
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Simultaneous channel and symbol maximum likelihood estimation in Laplacian noise

Gustavsson, Jan-Olof; Nordebo, Sven; Börjesson, Per Ola

Published in:
[Host publication title missing]

DOI:
10.1109/ICOSP.1998.770156

1998

Link to publication

Citation for published version (APA):
Gustavsson, J.-O., Nordebo, S., & Börjesson, P. O. (1998). Simultaneous channel and symbol maximum
likelihood estimation in Laplacian noise. In [Host publication title missing] (pp. 81-84)
https://doi.org/10.1109/ICOSP.1998.770156

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 17. May. 2025

https://doi.org/10.1109/ICOSP.1998.770156
https://portal.research.lu.se/en/publications/2ba0beaa-5d8d-4c4e-99f1-e12010394ffd
https://doi.org/10.1109/ICOSP.1998.770156


Proceedings of ICSP '98 

SIMULTANEOUS CHANNEL AND SYMBOL MAXIMUM LIKELIHOOD ESTIMATION IN 
LAPLACIAN NOISE 

Jan-Olof Gustavsson Sven Nordebo Per Ola Bogesson 

Univ. of KarlskrondRonneby Univ. of KarlskrondRonneby Luled Univ. of Technology 
Div. of Signal Processing 

S-372 25 Ronneby S-372 25 Ronneby S-971 87 Luled 
Sweden Sweden Sweden 

Jan-Olof.Gustavsson@isb.hk-r.se Sven.Nordebo@isb.hk-r.se pob@sm. luth. se 

Dep. of Signal Processing Dep. of Signal Processing 

ABSTRACT 

This paper treats channel estimation and signal detection 
in Laplacian noise. The received signal is assumed to be 
a transmitted signal which has been corrupted by an un- 
known channel, modeled as a FIR filter, the output being 
further disturbed by additive independent Laplacian noise. 
The transmitted signal is assumed to depend on an unknown 
parameter belonging to a known finite set. 

The simultaneous maximum likelihood (ML) estimator 
of the unknown parameter, as well as of the FIR filter coef- 
ficients, is derived. The ML estimate of the channel can be 
obtained by using a linear programming approach and the 
decision about the parameter is based on the output from a 
set of generaiized matched filters. Simulation results are in- 
cluded in order to illustrate the performance of the proposed 
receivers. 

1. INTRODUCTION 

A number of situations exist where the problem is to esti- 
mate a parameter in an observed signal [lo]. Examples of 
such problems would be arrival time estimation, detection 
or classification of a signal, etc. It is normally assumed 
in these cases that the noise is Gaussian [9], [lo]. Two 
common motives for this assumption are that the noise in 
many applications is approximately Gaussian according to 
the central limit theorem, and that the Gaussian assumption 
is analytically tractable. 

Despite this, the problem of parameter estimation and 
signal detection in non-Gaussian noise has over the years 
been an active field of research [3], [7]. In part, this research 
is motivated by an interest in a better general understanding 
of estimation and detection, as well as by the fact that some 
noise environments actually are non-Gaussian. The Lapla- 
cian model is one example of a non-Gaussian noise model. 
This model has been used in studies of data quantization 
for signal detection schemes [l]. It has also been used in 
image processing [ 121 and in modeling noise encountered 

in communications at extremely low frequencies [2]. Noise 
described by this model is more impulsive in character than 
noise described by the commonly used Gaussian model. 
Estimation and detection in non-Gaussian environments is 
a notably more complex problem. The combined require- 
ments for an analytically tractable model and for physical 
representation are often contradictory. 

In many cases the model used for parameter estimation 
has the form T = h * se + U, where h is a known or un- 
known impulse response, v is independent additive noise 
and se is a known signal depending on a parameter 8, which 
is a quantity to be estimated from the observed signal. This 
model is often used in conjunction with some common op- 
timization criterion, such as the maximum likelihood (ML) 
criterion, the maximum a posteriori (MAP) criterion or the 
minimum mean square error (MMSE) criterion [lo]. 

The estimation problem is generally more complex if 
the impulse response h in the model is both unknown and 
unquantified. The simultaneous ML estimate of h and 8 can 
be calculated exactly, however, when certain restrictions are 
fullfilled. Such results have been reported when h is mod- 
eled as a finite impulse response (FIR) filter and the noise 
is either Gaussian or uniformly distributed [3], [5], or when 
the noise is Laplacian and h is a non-dispersive channel [3], 

In this paper we generalize the results presented in [3], 
[4] to the case when the channel is dispersive. We derive the 
simultaneous ML estimator of h and 8 for the case when the 
noise is Laplacian and the channel modeled as a unknown 
FIR filter. The estimate of h is obtained using a linear pro- 
gramming approach and the decision about 8 is based on 
the output from a set of generalized matched filters [3]. 

We examine the performance of receivers based on ei- 
ther the proposed ML estimators or the conventional least 
squares estimators in a case of binary communication. Ex- 
amples of performance of the receivers are calculated by 
means of simulations and the results are compared when 
the noise is either Laplacian or Gaussian. 

