Computer implementation of the genitive in Latvian

Greitane, Inguna

1995

Citation for published version (APA):
Computer implementation of the genitive in Latvian

Inguna Greitāne*

Latvian is one of the Baltic languages, a subclass of the Indo-European family. It is a flectional language and has a rich system of morphology, including seven cases and two numbers. Word order in a Latvian noun phrase can in general be characterized as head final. A genitive in Latvian is used as a tool to bind nouns in a noun phrase and express possession, except with verbal nouns where the genitive may function as an actor or a patient. I have used Mūsdienu latviešu literārās valodas gramatika I (1959) and A grammar of modern Latvian (Fennell & Gelsen 1980) for reference.

Morphology

Latvian nouns consist of a root and an inflectional ending. The inflectional endings can be determined by the declension of the noun. Latvian nouns are divided into 6 declensions depending on the nominative ending and gender of the noun. (Approximately ten nouns belonging to the second declension have the ending s in the nominative and genitive.)

<table>
<thead>
<tr>
<th>Gender</th>
<th>Ending</th>
<th>Declension</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>masc</td>
<td>s</td>
<td>1</td>
<td>tēv-s ‘father’</td>
</tr>
<tr>
<td>masc</td>
<td>š</td>
<td>1</td>
<td>cēl-š ‘road’</td>
</tr>
<tr>
<td>masc</td>
<td>is</td>
<td>2</td>
<td>kaķ-is ‘cat’</td>
</tr>
<tr>
<td>masc</td>
<td>s</td>
<td>2</td>
<td>akmen-s ‘stone’</td>
</tr>
<tr>
<td>masc</td>
<td>us</td>
<td>3</td>
<td>tirg-us ‘market’</td>
</tr>
<tr>
<td>masc/fem</td>
<td>a</td>
<td>4</td>
<td>mās-a ‘sister’</td>
</tr>
<tr>
<td>masc/fem</td>
<td>e</td>
<td>5</td>
<td>egl-e ‘fire’</td>
</tr>
<tr>
<td>fem</td>
<td>s</td>
<td>6</td>
<td>gov-s ‘cow’</td>
</tr>
</tbody>
</table>

The genitive is formed by adding the following endings to the root (see Greitāne 1994):

<table>
<thead>
<tr>
<th>Declension Genitive</th>
<th>Genitive</th>
<th>Example</th>
</tr>
</thead>
</table>

* AI Lab, Institute of Mathematics and Computer Science, University of Latvia.
For second declension nouns in singular and plural, as well as for fifth and sixth declension nouns in plural, the consonant preceding the case ending can be palatalized:

- ez-is → ež-a ‘hedgehog’
- egl-e → egl-u ‘firs’
- nakt-s → nakš-u ‘nights’

Some of the endings (u, as, es, s) are used in the genitive as well as in other cases, e.g. mājas – genitive singular, nominative plural. In this case, only an understanding of the whole sentence can help to determine which case is used. An automated parsing system for Latvian always searches for the longest constituent, which gives the correct solution in most cases.

Latvian adjectives have two types of declension: definite and indefinite. The indefinite is used for expressions equivalent to English a little sister, and the definite for expressions of the type the little sister. The indefinite adjectives have endings similar to the nouns. Masculine adjectives are declined like first declension nouns, and feminine adjectives like fourth declension nouns:

<table>
<thead>
<tr>
<th>Gender</th>
<th>Nom sg</th>
<th>Gen sg</th>
<th>Gen pl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indefinite adjective</td>
<td>masc</td>
<td>s, š</td>
<td>a</td>
</tr>
<tr>
<td>fem</td>
<td>a</td>
<td>as</td>
<td>u</td>
</tr>
<tr>
<td>Definite adjective</td>
<td>masc</td>
<td>ais</td>
<td>ā</td>
</tr>
<tr>
<td>fem</td>
<td>ā</td>
<td>ās</td>
<td>o</td>
</tr>
</tbody>
</table>

The following table shows the nominative and genitive of the adjective māzs ‘little’:

<table>
<thead>
<tr>
<th>Declension</th>
<th>Gender</th>
<th>Nom sg</th>
<th>Gen sg</th>
<th>Gen pl</th>
</tr>
</thead>
<tbody>
<tr>
<td>indefinite</td>
<td>masc</td>
<td>maz-s</td>
<td>maz-a</td>
<td>maz-u</td>
</tr>
<tr>
<td>fem</td>
<td>maz-a</td>
<td>maz-as</td>
<td>maz-u</td>
<td></td>
</tr>
<tr>
<td>definite</td>
<td>masc</td>
<td>maz-ais</td>
<td>maz-ā</td>
<td>maz-o</td>
</tr>
<tr>
<td>fem</td>
<td>maz-ā</td>
<td>maz-ās</td>
<td>maz-o</td>
<td></td>
</tr>
</tbody>
</table>
Most Latvian pronouns are declined as nouns of either the first declension (for masculine pronouns) or the fourth (for feminine pronouns) declension. There are some pronouns, for instance es ‘I’, which have special forms for each case.

