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Abstract

A new method based on the mode matching technique and the finite element
method (FEM) is presented. The method can handle a general thick frequency
selective structure (FSS), that consists of an arbitrary number of aperture
layers and dielectric layers. An aperture layer consists of a conducting plate
with a periodic array of apertures. The order and the thickness of the layers
can be arbitrary. The aperture can have arbitrary cross-section, and these
cross-sections can be changed stepwise. The apertures can also be filled with
a dielectric material.

The method for the bandpass radomes is based on general mode matching
technique and cascade coupling. The fields outside the FSS and inside the
dielectric layers are expanded in Floquet modes. Inside the aperture layers
the fields are expanded in waveguide modes, which are calculated with FEM.
By a mode matching technique, a scattering matrix is calculated for every
boundary surface and a propagation matrix is calculated for every layer. These
matrices are cascade coupled to form a scattering matrix for the complete
FSS. The method has been verified by comparison with other methods and
measurements.

1 Introduction

In this paper general thick Frequency Selective Structures (FSS) are studied by a
general mode matching technique. There are two major applications of FSS. One
is to use FSS as antenna radomes for better control of electromagnetic wave trans-
mission and scattering. A radome is a cover designed to protect an antenna from
the effects of its physical environment without degrading its electric performance.
The other application of FSS is in reflector antenna systems, there FSS reflectors
are used to separate feeds of different frequency bands.

Bandpass radomes are most often constructed from one or more metallic screens
that are sandwiched between dielectric slabs. The metallic screens are perforated in
a regular pattern such that at the resonant frequency of the structure, the radome
passes nearly 100% of the incident power. Outside the passband, nearly all of the
incident power is reflected. In essence, these radomes provide a bandpass filter
function to the antennas located behind them.

Bandpass radomes contain elements in a regular grid pattern that are formed in
an electrically conductive plate. In the analysis of thick-screen frequency selective
surfaces (FSS), one cannot neglect the thickness of the element, as is the case with
thin-screen FSSs.

An earlier study on thick FSS can be found in [11] by Widenberg, Poulsen and
Karlsson. In the book edited by Wu [12], an equivalent problem for the thick-screen
FSS is analyzed. By employing a spectral moment method solution to the magnetic
field integral equation, Wu determines the transmission and reflection. Munk has
also studied the problem of thick FSS in his book [5].
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Figure 1: A Bandpass Radome.

2 The geometry of the FSS

The geometry of the thick-screen FSS is depicted in Figure 1. The screen consists
of an arbitrary number of aperture layers and dielectric layers. The order and the
thickness of the layers can be arbitrary. An aperture layer consists of a conducting
plate perforated with a periodic array of apertures. Every element in the aperture
layer is assumed to be a waveguide element. In any cut through a plane parallel
to the xy-plane the waveguides are identical but with an arbitrary shape, and the
shape of the element is fixed along the z-axis. The apertures can be filled with a
dielectric material and any number of dielectric layers is allowed on either side of
the conductive thick screen.

The FSS is assumed to extend infinitely in the xy-plane. The grid for the periodic
structure is defined in Figure 2. The z-axis is assumed to be orthogonal to the surface
of the perfectly conducting screen. These apertures are spaced periodically along
the x-axis with period a. The other axis of periodicity y′ makes an angle φ0 with the
x-axis and the apertures are spaced periodically along this second axis with period
b, see Figure 2. Hence, the array of apertures is divided into identical cells. The cell
at the origin is called the unit cell, and is denoted D ∈ R

2. The area of the unit
cell is defined as AD := ab sinφ0. The cross-section of the aperture at the unit cell
is denoted Ω ∈ R

2, Ω ⊂ D.
Figure 3 shows several possible unit elements for application in a thick-screen

FSS. The element in Figure 3(a) is a simple waveguide through a conducting plate,
which is sometimes referred to as a Puck Plate (PP) because of the high dielectric
ceramic pucks that are often used to load the waveguide. Figure 3(b) shows a
coaxial puck plate FSS, where the element is a coaxial waveguide, [8]. The element
in Figure 3(c) composes the Artificial Puck Plate (APP) bandpass radome, [9], which
have conductive paths that form irises at the aperture on either side of the screen.
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Figure 2: The periodicity of the FSS.
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Figure 3: Some possible unit elements for thick-screen FSS applications.

In this paper the geometry of the aperture is arbitrary. This is possible since the
method does not rely on explicit expressions for the waveguide modes. Instead FEM
is used to obtain appropriate waveguide modes. A number of different apertures,
which can be investigated in numerical calculations by the current method, are
shown in Figure 4. The apertures in the figure are, from left, rectangular-, circular-,
hexagonal-, cross-, tripole-, rectangular loop-, annular-, hexagonal loop-, cross loop-
and tripole loop apertures.

co

Figure 4: Some possible cross-sections for the apertures.
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Figure 5: A cross-section of a frequency selective structure.

