl(F)\F , i.e., it satisfies the capacity constraint on one link
with equality, in which case it is not an equilibrium flow.
The global convergence result mainly relies on Assumption
2 on monotonicity of the flow function, and Property (a)
of Definition 7 of locally responsive distributed routing
policies, from which the dynamical flow network (6) inherits
a cooperative property. It is worth mentioning that we shall
not use general results for cooperative dynamical systems [2],
[3], [19], but rather exploit some other structural properties
of (6) which in fact allow us to prove stronger results.

Our second main result stated below, whose proof is in
Section IV, shows that locally responsive distributed routing
policies are maximally robust, as the resilience of the induced
dynamical flow network coincides with the min-cut capacity
of the network.

Theorem 2: Let N be a flow network satisfying Assump-
tions 1 and 2, λ0 > 0 a constant inflow, and G a locally
responsive distributed routing policy such that Gve(ρ

v) > 0
for all 0 ≤ v < n, e ∈ E+

v , and ρv ∈ Rv . Then, for every
f◦ ∈ F , the associated dynamical flow network is partially

transferring with respect to f◦ and has weak resilience
γ0(f◦,G) = C(N ) .

Theorem 2, combined with Proposition 1, shows that
locally responsive distributed routing policies achieve the
maximal weak resilience possible on a given flow network
N . A consequence of this result is that locality constraints
on the feedback information available to routing policies do
not reduce the achievable weak resilience. It is also worth
observing that such maximal weak resilience coincides with
min-cut capacity of the network, and is therefore independent
of the initial flow f◦. This is in sharp contrast with the
results on the strong resilience of dynamical flow networks
presented in [15]. There, it is shown that the strong resilience
depends on the limit flow of the unperturbed system, and
local information constraints reduce the maximal strong
resilience achievable on a given flow network.

IV. PROOF OF THEOREM 2

To start with, let us recall that, in this case, Theorem 1
implies the existence of a globally attractive limit flow f̃∗ ∈
cl(F) for the perturbed dynamical flow network associated
to any admissible perturbation Ñ . Define λ̃∗0 = λ0, and λ̃∗v =∑
e∈E−v f̃∗e , for 0 < v ≤ n.
Lemma 1: Consider a dynamical flow network N satisfy-

ing Assumptions 1 and 2, with locally responsive distributed
routing policy G such that Gve(ρ

v) > 0 for all 0 ≤ v < n,
e ∈ E+

v , and ρv ∈ Rv . Then, for every θ ≥ 1, there exists
βθ ∈ (0, 1) such that, if Ñ is an admissible perturbation of
N with stretching coefficient less than or equal to θ, and
f̃∗ ∈ cl(F̃) is the limit flow vector of the corresponding
perturbed dynamical flow network (11), then f̃∗e ≥ βθλ̃

∗
v ,

for every non-destination node 0 ≤ v < n, and every link
e ∈ E+

v for which f̃∗e ≤ f̃max
e /2.

As a consequence of Lemma 1, we now prove the fol-
lowing result showing that the dynamical flow network is
partially transferring and providing a lower bound on its
weak resilience:

Lemma 2: Let N be a flow network satisfying Assump-
tions 1 and 2, λ0 ≥ 0 a constant inflow, and G a locally
responsive distributed routing policy such that Gve(ρ

v) > 0
for all 0 ≤ v < n, e ∈ E+

v , and ρv ∈ Rv . Then, the
associated dynamical flow network is partially transferring,
and, for every θ ≥ 1, and α ∈ (0, βnθ ], its resilience satisfies
γα,θ(f *,G) ≥ C(N ) − 2|E|λ0β

1−n
θ α , where βθ ∈ (0, 1) is

as in Lemma 1.
Proof Consider an arbitrary admissible perturbation Ñ of
magnitude

δ ≤ C(N )− 2|E|λ0β
1−n
θ α , (14)

and stretching coefficient less than or equal to θ. We shall
iteratively select a sequence of nodes 0 =: v0, v1, . . . , vk :=
n such that, for every 1 ≤ j ≤ k,

∃i ∈ {0, . . . , j − 1} s.t. (vi, vj) ∈ E , f̃∗(vi,vj)
≥ λ0αβ

j−n
θ .

(15)
Since vk = n, and βk−nθ ≥ 1, the above with j = k ≤ n
will immediately imply that

lim
t→+∞

λ̃n(t) = λ̃∗n =
∑

e∈E−n
f̃∗e ≥ αλ0β

k−n
θ ≥ αλ0 ,

(16)



so that the perturbed dynamical flow network is α-
transferring. For 0 < α ≤ βn−1

θ /(2|E|λ0), one could chose
a trivial perturbation Ñ = N so that (16) would imply the
partial transferring property of the original dynamical flow
network. Moreover, the rest of the claim will then readily
follow from the arbitrariness of the considered admissible
perturbation.