Functional roles
A genitive noun phrase may have several functions, namely:

1. an attribute in NP: māsas galds ‘sister’s table’.
4. the object in negated possessive expressions: Man nav naudas [I haven’t money-GEN] ‘I have no money’.
5. the genitive noun phrase may occur without its head: Tā ir māsas ‘This is sister’s.’

Thematic roles
In most cases the genitive noun phrase is possessive (tēva grāmata ‘father’s book’) or partitive (rika maizes [slice bread-GEN] ‘slice of bread’). But it may also have the role of an agent (zēna dziedāšana ‘boy’s singing’) or a patient (zēna nolaupīšana [boy-GEN kidnapping] ‘kidnapping of a boy’).

A number of nouns can be used in the genitive to describe another noun. The relation between the genitive word and its head is as between an indeclinable adjective and a noun: ziemas mētelis [winter-GEN coat] ‘winter coat’.

Forms of genitive noun phrases
The Latvian genitive noun phrase is characterized by three main features:

1. all the words in the genitive noun phrase are in the genitive;
2. the genitive noun phrase does not agree with the head noun in case, number or gender;
(3) the genitive noun phrase generally precedes the head noun.

An NP including a genitive NP may be more or less complex. The simplest noun phrase with a genitive consists of a noun in the genitive and a head noun \(\text{np}_{\text{case}}=n_{\text{gen}}+n_{\text{case}}\): māsas galds ‘sister’s table’), but both the noun in the genitive and the head noun may be complex NPs.

What is a genitive noun phrase? It can be:

(1) A noun in the genitive (\(\text{gnp}=n_{\text{gen}}\): māsas ‘sister’s’).
(2) A personal pronoun in the genitive (\(\text{gnp} = \text{pronoun}_{\text{gen}}\): viņa ‘his’).
(3) A noun in the genitive preceded by an adjective phrase (usually with a definite ending) in the same case, number and gender as the noun (\(\text{gnp}=\text{ap}_{\text{gen}}+n_{\text{gen}}\): mazās māsas ‘little sister’s’).
(4) A noun in the genitive preceded by a pronoun in the same case, number and gender as the noun (\(\text{gnp} = \text{pronoun}_{\text{gen}}+n_{\text{gen}}\): manas māsas ‘my sister’s’).
(5) A noun in the genitive preceded by a pronoun and an adjective (with definite ending) in the same case, number and gender as the noun (\(\text{gnp}=\text{pnoun}_{\text{gen}}+\text{ap}_{\text{gen}}+n_{\text{gen}}\): manas mazās māsas ‘my little sister’s’).
(6) The genitive noun phrase may be recursively preceded by another genitive noun phrase (\(\text{gnp}=\text{gnp}_1+\text{gnp}_2\):

\[
\begin{align*}
\text{māsas galds} & \quad \text{‘sister’s table’s’} \\
\text{mazās māsas galds} & \quad \text{‘little sister’s table’s’} \\
\text{manas mazās māsas jaunā galds} & \quad \text{‘my little sister’s new table’s’}
\end{align*}
\]

The placement of the genitive noun phrase in the matrix noun phrase

Now we can note the genitive’s position in the matrix noun phrase. The following constructions are allowed:

(1) A genitive noun phrase precedes the head noun (\(\text{np}_{\text{case}}=n_{\text{gen}}+n_{\text{case}}\): māsas galds ‘sister’s table’).
(2) A head noun preceded by and determined by an adjective phrase in the same case, number and gender as the head noun and a genitive noun phrase (\(\text{np}_{\text{case}}=\text{ap}_{\text{case}}+\text{gnp}+n_{\text{case}}\): mazās māsas galds ‘little sister’s table’).
(3) A head noun preceded by a pronoun in the same case, number and gender as the head noun, a genitive noun phrase (\(\text{np}_{\text{case}}=\text{pnoun}_{\text{case}}+\text{gnp}+n_{\text{case}}\): mans ziemas mētelis ‘my winter’s coat’).
(4) A head noun preceded by and determined by a pronoun and an adjective phrase (with definite ending) in the same case, number and gender as the head
noun and a genitive noun phrase. In this case the genitive noun phrase may be regarded as forming a compound with the head noun (np\text{case}=\text{p noun case}+\text{ap case}+\text{gnp}+\text{ncase}: \text{mans jaunais ziemas mētelis} ‘my new winter’s coat’).

