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Abstract

We consider the problem of Lo-optimal triangula-
tion from three separate views. Triangulation is
an important part of numerous computer vision
systems. Under gaussian noise, minimizing the
Lo norm of the reprojection error gives a statis-
tically optimal estimate. This has been solved for
two views. However, for three or more views, it
is not clear how this should be done. A previously
proposed, but computationally impractical, method
draws on Grébner basis techniques to solve for the
complete set of stationary points of the cost func-
tion. We show how this method can be modified to
become significantly more stable and hence given a
fast implementation in standard IEEE double pre-
cision. We evaluate the precision and speed of the
new method on both synthetic and real data. The
algorithm has been implemented in a freely avail-
able software package which can be downloaded from
the Internet.

1 Introduction

Triangulation, referring to reconstructing the 3D
location of a point given its images in two or more
known views, is a fundamental part of numerous
computer vision systems. Albeit conceptually sim-
ple, this problem is not completely solved in the
general case of n views and noisy measurements.

There exist fast and relatively robust methods
based on linear least squares [9]. These methods
are however sub-optimal and can in unfortunate
situations yield very poor accuracy.

The best approach is instead to minimize the
L5 norm of the reprojection error, i.e. the sum of
squares of the reprojection errors, which has been
given a closed form solution in the case of two
views [8].

In this paper, we propose to solve the problem
of Ly optimal triangulation from three views using
a method introduced in [10], where the optimum
was found by explicit computation of the complete

set of stationary points of the likelihood function.
This approach is similar to that of [8]. However,
whereas the stationary points in the two view case
can be found by solving a sixth degree polynomial
in one variable, the three view case involves solving
a system of three sixth degree equations in three
unknowns with 47 solutions. Thus, we have to
resort to more sofisticated techniques to tackle this
problem.

Stewenius et al. used algebraic geometry and
Grobner basis techniques to analyse and solve the
equation system. However, Grébner basis calcula-
tions are known to be numerically challenging and
they were forced to use emulated 128 bit precision
arithmetics to get a stable implementation, which
rendered their solution too slow to be of any prac-
tical value.

In this paper we develop the Grobner basis ap-
proach further to improve the numerical stability
and are able to give the Grobner basis method a
fast implementation using standard IEEE double
precision.

Our main contributions are:

e A modified version of the Grébner basis method

for solving polynomial equation systems, here
referred to as the relazed ideal method, which
trades some speed for a significant increase
in numerical stability.

e An effecient C++ language implementation
of this method applied to the problem of
three view triangulation.

The source code for the methods described in this
paper is freely available for download from the
Internet[2].

2 Three View Triangulation

We assume a linear pin-hole camera model, i.e.
projection in homogeneous coordinates is done ac-
cording to A\;xz; = P; X, where P; is the camera
matrix for view i, x; is the image coordinates, \;



is the depth and X is the 3D coordinates of the
world point to be determined.

We minimise the Ly norm of the reprojection
errors. Since we are free to choose coordinate sys-
tem in the images, we place the three image points
at the origin in their respective image coordinate
systems. We thus obtain the following cost func-
tion over X:

(Pr1X)? + (P2 X)? (1)
(Pr3X)? ’
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where e.g. Py3 refers to row 3 of camera k. We
calculate the complete set of stationary points of
©(X) by solving Vp(X) = 0. The explicit deriva-
tives can easily be calculated, but we refrain from
writing them out here. Differentiating and mul-
tiplying through with the denominators produces
three sixth degree polynomial equations in the three
unknowns X = [ X; X2 X3 |. The remainder
of the theoretical part of the paper is devoted to
the problem of solving these equations.

3 Grobner Basis Techniques

We now give an outline of how Grébner basis tech-
niques can be used for solving systems of multivari-
ate polynomial equations. The general theory of
multivariate polynomials over any field is algebraic
geometry. See e.g. [6] for a good introduction.

The overall goal is to find the set of solutions
to a system f1(x) = 0,..., fi(x) = 0 of m poly-
nomial equations in n variables. The polynomials
fis--, fm generate an ideal I in C[x], the ring of
multivariate polynomials in x = (21,...,x,) over
the field of complex numbers.

To find the roots of this system we study the
quotient ring C[x]/I of polynomials modulo I. If
the system of equations has r roots, then C[x]/T is
a linear vector space of dimension r. In this ring,
multiplication with zj is a linear mapping. The
matrix m,, representing this mapping (in some
basis) is referred to as the action matrix. From al-
gebraic geometry it is known that the zeros of the
equation system can be obtained from the action
matrix by using the fact that the vector of mono-
mials spanning C[x]/I evaluated at a zero of I is
an eigenvector of m/, .

C[x]/I is a set of equivalence classes and to per-
form calculations in this space we need to pick rep-
resentatives for the equivalence classes. A Grobner
basis G for I is a special set of generators for I with
the property that it lets us compute a well defined
representative for each equivalence class. We now
turn to the numerical computation of a Grobner
basis.

4 Numerical Computations

There is a general method for constructing a Grobner
basis known as Buchberger’s algorithm [5]. The
idea is to succesively eliminate leading monomials
from the equations by selecting polynomials pair-
wise and multiplying them by suitable monomials
to be able to eliminate the least common multiple
of their respective leading monomials. The algo-
rithm stops when any new element from I reduces
to zero upon multivariate polynomial division with
the elements of G.

Buchberger’s algorithm works perfectly under
exact arithmetic. However, in floating point arith-
metic it becomes extremely difficult to use due to
accumulating round off errors. In Buchberger’s al-
gorithm, adding equations and eliminating is com-
pletely interleaved. We aim for a process where
we first add all equations we will need and then do
the full elimination in one go, in the spirit of the f4
algorithm [7]. This allows us to use methods from
numerical linear algebra such as pivoting strate-
gies and QR factorization to circumvent (some of)
the numerical difficulties.

