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Abstract—Many problems in computer vision, such as
stereo, segmentation and denoising can be formulated as
pseudo-boolean optimization problems. Over the last decade,
graphs cuts have become a standard tool for solving such
problems. The last couple of years have seen a great
advancement in the methods used to minimize pseudo-
boolean functions of higher order than quadratic. In this
paper, we give an overview of how one can optimize higher-
order functions via generalized roof duality and how it can
be applied to problems in image analysis and vision.

I. PSEUDO-BOOLEAN OPTIMIZATION

A pseudo-boolean function is a function from the set of
boolean vectors of dimension n, denoted Bn = {0, 1}n,
to the reals. Any pseudo-boolean f can be uniquely
represented by a multilinear polynomial of the form

f(x) =
∑
i

aixi +
∑
i<j

aijxixj +
∑

i<j<k

aijkxixjxk + . . .

The degree m of f is equal to the degree of the
corresponding polynomial. In this paper, we are interested
in efficient ways of solving the following optimization
problem:

min
x∈Bn

f(x), (1)

in order to improve performance for many basic applica-
tions in computer vision.

Application problems that can be turned into such an
optimization problem abound. For example, state-of-the-
art methods for stereo, segmentation and image denoising
are often formulated as the inference of the maximum a
posteriori estimate in a Markov Random Field (MRF) and
such problems can be formulated as energy minimization
problems where the energy function is given by a pseudo-
boolean function.

In general, the minimization problem in (1) is NP-
hard so approximation algorithms are necessary. For
the quadratic case (m = 2), one of the most popular
and successful approaches is based on the roof duality
bound [1], [2]. We generalize the roof duality framework
for higher-order pseudo-boolean functions. Our main
contributions are (i) how one can define a general bound
for any order (for which the quadratic case is a special
case), (ii) how one can efficiently compute solutions that
attain this bound in polynomial time and (iii) to give
example applications in vision for which performance is
improved by this technique. Our results rely on many
previous significant contributions.

A. Related work and Applications

Graph cuts is by now a standard tool for many vision
problems, in particular, for the minimization of quadratic
and cubic submodular pseudo-boolean functions [3], [4].
The same technique can be used for non-submodular
functions in order to compute a lower bound [1].

In recent years, there has been an increasing interest in
higher-order models and approaches for minimizing the
corresponding energies. For example, in [5], approximate
belief propagation is used with a learned higher-order MRF
model for image denoising. Similarly, in [6], an MRF
model is learned for texture restoration, but the model is
restricted to submodular energies which can be optimized
exactly with graph cuts. Curvature regularization requires
higher-order models [7], [8]. Even global potentials defined
over all variables in the MRF have been considered, e.g.,
in [9] for ensuring connectedness, in [10] to model co-
occurrence statistics of objects. Another state-of-the-art
example is [11] where second-order surface priors are used
for stereo reconstruction. The optimization strategies rely
on dual decomposition [12], [13], move-making algorithms
[14], [15], linear programming [16], belief propagation
[5] and, of course, graph cuts.

B. Submodularity

There is a large subset of pseudo-boolean which
contains functions which are easy to minimize: the set of
submodular functions. If we let x ∧ y and x ∨ y mean
element-wise min and max, respectively, the set can be
defined as the set of all functions f satisfying

f(x) + f(y) ≥ f(x ∧ y) + f(x ∨ y) (2)

for all points x,y ∈ Bn. In the quadratic (m = 2)
and cubic (m = 3) cases, a submodular function f
can be minimized very efficiently via graph cuts and in
polynomial time for any degree. However, for m ≥ 4, it
is a very diffcult problem (co-NP-complete) to determine
whether a given function is submodular. [17]

As an example, the function

f(x) = x1 − 4x2 + 2x3 − 5x1x2 (3)

is submodular but the function

f(x) = x1 − 4x2 + 2x3 + 5x1x2 (4)

is not.



C. Roof Duality

The roof duality bound is an efficiently computable
lower bound to the minimum of f in the quadratic case.
While a good lower bound can be interesting in many
applications, e.g. when using branch and bound, another
property of roof duality is arguably even more useful:
persistency. Each variable in the solution obtained via
roof duality is equal to one of three possibilities: {0, 1, ?}.
It is guaranteed that a global solution exists corresponding
to the parts of the solution not equal to ‘?.’ Therefore, the
roof duality solution is said to be partially optimal.