3 The Method

The method for the frequency selective structure is based on general mode matching
technique and cascade coupling. The method has been used in many different areas,
e.g., for waveguide discontinuities [10] and horn antennas [6].

A plane wave impinges on the FSS, and the reflection and transmission coeffi-
cients are computed. According to the Floquet’s theorem it is sufficient to study one
unit cell D, because there is only a difference of the phase between the sides of the
unit cell. The FSS is divided into a number of layers, see Figure 5. The fields out-
side the FSS and inside the dielectric layers are expanded in tangential plane waves,
i.e., Floquet waves. Inside the aperture layers the fields are expanded in waveguide
modes which are calculated by FEM. The tangential electric and magnetic fields are
matched by the boundary conditions at every boundary surface of the structure in
order to obtain a scattering matrix S, see Figure 5. For every layer a propagation
matrix P is calculated. These scattering matrices are cascade coupled to form a
scattering matrix for the complete FSS, see Figure 6. The transmitted and reflected
fields are calculated from this scattering matrix.

In Section 4 the mode matching technique and the cascade coupling are de-
scribed. The expansion of the fields in the different layers is described in Section 5.

4 The Mode Matching Technique

The mode-matching technique is a powerful method for analyzing periodic structures
and waveguides with varying cross-section. The actual profile is replaced by a series
of uniform layers. Hence, it is ideal for the analysis of thick frequency selective
structures.
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Figure 6: Frequency selective structure represented as a scattering matrix.

4.1 Principles of Mode Matching Technique

In a waveguide or periodic structure the field can be expanded in a complete set
of vector wave functions, these functions are usually denoted modes. The mode
matching technique is based on the matching of the total mode fields at each junction
between uniform sections. The amplitudes of the separate modes at the output of
a junction can be deduced in terms of the amplitudes of the mode spectrum at the
input to the junction. The strength of the modal-matching technique stems from
the fact that the amplitudes of the modes can be expressed as the components of
a scattering matrix. Each junction along the FSS has its own scattering matrix.
The matrices for all junctions can be cascaded and results in an overall scattering
matrix for the FSS. The process of computing the overall scattering matrix can
be decoupled from the process of obtaining the elements of a particular scattering
matrix.

The concept of matching modes at a junction was first attempted in the late 1960s
[10] and early 1970s [4]. Because of the limited computer power available at that
time it was not possible to do more than simple computations. The computational
emphasis was on reducing the number of modes to the minimum so that a numerical
solution could be obtained. It was the arrival of powerful computers that enabled
the concept to be applied to the analysis of complicated structures.

4.2 The Scattering Matrix

This section describes the modal-matching technique in general terms, applicable to
any specific waveguide or frequency selective structure.

The modal-matching technique can be used to obtain the overall transmission
and reflection properties of an FSS. The FSS is represented as a layer, see Figure 6,
where A+ and B− are column matrices containing the mode coefficients of the total
incident field. The column matrices A− and B+ contain the mode coefficients of
the total scattered field. The characteristics of the FSS are given by a scattering
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Figure 7: Cascading of scattering matrices.

matrix S, (
A−

B+

)
= S

(
A+

B−

)
=

(
S11 S12

S21 S22

) (
A+

B−

)
. (4.1)

The elements of S describe the coupling between the modes on the left-hand side
with the modes on the right-hand side of the FSS.

If there is no source on the right-hand side, i.e., B− = 0, the reflection coefficient
for the FSS is

A− = S11A
+, (4.2)

i.e., S11 is the reflection matrix. The transmission matrix of the FSS is then S21

since

B+ = S21A
+. (4.3)

The length of the column matrices and the size of the scattering matrix depend on
the number of modes at each side of the FSS. If there are na modes on the left-hand
side and nb on the right-hand side, the length of A± are na and the length of B±

are nb. The size of the scattering matrix S is (na + nb)× (na + nb) and the sizes of
the submatrices are S11 : na × na, S12 : na × nb, S21 : nb × na, and S22 : nb × nb.

4.3 Cascading of Scattering Matrices

The FSS is divided into a number of boundaries and layers. For instance, the
FSS shown in Figure 1 has four boundaries and three layers. Each boundary or
layer can be represented by its own scattering matrix defined as in Equation 4.1
and Figure 6. The scattering matrix S represents the scattering properties of the
individual boundary or layer. By an iterative method, the scattering matrix of the
complete FSS is formed from the individual scattering matrices. The first step in
this iteration is indicated in Figure 7.
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Scattering matrices are particularly useful because it is straightforward to cas-
cade two scattering matrices, see Appendix A.2. If these two scattering matrices
have elements

Sa =

(
Sa

11 Sa
12

Sa
21 Sa

22

)
and Sb =

(
Sb

11 Sb
12

Sb
21 Sb

22

)
, (4.4)

then the cascaded scattering matrix is

Sc =

(
Sc

11 Sc
12

Sc
21 Sc

22

)
. (4.5)

The matrix element are given by


Sc
11 = Sa

11 + Sa
12(I − Sb

11S
a
22)

−1Sb
11S

a
21,

Sc
12 = Sa

12(I − Sb
11S

a
22)

−1Sb
12,

Sc
21 = Sb

21(I − Sa
22S

b
11)

−1Sa
21,

Sc
22 = Sb

22 + Sb
21(I − Sa

22S
b
11)

−1Sa
22S

b
12,

(4.6)

where I is a unit matrix. The size of the cascaded scattering matrix Sc is (na +
nc)× (na + nc), where the sizes of the submatrices are Sc

11 : na × na, Sc
12 : na × nc,

Sc
21 : nc × na, and Sc

22 : nc × nc.
The cascading process has the advantage that the exact number of layers does

not have to be known at the start of the analysis as the process proceeds from one
side to the other side in a logical fashion.