(5) A head noun preceded by a genitive noun phrase and an adjective phrase in the same case, number and gender as the head noun (np\text{case}=\text{gnp}+\text{ap case}+\text{ncase}: \text{māsas mazais galds} ‘sister’s little table’).

The genitive with numerals
If numerals end in \text{desmits} ‘ten’, \text{simts} ‘hundred’, \text{tūkstotis} ‘thousand’, \text{miljons} ‘million’, \text{miljards} ‘thousand millions’, then a following noun is in the genitive: \text{pieci simti kronu} [five hundred crowns-GEN] ‘five hundred crowns’.

If there is an indeclinable numeral (\text{simt} ‘100’, \text{desmit} ‘10’) then the following noun can be used in the genitive instead of nominative or accusative: \text{piecdesmit kronu} [fifty crowns-GEN] ‘fifty crowns’.

The genitive following the head word
The genitive also follows the head word in quantifier phrases (\text{daudz} ‘many’, \text{maz} ‘few’, etc): \text{daudz māsu} [many sister-GEN] ‘many sisters’.

A genitive noun which has the property of being divisible can either precede or follow the head noun: \text{maizes rika} [bread-GEN slice] or \text{rika maizes} [slice bread-GEN] ‘slice of bread’. The genitive has a partitive meaning in these cases.

Variation and ambiguity
As mentioned above, a genitive noun phrase generally precedes the head noun. In most cases an adjective is bound with the noun it precedes: \text{māzās māsas galds} ‘little sister’s table’. But a genitive may come between the head noun and its modifying adjective: \text{mazais māsas galds} ‘little sister’s table’. Therefore you can build ambiguous noun phrases. For instance, \text{māzā zēna māsa} [little-GEN/NOM boy-GEN sister-NOM] might be translated as ‘a little boy’s sister’ as well as ‘a boy’s little sister’.

Implementation of the genitive in PROLOG
The following predicates are based on the predicates used for genitive noun phrases in the MT system SWETRA (see Sigurd 1988, Sigurd et al. 1990, Sigurd 1994). The special predicate \text{lgnp} is used for the Latvian genitive noun phrase, and the predicate \text{np2} is used to form a representation of the genitive
noun phrase compatible with SWETRA. The Prolog predicates are presented in the order they are implemented in the computer program, beginning with the most complex cases.

The following predicate governs a recursive genitive noun phrase which begins with a noun in the genitive. The predicate \textit{lnoun} analyses the noun, checks whether it is used in genitive and returns its meaning in the variable \textit{X}. The predicate \textit{lgnp} recursively analyses the remainder of the sentence to determine the rest of the genitive noun phrase and returns its meaning in the variable \textit{Y}. The predicate \textit{np2} forms a functional representation of the whole genitive noun phrase in the variable \textit{Np}.

\begin{verbatim}
\text{lnoun}(X,_,_,\text{Number1},g,\text{Sem1}),\\
\text{lgnp}(Y),\\
\{\text{np2}(s(X,[]),Y,Np)\}.
\end{verbatim}

The following predicate governs a recursive genitive noun phrase which starts with a noun in the genitive preceded by an adjective phrase in the genitive. The predicate \textit{lap} analyses the adjective phrase, checks whether it is used in the genitive, determines its gender and number and returns its meaning in the variable \textit{X}. The predicate \textit{lnoun} analyses the noun, checks whether it is used in the same case, number and gender as the adjective phrase and returns its meaning in the variable \textit{Y}.

\begin{verbatim}
\text{lgnp}(Np)-->
\text{lap}(\text{Art},X,\text{gram(\text{Number},g,\text{Gender}))}),\\
\text{lnoun}(Y,\text{agr(_,\text{Gender}),_\text{Number},g,\text{Sem1}}),\\
\text{lgnp}(Z),\\
\{\text{np2}(s(X,Y,[]),Z,Np)\}.
\end{verbatim}