This approach is made possible by first study-
ing a particular problem using exact arithmetic to
determine the number of solutions and what total
degree we need to go to. Using this information, we
hand craft a set of monomials which we multiply
our original equations with to generate new equa-
tions. We stack the coefficients of our expanded set
of equations in a matrix C and write our equations
as

Cp =0, (2)

where ¢ is a vector of monomials. Putting C on
reduced row echelon form then gives us the reduced
minimal Grobner basiss. In the next section we go
in to the details of constructing a Grobner basis
for the three view triangulation problem.

4.1 Grobner Basis Construction

From Section 2, we obtained three sixth degree
polynomial equations in X = [X;,Xo, X3]. To
get a Grobner basis as outlined in Section 4, after
some preliminary steps, we multiply with monomi-
als creating 225 equations in 209 different mono-
mials of total degree up to nine. We then put the
225 by 209 matrix C on reduced row echelon form.
See [4, 10] for details on the construction of the co-
efficient matrix.

The row echelon part turns out to be a delicate
task due to generally very poor conditioning. In
fact, the conditioning is often so poor that roundoff
errors in the order of magnitude of machine epsilon



(approximately 1071¢ for doubles) yield errors as
large as 102 or more in the final result. This is
the reason one had to resort to emulated 128 bit
numerics in [10].

4.2 The Relaxed Ideal Method

After the equation adding steps described above,
we have a set of equations which “tightly” describe
the set of solutions and nothing more. By relaxing
the constraints somewhat, possibly allowing some
extra spurious solutions to enter the equations, we
show that it is possible to get a significantly bet-
ter conditioned problem. We do this by select-
ing a subset of the 225 equations. This choice is
not unique, but a natural subset to use is the 55
equations with all possible 9th degree monomials
as leading terms, since this is the smallest set of
equations which directly gives us a Grobner basis.
We do this by QR factorization of the submatrix
of C consisting of the 55 first columns followed by
multiplying the remaining columns with Q*. Af-
ter these steps we pick out the 55 first rows of
the resulting matrix. These rows correspond to
55 equations forming the relaxed ideal I C [
which is a subset of the original ideal I. The set
of eigenvalues computed from the action matrices
for C[X]/I and C[X]/I e respectively are shown if
Fig. 1. See [4] for an explanation and justification
of this technique.

As shown in the experiments section, this im-
proves the conditioning of the elimination step in-
volved in the Grobner basis computation consider-
ably. The price we have to pay for this is perform-
ing an eigenvalue decomposition on a larger action
matrix.
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Figure 1: Eigenvalues of the action matrix using
the standard method and the relaxed ideal method
respectively, plotted in the complex number plane.
The latter are a strict superset of the former.
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Figure 2: Histogram over the error in 3D location
of the estimated point X. As is evident from the
graph, extracting solutions from the smaller ideal
yields a final result with considerably smaller er-
rors.

5 Experimental Validation

The algorithm described in this paper has been im-
plemented in C++ making use of LAPACK and
BLAS [1] and the code is available for download
from [2]. We have run the algorithm on both
real and synthetically generated data using a 2.0
Ghz AMD Athlon X2 64 bit machine. With this
setup, triangulation of one point takes approxi-
mately 60 milliseconds. This is to be contrasted
with the previous implementation by Stewenius et
al. [10], which needs 30 seconds per triangulation
with their setup.

5.1 Synthetic Data

To evaluate the intrinsic numerical stability of our
solver the algorithm has been run on 50.000 ran-
domly generated test cases. World points were
drawn uniformly from the cube [—500,500]% and
cameras where placed randomly at a distance of
around 1000 from the origin with focallength of
around 1000 and pointing inwards. We compare
our approach to that of [10] implemented in double
precision here referred to as the standard method.
A histogram over the resulting errors in estimated
3D location is shown in Fig. 2. As can be seen,
computing solutions of the smaller ideal yields an
end result with vastly improved numerical preci-
sion. The error is typically around a factor 10°
smaller with the new method.

5.2 A Real Example

Finally, we evaluate the algorithm under real world
conditions. The Oxford dinosaur [3] is an image



sequence of a toy dinosaur shot on a turn table.
The image sequence consists of 36 images and 4983
point tracks. For each point visible in three or
more views we select the first, middle and last view
and triangulate using these. This yields a total of
2683 point triplets to triangulate from. The image
sequence contains some erroneus tracks which we
deal with by removing any points reprojected with
an error greater than two pixels in any frame. The
whole sequence was processed in approximately 2.5
minutes and the resulting point cloud is shown in
Fig. 3.

We have also run the same sequence using the
previous method implemented in double precision,
but the errors were too large to yield usable results.
Note that [10] contains a successful triangulation
of the dinosaur sequence, but this was done using
extremely slow emulated 128 bit arithmetic yield-
ing an estimated running time of 20h for the whole
sequence.

Figure 3: The Oxford dinosaur reconstructed from
2683 point triplets using the method described in
this paper. The reconstruction was completed in
approximately 2.5 minutes.

6 Conclusions

In this paper we have shown how triangulation can
be solved for the globally optimal Lo estimate us-
ing Grobner basis techniques. With the introduced
method of the relaxed ideal, we have taken this ap-
proach to a state where it can now have practical
value in actual applications.

Moreover, by this example we show that global
optimisation by calculation of the stationary points
using Grobner basis techniques is indeed a possi-
ble way forward. This is particularly interesting
since a large number of computer vision problems
ultimately depend on some form of optimisation.
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