[41. 
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2. SIGNAL MODEL 

We consider the problem of estimating a parameter 8 from 
an observed signal r ,  where r is modeled as 

r ( k )  = (h*se)(k)+v(k) = 
M-1 

h(l)se(k-l)+v(k), k E I 

(1) 
l=O 

In this model se is a signal dependent on the unknown 
parameter 8, h is an unknown real impulse response of a 
channel with a known finite length M, v is independent 
zero-mean Laplacian noise, k is a discrete 'time' variable 
and I is the observation interval. The unknown parame- 
ter 8, whether random or non-random, is assumed to be- 
long to a known and finite set 8 where 8 is independent of 
the noise U .  Further, it is assumed both that for all values 
of 8, (h * se ) (k )  = 0 for all k outside the observation in- 
terval and that some rough knowledge about the channel h 
is available (for example, that the parameters h(Z) are con- 
strained by some lower and/or upper limits). 

The case when M = 1 has been discussed in [4]. In 
this case the parameter h(0) can be interpreted as an un- 
known gain A of a channel with, for instance, a known non- 
negative lower bound. 

3. THE MAXIMUM LIKELIHOOD RECEIVER 

The probability density function of zero-mean Laplacian 
noise v is 

where a2 is the variance of the noise. 
Let the channel h be represented by a vector in an M -  

dimensional Euclidean space RM. Assume that h is re- 
stricted to belong to some subset 3.1 of R M ,  where 'H is 
chosen to match some given a priori knowledge about the 
channel. The likelihood function for parameters (h ,  8) is 

The maxjmum likelihood estimate of h for a given 8, is the 
member of 3-1 which maximizes Ll(h,  8). By observing 
that 

it is seen that 

where Io G I is defined by {k : (h * s e ) ( k )  # 0 for any 
h E 'H}. Thus, l e  is the union of the support for h * se 
over all h- E 'H. In the case when h is a pure gain factor, the 
estimate h(8) is given by the weighted median [3], [4]. 

is (h(e),  e), where 
The simultaneous maximum likelihood estimate of (h ,  8) 

c.f. the generalized likelihood ratio test [lo]. A block struc- 
ture for calculating an estimate 8 of 8 when the channel im- 
pulse response h is unknown is shown in Figure 1. 

Figure 1: A block structure for calculating an estimate e 
of 8 when the channel S impulse response is unknown. The 
calculations of h(8) must be repeated for allpossible values 
ofe. 

The channel estimate 
Suppose that the set 'H is defined using linear constraints, 
e.g., by constraining the parameters h(Z) by some lower 
limit ho(Z) so that h(t)  2 ho(l). In this case the estimate 
h(8) in ( 5 )  can be obtained using a linear programming for- 
mulation as elaborated below. This approach is based on the 
Z1-solution of an overdetermined system of linear equations 
by linear programming [ 1 I]. 

Suppose first that 7-l is given by h(k )  2 0, V k .  The esti- 
mate h(8) in ( 5 )  is then given by the following formulation 

min c le(k)l 
S e h + e = r  (7) I h L 0, 

where Se is a convolution matrix with elements se (k - Z), 
r and e are vectors containing the observed signal r (k) and 
the error signal e(k)  = r ( k )  - ( h  * s e ) ( k ) ,  respectively, 

By introducing the substitution e = U - U ,  U 2 0, TI 2 0, 
the problem (7) can be reformulated as the following linear 
program. 

k E IO andl = 071,  . . . ,  M - 1. 

min C U (  IC) + U (  IC) 
Soh + U - v = r (8) 
h 2 0,u 2 0,v 2 0 

The formulation (8) is now in standard form for solu- 
tion by the two-phase simplex algorithm [8]. Since this al- 
gorithm will yield an optimum basic solution and since the 
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algorithm guarantees non-singularity of the basis, the vari- 
ables u(k) and v(k) cannot be simultaneously basic [ll]. 
Hence, if one of the variables is greater than zero, then the 
other must be equal to zero, and we have u(k) + v(k) = 
f ( u ( k )  - v(k)) = fe (k)  = le(k)l. 

The formulation (7) can be generalized to include any 
linear constraints on h. Suppose that 3-1 is given by 3-1 = 
{h : Bh 5 b, Ch = c}, where B and C are matrices and b 
and c are vectors. Introduce the substitution h = x - y and 
the slack variables z, where x 2 0, y 2 0 and z 2 0. 

The generalized linear programming formulation is 

minCu(k) + v(k) 
Sex - Soy + U - v = r 
BX - By + z = b 
cx - c y  = c 

(9) I x : > o , y 2 o , z ~ o , u > o , v ~ o .  

The linear program (9) is also in standard form. Since 
the additional linear constraints on h do not influence the 
column-structure corresponding to the variables U and v, it 
is concluded that u(k)  + v(k) = le(k)l by the same argu- 
ment as above. 