First, let us consider the case j = 1. Assume by
contradiction that f̃∗e < λ0αβ

1−n
θ , for every link e ∈

E+
0 . Since α ≤ βnθ , this would imply that f̃∗e <
βθλ0 and hence, by Lemma 1, that f̃max

e ≤ 2f̃∗e for
all e ∈ E+

0 , so that
∑
e∈E+0

f̃max
e ≤ 2

∑
e∈E+0

f̃∗e <

2α|E+
0 |β

1−n
θ λ0 ≤ 2α|E|β1−n

θ λ0 . Combining the above
with the inequality C(N ) ≤

∑
e∈E+0

fmax
e , one would get

δ ≥
∑
e∈E+0

(
fmax
e − f̃max

e

)
> C(N )−2α|E|β1−n

θ λ0 , thus
contradicting the assumption (14). Hence, necessarily there
exists e ∈ E+

0 such that f̃∗e ≥ λ0αβ
1−n
θ , and choosing v1

to be the unique node in V such that e ∈ E−v1 , one sees that
(15) holds true with j = 1.

Now, fix some 1 < j∗ ≤ k, and assume that (15) holds
true for every 1 ≤ j < j∗. Then, by choosing i as in (15),
λ̃∗vj

=
∑

e∈E+vj

f̃∗e ≥ f̃∗(vi,vj)
≥ λ0αβ

j−n
θ ≥ λ0αβ

j∗−1−n
θ ,

∀1 ≤ j < j∗.
(17)

Moreover,
λ̃∗v0 = λ0 > λ0αβ

−n
θ ≥ λ0αβ

j∗−1−n
θ . (18)

Let U := {v0, v1, . . . , vj∗−1} and E+
U ⊆ E be the set of

links with tail node in U and head node in V \ U . Assume
by contradiction that f̃∗e < λ0αβ

j∗−n
θ for all e ∈ E+

U .
Thanks to (17) and (18), this would imply that, f̃∗e < βθλ̃

∗
j ,

for every 0 ≤ j < j∗ and e ∈ E+
vj
∩ E+
U . Then, since

E+
U = ∪j

∗−1
j=0 (E+

vj
∩E+
U ), Lemma 1 would imply that f̃max

e ≤
2f̃∗e ,for every e ∈ E+

U . This would yield
∑
e∈E+U

f̃max
e ≤∑

e∈E+U
2f̃∗e < 2

∑
e∈E+U

λ0αβ
j∗−n
θ ≤ 2|E|λ0αβ

1−n
θ . From

this and the inequality C(N ) ≤
∑
e∈E+U

fmax
e , one would

get δ ≥
∑
e∈E+U

(
fmax
e − f̃max

e

)
> C(N ) − 2α|E|β1−n

θ λ0 ,

thus contradicting the assumption (14). Hence, necessarily
there exists e ∈ E+

U such that f̃∗e ≥ λ0αβ
1−n
θ , and choosing

vj∗ to be the unique node in V such that e ∈ E−vj∗
one sees

that (15) holds true with j = j∗. Iterating this argument until
vj∗ = n proves the claim.

It is now easy to see that Lemma 2 implies that
limα↓0 γα,θ ≥ C(N ) for every θ ≥ 1, thus showing that
γ0(f◦,G) ≥ C(N ). Combined with Proposition 1, this
shows that γ0(f◦,G) = C(N ), thus completing the proof
of Theorem 2.

V. CONCLUSION

In this paper, we studied robustness properties of dy-
namical flow networks. We proposed a class of locally
responsive distributed routing policies that rely only on local
information about the network’s current particle densities
and yield the maximum weak resilience with respect to
adversarial disturbances that reduce the flow functions of

the links of the network. We also showed that the weak
resilience of the network in that case is equal to min-cut
capacity of the network, and that it is independent of the
local information constraint and the initial flow. Results for
an alternate notion of resilience have been reported in our
other work [15]. These findings stand to provide important
guidelines for robust real-time operation of several large
scale critical infrastructure systems.

In future, we plan to rigorously study the robustness
properties of the network with finite link-wise capacity for
the densities. We also plan to consider other general models
for disturbances, including sequential disturbances than just
one-shot disturbance considered in this paper. We also plan to
consider more general graph topologies, e.g., graphs having
cycles and multiple origin-destination pairs.
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