The following predicate governs a recursive genitive noun phrase which starts with a noun in the genitive preceded by a pronoun in the genitive. The predicate \textit{lpnoun} analyses the pronoun, checks whether it is used in the genitive, determines its number and gender and returns its meaning in the variable \textit{X}.

\begin{verbatim}
\text{lgnp}(Np)-->
\text{lpnoun}(X,\text{agr(_,\text{Gender}),_\text{Number},g,\text{Sem}}),\\
\text{lnoun}(Y,\text{agr(_,\text{Gender}),_\text{Number},g,\text{Sem}}),\\
\text{lgnp}(Z),\\
\{\text{np2}(s(X,Y,[]),Z,Np)\}.
\end{verbatim}
The following predicate governs a recursive genitive noun phrase which starts with a noun in the genitive preceded by a pronoun and an adjective phrase in the genitive.

\[
\text{lgnp}(Np) \rightarrow \begin{array}{l}
/* \text{gnp}=\text{gnp}_1+\text{gnp}_2 */ \\
\text{lpnoun}(X, \text{agr}(_, \text{Gender}), _, \text{Number}, g, \text{Sem}1), \\
\text{lap}(\text{Art}, Y, \text{gram}(\text{Number}, g, \text{Gender})), \\
\text{lnoun}(Z, \text{agr}(_, \text{Gender}), _, \text{Number}, g, \text{Sem}), \\
\text{lgnp}(W), \\
\{\text{np2}(\text{tom}(X, Y), Z, []), W, Np)\}.
\end{array}
\]

The following predicate governs a genitive noun phrase consisting of a noun in the genitive preceded by a pronoun and an adjective phrase in the genitive. The expression \(s(\text{tom}(X, Y), Z, [])\) is the functional representation of this genitive noun phrase.

\[
\text{lgnp}(s(X, Y, Z, [])) \rightarrow \begin{array}{l}
/* \text{gnp}=\text{pnoun}_\text{gen}+\text{ap}_\text{gen}+\text{n}_\text{gen} */ \\
\text{lpnoun}(X, \text{agr}(_, \text{Gender}), _, \text{Number}, g, \text{Sem}1), \\
\text{lap}(\text{Art}, Y, \text{gram}(\text{Number}, g, \text{Gender})), \\
\text{lnoun}(Z, \text{agr}(_, \text{Gender}), _, \text{Number}, g, \text{Sem}).
\end{array}
\]

The following predicate governs a genitive noun phrase consisting of a noun in the genitive preceded by a pronoun in the same case, gender and number as the noun. The expression \(s(X, Y, [])\) is the functional representation of this genitive noun phrase.

\[
\text{lgnp}(s(X, Y, [])) \rightarrow \begin{array}{l}
/* \text{gnp}=\text{pnoun}_\text{gen}+\text{n}_\text{gen} */ \\
\text{lpnoun}(X, \text{agr}(_, \text{Gender}), _, \text{Number}, g, \text{Sem}1), \\
\text{lnoun}(Y, \text{agr}(_, \text{Gender}), _, \text{Number}, g, \text{Sem}).
\end{array}
\]

The following predicate governs a genitive noun phrase consisting of a noun in the genitive preceded by an adjective phrase in the same case, gender and number as the noun.

\[
\text{lgnp}(s(X, Y, [])) \rightarrow \begin{array}{l}
/* \text{gnp}=\text{ap}_\text{gen}+\text{n}_\text{gen} */ \\
\text{lap}(\text{Art}, X, \text{gram}(\text{Number}, g, \text{Gender})), \\
\text{lnoun}(Y, \text{agr}(_, \text{Gender}), _, \text{Number}, g, \text{Sem}).
\end{array}
\]

The following predicate governs a genitive noun phrase consisting only of a single noun in genitive. The expression \(s(X, [])\) is functional representation of this genitive noun phrase.

\[
\text{lgnp}(s(X, [])) \rightarrow /* \text{gnp}=\text{n}_\text{gen} */ \\
\text{lnoun}(X, _, _, \text{Number}1, g, \text{Sem}1).
\]
The following predicate governs a genitive noun phrase consisting of a single personal pronoun in genitive. The predicate \textit{lpnoun} analyses the pronoun, checks whether it is used in genitive and returns its meaning in the variable X.

\begin{verbatim}
lgnp(X) --> /* gnp=pronoun\textsubscript{gen} */
 lpnoun(X,agr(_,Gender),_,Number,g,Sem1).
\end{verbatim}

