

LUND UNIVERSITY

Searching for tailbiting codes with large minimum distances

Bocharova, Irina; Kudryashov, Boris; Johannesson, Rolf; Ståhl, Per

Published in: [Host publication title missing]

DOI: 10.1109/ISIT.2000.866639

2000

Link to publication

Citation for published version (APA): Bocharova, I., Kudryashov, B., Johannesson, R., & Ståhl, P. (2000). Searching for tailbiting codes with large minimum distances. In [Host publication title missing] (pp. 341) https://doi.org/10.1109/ISIT.2000.866639

Total number of authors: 4

General rights

Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

· Users may download and print one copy of any publication from the public portal for the purpose of private study

or research.
You may not further distribute the material or use it for any profit-making activity or commercial gain

· You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117 221 00 Lund +46 46-222 00 00

Searching for tailbiting codes with large minimum distances

Irina E. Bocharova and Boris D. Kudryashov Dept. of Inform. Systems University on Airspace Instrumentation St.-Petersburg, 190000, Russia, e-mail: {Irina,Boris}@kb.spb.su Rolf Johannesson and Per Ståhl Dept. of Inform: Technology Lund University P.O. Box 118 SE-221 00 LUND, Sweden, e-mail: {Rolf,Per}@it.lth.se

Abstract — Tailbiting trellis representations of linear block codes with an arbitrary sectionalization of the time axis are studied. A new lower bound on the maximal state complexity of an arbitrary tailbiting code is derived. The asymptotic behavior of the derived bound is investigated. Some new tailbiting representations for linear block codes of rates R = 1/c, c = 2,3, 4 are presented.

I. INTRODUCTION

Tailbiting is a technique to terminate a convolutional code into a block code [1]. We focus on constructions and bounds for sectionalized tailbiting trellises since they may have less complexity than non-sectionalized ones.

We consider an (N, K, d_{\min}) binary linear block code C with a generator matrix $G = \{\mathbf{r}_i\}, i = 1, ..., K$. We say that G is given in *tailbiting span form* if it consists of rows such that (circular) start(\mathbf{r}_i) \neq start(\mathbf{r}_j) and end(\mathbf{r}_i) \neq end(\mathbf{r}_j), $i \neq j$, where start(\mathbf{x}) and end(\mathbf{x}) denote the (circular) number of the first and the last nonzero section in the vector \mathbf{x} , respectively. The *i*th section of \mathbf{r}_j is *active* if $i \in [\text{start}(\mathbf{r}_j), \text{end}(\mathbf{r}_j))$. The maximal state complexity or μ -state complexity of the trellis is defined [2] as $\mu = \max_i \{\log_2 |A_i|\}$, where $|A_i|$ denotes the number of rows where the *i*th section is active.

II. LOWER BOUND ON THE STATE COMPLEXITY FOR TAILBITING CODES

Theorem 1 The state complexity μ of a linear (N, K, d_{\min}) tailbiting code is lower-bounded by

$$\mu \geq \mu_0 = \left[\max_{j=1,\ldots,K} \left\{ RN_{\min}(j, d_{\min}) - j \right\} \right]$$

Moreover, if μ_0 is odd $\mu \ge \max{\{\mu_0, d_{\min}(K+1)/N - 1\}}$.

Denote by $\zeta = \mu/N$ the relative trellis complexity. Then we have the following asymptotic behavior of ζ as $N \to \infty$,

$$\zeta \geq \max_{\theta \in [2\delta, 1]} \{\theta \left[R - R_{\max} \left(\delta / \theta \right) \right] \},\$$

where $\delta = d_{\min}/n$, and $R_{\max}(\cdot)$ is the McEliece-Rodemich-Rumsey-Welch upper bound.

III. SEARCH TECHNIQUES AND RESULTS

We have used the bound in Theorem 1 to find an efficient (in sense of state complexity) tailbiting representation for an (N, K) linear block code using time-invariant convolutional codes of rate R = 1/c, c = 2,3,4, and state complexity (constraint length) μ . We exploit two kinds of methods to reject weak codes. The first one includes rules for rejecting weak encoders of convolutional codes. The second one rejects those encoders among the accepted ones which generate poor tailbiting codes. Some search results are presented in the following table.

		·
$N,K,d_{\min}(\hat{d}_{\min})$	$\mu(\hat{\mu})$	Generators
56,28,12(12-14)	9(8)	477,1505
58,29,12(12-14)	9(8)	433,1275
60,30,12(12-14)	9(8)	217,1665
62,31,12(12-15)	8(8)	435,657
64,32,12(12-16)	8(8)	235,557
66,33,12(12-16)	8(8)	235,557
68,34,13(13-16)	11(9)	4315,5651
72,36,14(15-18)	13(10)	4473,32611
74,37,14(14-18)	11(10)	1353,7461
76,38,14(14-18)	11(10)	1145,7173
78,39,14(15-18)	10(10)	1473,2275
82,41,14(14-20)	10(10)	1157,3455
84,42,14(15-20)	10(10)	1157,3455
92,46,16(15-22)	13(11)	5447,21675
94,47,16(16-22)	12(11)	5135,14477
96,48,16(16-22)	12(11)	5135,14477
110,55,18(18-25)	15(14)	23077,173255
84,28,22(22-27)	11(10)	2215,5467,7647
96,32,24(24-30)	12(11)	2153,11625,17557
99,33,24(24-32)	11(11)	4467,5725,6373
102,34,24(24-32)	11(11)	4465,5357,6373
105,35,25(24-33)	13(13)	20447,25315,37317
108,36,26(24-34)	13(13)	20465,31327,34773
111,37,26(25-34)	13(13)	20445,31527,35757
114,38,26(26-36)	13(13)	20445,31653,37673
120,40,28(28-37)	14(14)	41127,63663,72575
112,28,32(32-40)	11(11)	4447,5277,6335,7533
116,29,32(32-42)	11(11)	4445,6353,6537,7673

Almost all codes meet the Brower-Verhoeff (BV) lower bound \hat{d}_{\min} on the minimum distance for linear codes and achieve the lower bound $\hat{\mu}$ on the state complexity. All presented codes are new best known quasi-cyclic codes. The code (111,37,26) is better than any previously known linear code with the same length and dimension, and the codes (92,46,16), (105,35,25) and (108,36,26) are better than any previously known codes with the same length and dimension.

References

- G. Solomon and H. C. A. van Tilborg, "A connection between block and convolutional codes," *SIAM J. Appl. Math.*, vol. 37, pp. 358-369, 1979.
- [2] A. R. Calderbank, G. D. Forney, Jr. and A. Vardy, "Minimal tail-biting trellises: the Golay code and more," *IEEE Trans. Inform. Theory*, vol. 45, pp. 1435-1455, 1999.