The fastest method of computing the roof dual for
quadratic pseudo-boolean polynomials is by using graph
cuts. Reductions have been explored for higher-order
polynomials (m > 2), e.g., [18]–[21]. These methods
all convert a higher-order function to a quadratic one.

Our framework builds on [22] using submodular relax-
ations directly on higher-order terms. We define optimal
relaxations to be those that give the tightest lower bound.
As an example, consider the problem of minimizing the
following cubic polynomial f over B3:

f(x) = −2x1 + x2 − x3

+ 4x1x2 + 4x1x3 − 2x2x3 − 2x1x2x3. (5)

The standard reduction scheme [21] would use the identity
−x1x2x3 = minz∈B z(2 − x1 − x2 − x3) to obtain a
quadratic minimization problem with one auxiliary variable
z. Roof duality gives a lower bound of fmin ≥ −3, but it
does not reveal how to assign any of the variables in x.
However, there are many possible reduction schemes from
which one can choose. Another possibility is −x1x2x3 =
minz∈B z(−x1 + x2 + x3)− x1x2 − x1x3 + x1. For this
reduction, the roof duality bound is tight and the optimal
solution x∗ = (0, 1, 1) is obtained. This simple example
illustrates two facts: (i) different reductions lead to different
lower bounds and (ii) it is not an obvious matter how to
choose the optimal reduction.

II. GENERALIZED ROOF DUALITY

A. Problem Formulation

Consider the optimization problem in (1) where f has
degree m. In this paper, we will investigate the cases when
m = 3 and m = 4. By enlarging the domain, we will relax
the problem and look at the following tractable problem:

min
(x,y)∈B2n

g(x,y), (6)

where g : B2n 7→ R is a pseudo-boolean function that
satisfies the three conditions

g(x, x̄) = f(x), ∀x ∈ Bn, (A)
g submodular, (B)

g(x,y) = g(ȳ, x̄), ∀(x,y) ∈ B2n (symmetry). (C)

For a point x = (x1, x2, . . . , xn) ∈ Bn, we denote
x̄ = (x̄1, x̄2, . . . , x̄n) = (1−x1, 1−x2, . . . , 1−xn). The
reason for requirement (A) is that if the range of f is
included in the range of g then the minimum of g is
a lower bound to the minimum of f . If the computed

minimizer (x∗,y∗) of the relaxation g happens to fulfill
x∗ = ȳ∗ then, of course, x∗ is a minimizer of f as well.
Even if it is not the case that x∗ = ȳ∗, we still obtain a
lower bound on f and as we shall see, it is possible to
extract a partial solution for a minimizer of f .

Requirement (B) is also fairly obvious. Since we must
be able to minimize g, requiring that g is submodular
is natural. The last requirement is more technical and is
required in order to prove persistency. It also turns out
that including (C) does not give worse lower bounds.

Let fmin denote the unknown minimum value of f , that
is, fmin = min f(x). Ideally, we would like g(x,y) ≥ fmin
for all points (x,y) ∈ B2n. This is evidently not possible
in general. However, one could try to maximize the lower
bound of g, max minx,y g(x,y), that is,

max
g

`

such that g(x,y) ≥ `, ∀(x,y) ∈ B2n,

g satisfies (A)–(C).

(7)

A relaxation g that provides the maximum lower bound
will be called optimal. As we have proved in [23], when
m = 2, the lower bound coincides with the roof duality
bound [1] and therefore this maximum lower bound will
be referred to as generalized roof duality.

B. Properties of the Solution
By construction, the solution to (7) gives a lower bound

to the optimal value of f . Another important property is
that it satisfies persistency in the following way: Let g∗

be the solution to (7) and (x∗,y∗) ∈ arg min
x,y

g∗(x,y).

If we then let I be the set of all i such that x∗i 6= y∗i , then
there exists a global minimum x̂ to our original function
f such that x̂i = x∗i for all i ∈ I . See [23] for a proof.