The predicate \textit{np2} is used to form a representation of the genitive noun phrase compatible with SWETRA (see Sigurd 1994). The first argument of the predicate is the leftmost genitive noun phrase, the second argument is the rest of the genitive noun phrase, and the third argument is the whole noun phrase.

\begin{verbatim}
np2(X,s(Y,[]),s(X,Y,[])).
np2(X,s(A,Y,[]),s(X,Adj,Y,[])).
np2(X,s(A,Adj,Y,[]),s(X,Adj,Y,[])).
\end{verbatim}

To parse a Latvian noun phrase containing numerals the following predicate \textit{lnp} is used. The line \([N],\{\text{number}(N)\}\) checks whether the noun phrase begins with a number. The predicate \textit{lnoun} analyses the noun following the number, checks whether it is used in the plural and returns its meaning in the variable X. The next predicate \textit{lnoun} analyses the next noun, checks whether it is used in plural genitive and returns its meaning in the variable Y. The expression \(s(N,X,Y)\) is the functional representation of this noun phrase.

\begin{verbatim}
lnp(s(N,X,Y)) -->
 [N],\{\text{number}(N)\},
 lnoun(X,agr(_,Gender),_,pl,Case,Sem),
 lnoun(Y,agr(_,Gender1),_,pl,g,Sem1).
\end{verbatim}

Genitive rules in the English module of SWETRA

The following predicates show the generation of English genitive noun phrases from their functional representation in the MT system SWETRA. The predicate \textit{enp} generates the English noun phrase. The predicate \textit{egenp} builds a genitive form with endings ’s or ’. The predicate \textit{elexg} finds the translation of the noun through its meaning in the lexicon. The lexical format of SWETRA is generally a matrix called \textit{lex} (with different prefixes according to language) and 10 slots for storing lexical information.

The following predicate \textit{enp} generates a noun phrase consisting of a head noun preceded by the genitive of a proper noun or a noun referring to a person and followed by a post attributive phrase. The predicate \textit{pers_or_prop} checks whether the meaning of the functional representation of the genitive
noun phrase is a person or a proper name. The predicate `egenp` generates the genitive from the functional representation of the genitive noun phrase in a variable `G`. The predicate `elexg` generates the head noun from its functional representation in the variable `S`. The predicate `epattr` generates a post attributive phrase from its functional representation in the variable `T`.

\[
\text{enp}(\text{Agr}, s(G, S, T)) \rightarrow \{ \text{pers_or_prop}(G) \}, \\
\text{egenp}(_, G), \\
\text{elexg}(n, S, __, __, __, __, __, _), \\
\text{epattr}(S, T).
\]

The following predicate `enp` generates a noun phrase with the same structure but with an additional adjective phrase. The predicate `eap` generates the adjective phrase from its functional representation in a variable `A`.

\[
\text{enp}(\text{Agr}, s(G, A, S, T)) \rightarrow \{ \text{pers_or_prop}(G) \}, \\
\text{egenp}(_, G), \\
\text{eap}(\text{Agr}, A), \\
\text{elexg}(n, S, __, \text{Agr}, __, __, __), \\
\text{epattr}(S, T).
\]

English uses `of` genitive if the noun is not a proper name or a person in the singular. The following predicate `enp` generates a noun phrase which consists of a head noun followed by a genitive noun phrase with the preposition `of` and a post attributive phrase.

\[
\text{enp}(\text{Agr}, s(G, S, T)) \rightarrow \\
\text{eart}(A, m(\text{def}, _)), \\
\text{enp}(\text{Agr}, s(S, [])), \\
[\text{of}], \text{enp}(A2, G), \\
\text{epattr}(S, T).
\]

The following predicate `enp` generates a noun phrase which consists of a head noun preceded by an adjective phrase and followed by a genitive noun phrase with the preposition `of` and a post attributive phrase.
The following predicate *egenp* calls the predicate *elexg* which generates a genitive noun phrase from its functional representation in the variable *S*. In the predicate *elexg* the predicate *enp* generates an English noun phrase in the variable *W* from its functional representation. The predicate *finsconsynt* converts this noun phrase to a genitive noun phrase in variable *W1*.

\[
\text{egenp}(_, S) \rightarrow \text{elexg}(ext{gen}, S, __, __, __, __, __, __, __).
\]

\[
\text{elexg}(\text{gen}, S, __, C1, D1, E1, R1, P1, Y, X) :-
\]

\[
\text{enp}(\text{Ag}, S, W, []),
\]

\[
\text{finsconsynt}(W, W1),
\]

\[
\text{append}(W1, X, Y).
\]

The following predicate *finsconsynt* adds the genitive ending to the last word of the genitive noun phrase.

\[
\text{finsconsynt}(W, Wf) :-
\]

\[
\text{reverse}(W, [S|T]),
\]

\[
(\text{concat}(S_first, s, S), \text{concat}(S, ",", S1); \text{concat}(S, ",s", S1)),
\]

\[
\text{reverse}(Wf, [S1|T]).
\]

Demos

The following demos show functional representations of some Latvian sentences and their translation into English. The functional representation is used as an interlingua in the translation process and as the basis for the generation of the English sentences.