The maximum likelihood estimate (6)’of the symbol 8 
can be based on the output from a set of generalized matched 
filters [3], [6]. This set contains filters matched to se for 
all possible values of 8. The single difference to the ordi- 
nary matched filter is that the multipliers are replaced by 
non-linear functions in the generalized matched filter. For 
Laplacian noise the characteristic of the non-linearities is 
given by the soft-limiter and the output from the general- 
ized matched filter, for a given channel estimate h(8), is 
given by 131, [41 

~ ( i ( e > , e >  = 1 ~ r ( k )  - (@e> * se)(k)I. (10) 

The output L(fi(O), 8) is related to the value of Ll(h(8), e), 
given by (3), and can be used to estimate 8 according to (6). 

kEIe  

4. EXAMPLES OF PERFORMANCE 

Consider the binary hypothesis test problem with hypothe- 
ses HO and H1 corresponding to the parameter values 8 = 
eo and 8 = el, respectively. In the case discussed in this 
section the hypotheses are 

(11) 
Ho : se,(k) = - ~ ( k ) , V k  
Hi  : se , (k)  = s ( k ) , V k ,  

where the signal is assumed to be s = [I 2 3 2 11. This 
might be a model of a communication system using antipo- 
dal signaling. 

The probability of error, p ,  , for four different receivers 
has been calculated by means of simulations when the noise 

is either independent, zero-mean, unit-variance Laplacian 
or Gaussian. Hypotheses HO and HI are equally likely. The 
signal to noise ratio (SNR) is defined by 

where h is the true impulse response of the channel which 
in the calculations is assumed to be h = A[l 2 3 2 13 (this 
channel is discussed in [9]). The gain parameter A is varied 
in order to obtain different SNR’s. 

The receivers used are based on the Neyman-Pearson 
detector and are constructed according to Fig. 1. The esti- 
mators of h and 8 used in the receivers are optimd accord- 
ing to the ML-criterion when the noise is either Laplacian 
or Gaussian. These receivers are denoted D L a p  and DGauss,  

respectively. Further, the performance of the corresponding 
optimal receivers when the channel is known is calculated. 
Those receivers are denoted Dk,kpnown and Dg:Zwn, re- 
spectively. 

The results of the simulations for Laplacian and Gaus- 
sian noise are shown in Figs. 2 and 3, respectively. In the 
figures pe is shown as a fbnction of SNR. The results in- 
dicate, as expected, that the best performance is achieved 
when the channel is known and the optimal receiver for the 
actual noise is used. When the channel is unknown, each 
ML receiver has a comparatively high performance for low 
SNR’s, whereas for high SNR’s this is not always the case. 
For Laplacian noise and high SNR’s the receiver designed 
for Gaussian noise has a better performance than the one 
designed for Laplacian noise. This is because the error de- 
cisions occur mainly when there are large errors in the chan- 
nel estimate (this is the case for both types of noise at high 
SNR’s). Those large errors are more frequently encoun- 
tered when the Z1-norm is used to estimate the channel than 
when the Z2-norm is used. This last result can be compared 
to the corresponding observation in uniformly distributed 
noise, where the channel estimate has a higher fraction of 
large errors when the 2,-norm is used than when the 12- 
norm is used [3], [5]. 

5. SUMMARY 

Parameter estimation and detection in Laplacian noise have 
been discussed. The received signal is assumed to be a 
transmitted signal which has passed through an unknown 
channel, which is modeled as a FIR filter, the output being 
M e r  corrupted by additive independent Laplacian noise. 
The transmitted signal is assumed to be dependent on an 
unknown parameter in a known finite set. 

The simultaneous maximum likelihood (ML) estimator 
of the unknown parameter and of the FIR filter coefficients 
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DGauss  
’ O - 1  . . DGauss h known \ y., ... 

S N R  
Figure 2: The probability of errol; p ,  versus the SNR when 
the noise is Laplacian for four different detectors. 

loo 

S N R  
Figure 3:  The probability of errol; pe versus the SNR when 
the noise is Gaussian for four different detectors. 

has been derived. The estimators derived comprise two 
parts. Assuming a given transmitted signal, the first part 
estimates the channel using a linear programming approach 
and the second part uses this estimate of the channel to cal- 
culate a measure, which is related to the probability of the 
assumed transmitted signal being the true transmitted sig- 
nal, e.g.,-the ldcelihood function. 

Simulation results are included for a case of antipo- 
dal communication in order to compare the performance of 
the proposed ML receiver to the performance of the ordi- 
nary least square receiver (i.e., the ML receiver in Gaussian 
noise). The results indicate that each ML receiver has the 
best performance at low SNR’s in in their respective noise 
environments. At high SNR’s in a Laplacian noise environ- 
ment the Gaussian ML receiver sometimes performs bet- 
ter than the Laplacian ML receiver. The Laplacian ML re- 

ceiver’s poorer result on these occassions is due to larger 
errors in the channel estimate, which may cause wrong de- 
cisions about the signal parameter. 
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