In other words, the minimizer to g∗ sometimes gives
us partial information about a global minimizer of f , just
as roof duality does.

C. Solving the Problem
While problem (7) is a linear program in the coefficients

of g, the number of constraints is exponential in the
number of variables n. Nevertheless, it is possible to
attain the roof duality bound in polynomial time [23].
Requirements (A) and (C) never give any problems.
Requirement (B) (submodularity) can be represented with
polynomially many constraints only when m ≤ 3. Recall
that determining whether a function f is submodular is
co-NP-complete. For m = 4 we therefore have to look at
smaller sets than the entire set of submodular functions,
as no reasonably sized set of linear constraint can describe
all submodular functions.

The final hurdle is the exponentially many constraints
involving ` in (7). We solved this in [23] using an
iterative approach. Instead of maximizing minx,y g(x,y)
it is enough to maximize g(0,0), which eliminates all
constraints. Then, when a solution is obtained, g can be
minimized. If any persistencies are available, they can be
used to simplify f and the process starts over. Otherwise,
the process terminates. This will give a bound which is at
least as good as the bound from (7).



III. EXPERIMENTS

We have performed experiments comparing the proposed
generalized roof duality to the current state of the art. The
methods we are considering are:

GRD Generalized roof duality over all sub-
modular functions for m = 3 and a
subset for m = 4.

GRD-gen Same as GRD, except over a larger
subset for m = 4 [24] (which results
in a larger linear program).

GRD-heuristic Instead of solving a linear program
(which can be expensive), a very fast
heuristic is used to give an approximate
solution.

Fix et al. The reductions proposed in [25].
HOCR The reductions proposed in [21].

A. Random Polynomials

In the first experiment, we generated polynomials with
random coefficients:

f(x) =
∑

(i,j,k)∈T

fijk(xi, xj , xk), (8)

where T ⊆ {1 . . . n}3 is a random set of triplets and each
fijk is a cubic polynomial in xi, xj and xk with all its
coefficients picked uniformly in {−100, . . . , 100}. The
results for all methods can be see in Fig. 2.

B. Image Denoising

Ishikawa [21] used image denoising as a benchmark
problem for higher-order pseudo-boolean minimization.
In each iteration proposals are generated in two possible
ways which are alternated: by blurring the current image
and picking all pixels at random. Each pixel then have a
choice of staying the same or switching to the proposal,
resulting in a pseudo-boolean optimization problem. The
smoothness term consists of a Fields of Experts (FoE)
model using patches of size 2× 2. Thus, quartic polyno-
mials are needed to formulate the image restoration task
as a pseudo-boolean minimization problem.

Figure 3 shows a comparison between the different
methods for this problem. Generalized roof duality per-
formed very well, often labeling very close to 100% of
the problem variables. Figure 1 shows the results for a
160 × 240 image, where all three methods used have
comparable running time.
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[24] S. Živný and P. G. Jeavons, “Which submodular functions are
expressible using binary submodular functions?” Oxford University
Computing Laboratory, Tech. Rep. CS-RR-08-08, 2008.

[25] A. Fix, A. Grubner, E. Boros, and R. Zabih, “A graph cut algorithm
for higher-order markov random fields,” in Int. Conf. Computer
Vision, 2011.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Iteration

%
 la

be
le

d 
va

ria
bl

es

GRD−heuristic

Fix et al.

HOCR

Fig. 1: Restoring a big image. See Fig. 3. Linear program-
ming was not used for this experiment.
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(a) Cubic polynomials with n = 1000 and |T | = 1000. GRD-
heuristic is not shown in the histogram because it is almost
indistinguishable from GRD.
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(b) Quartic polynomials with n = 1000 and |T | = 300.

Fig. 2: Number of persistencies, relative bounds and running time for 100 random polynomials. The set of coefficients
T was drawn uniformly after making sure that all variables were used once.
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(a) Each method progresses independently
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(b) Each method solves the same problem in each iteration (c) Noisy image (d) Restored image

Fig. 3: Restoring a small image. In each iteration a proposal is generated and each pixel can either stay the same or
switch to the proposal. A quartic smoothness function is used.