Māsas galds ir netīrs.
[subj(s(s(m(def, _1810), m(sister, pers), []), m(table, sg), [])), pred(m(m(be, pres), [])), obj(m(dirty, _1961)), obj([]), advl([]), advl([]), advl([]), advl([]), co(s(s(m(def, _1810), m(sister, pers), []), m(table, sg), []), [.])]
The sister’s table is dirty.

Mazās māsas galds ir netīrs.
[subj(s(s(m(def, _3813), m(little, _3782), m(sister, pers), []), m(table, sg), [])), pred(m(m(be, pres), [])), obj(m(dirty, _4016)), obj([]), advl([]), advl([]), advl([]), advl([]), co(s(s(m(def, _3813), m(little, _3782), m(sister, pers), []), m(table, sg), []), [.])]
The little sister’s table is dirty.
Mazais māsas galds ir netīrs.
[subj(s(s(m(def, _6028), m(sister, pers), []), m(little, _5936), m(table, sg), [])), pred(m(m(be, pres), []), obj(m(dirty, _6179)), obj([]), advl([]), advl([]), co(s(s(m(def, _6028), m(sister, pers), []), m(little, _5936), m(table, sg), []), [])]
The sister’s little table is dirty.

Māsas mazais galds ir netīrs.
[subj(s(s(m(def, _8116), m(sister, pers), []), m(little, _8141), m(table, sg), [])), pred(m(m(be, pres), []), obj(m(dirty, _8320)), obj([]), advl([]), advl([]), advl([]), co(s(s(m(def, _8116), m(sister, pers), []), m(little, _8141), m(table, sg), []), [])]
The sister’s little table is dirty.

Manas māsas galds ir netīrs.
[subj(s(s(m(my, sg), m(sister, pers), []), m(table, sg), [])), pred(m(m(be, pres), []), obj(m(dirty, _10429)), obj([]), advl([]), advl([]), advl([]), advl([]), co(s(s(m(my, sg), m(sister, pers), []), m(table, sg), []), [])]
My sister’s table is dirty.

Manas mazās māsas galds ir netīrs.
[subj(s(s(tom(m(my, sg), m(little, _12379)), m(sister, pers), []), m(table, sg), []), m(corner, sg), [])), pred(m(m(be, pres), []), obj(m(dirty, _12606)), obj([]), advl([]), advl([]), advl([]), advl([]), co(s(s(tom(m(my, sg), m(little, _12379)), m(sister, pers), []), m(corner, sg), []), [])]
My little sister’s table is dirty.

Māsas galdas stūris ir netīrs.
[subj(s(s(m(def, _14554), m(sister, pers), []), m(table, sg), []), m(corner, sg), []), pred(m(m(be, pres), []), obj(m(dirty, _14779)), obj([]), advl([]), advl([]), advl([]), advl([]), co(s(s(m(def, _14554), m(sister, pers), []), m(table, sg), []), m(corner, sg), []), [])]
The corner of the sister’s table is dirty.

Mazās māsas galdas stūris ir netīrs.
[subj(s(s(s(m(def, _16984), m(little, _16953), m(sister, pers), []), m(table, sg), []), m(corner, sg), []), pred(m(m(be, pres), []), obj(m(dirty, _17262)), obj([]), advl([]), advl([]), advl([]), advl([]), co(s(s(s(m(def, _16984), m(little, _16953), m(sister, pers), []), m(table, sg), []), m(corner, sg), []), [])]
The corner of the little sister’s table is dirty.
The corner of my little sister’s new table is dirty.

My winter coat is dirty.

My new winter coat is dirty.

Acknowledgements

This study was made possible by a Swedish Institute Scholarship for research studies at Lund University. I would like to thank Prof. Bengt Sigurd and Barbara Gawron!ska who have contributed very much to this research.

References

Mūsdienu latviešu literārās valodas gramatika. Vol. 1. Riga 1959