In order to determine the scattering matrices of the separate boundaries and
uniform sections, see Section 6, the fields must be expanded in appropriate basis
functions.

5 Expansion of the fields

In Figure 8 a simple FSS is depicted, which consists of a perforated conducting plate
sandwiched between two dielectric slabs. A plane wave Ein, with wave vector

k0 := x̂k0 sin θ cosφ+ ŷk0 sin θ sinφ+ ẑk0 cos θ = x̂k0x + ŷk0y + ẑk0z, (5.1)

impinges on the screen. Here, θ and φ are the spherical angles of incidence, that is θ
is the polar angle measured from the z-axis and φ is the azimuthal angle measured
from the x-axis towards the y-axis. The wave number k0 is given by k0 := ω/c0,
where ω := 2πf , f is the frequency, and c0 is the speed of light in vacuum. The
scattered fields are discrete sums of plane waves, cf. Figure 8, where some of these are
propagating waves, while others are evanescent waves. The scattered field consist
of at least two propagating plane waves, one of which propagate in the reflected
direction, and one of which in the transmitted direction.
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Figure 8: Expansion of the fields.

Outside the structure and inside the dielectric layers the transverse electric and
magnetic fields are expanded as


Ed

T(r) =
∑
lmn

(a+
lmneiγmnz + a−lmne−iγmnz)RTlmn(ρ),

Hd
T(r) =

∑
lmn

(a+
lmneiγmnz − a−lmne−iγmnz)T Tlmn(ρ),

(5.2)

where RTlmn and T Tlmn are Floquet mdes, cf. Subsection 5.1. The transverse electric
and magnetic fields inside the waveguide layers, see Figure 8, are expanded as


Ew

T(r) =
∑
vn

(a+
vneikznz + a−vne−ikznz)ETvn(ρ),

Hw
T(r) =

∑
vn

(a+
vneikznz − a−vne−ikznz)HTvn(ρ),

(5.3)

where ETvn and HTvn are waveguide modes, cf. Subsection 5.2.

5.1 The Floquet Modes

Introduce the transverse vector

τmn := x̂αm + ŷβmn, (5.4)

where the Floquet mode indices are given by

αm :=
2πm

a
+ k0x, βmn :=

2πn

b sinφ0

− 2πm

a
cotφ0 + k0y. (5.5)
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The Floquet modes are periodic vector valued functions and defined as

RTlmn(ρ) =




(τ̂mn × ẑ) 1√
AD

eiτmn·ρ, l = 1,

τ̂mn
1√
AD

eiτmn·ρ, l = 2,

T Tlmn(ρ) =
Ylmn

η0

ẑ × RTlmn,

(5.6)

where ρ := x̂x+ ŷy, AD is the area of the unit cell and where

Ylmn =

{
γmn

µk0
, l = 1,

εk0

γmn
, l = 2.

(5.7)

are the wave admittance for the Floquet modes. For l = 1 and l = 2, RTlmn(r)
represent TE and TM polarized waves, respectively. Notice that the Floquet mode
RTlmn represents the electric field, and T Tlmn represents the magnetic field.

The Floquet modes are tangential plane waves, and they are orthonormal to each
other in the sense that∫

D

RTlmn(ρ) · R∗
Tl′m′n′(ρ) dx dy = δll′δmm′δnn′ , (5.8)

where ∗ denotes complex conjugate. From (5.6), the relation between RTlmn and
T Tlmn can also be written as

η0T Tlmn × ẑ = YlmnRTlmn. (5.9)

The relation

k2 = k2
x + k2

y + k2
z = α2

m + β2
mn + γ2

mn, (5.10)

defines γmn and the principal square root branch is chosen such that the imaginary
part of γmn is non-negative.

The Floquet waves are related to the tangential Floquet modes as

R±(r) =

{
RT(ρ)e±iγz, l = 1,

(τ̂ ∓ ẑ τ
γ
)RT(ρ)e±iγz, l = 2,

ηT±(r) =
1

ik
∇× R±(r).

(5.11)

The derivation of the z-component from the tangential component can be found
in [11]. The z-dependence indicate that R+ and R− propagate in the positive and
negative z-direction, respectively.
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Figure 9: Geometry for a waveguide

5.2 The Waveguide Modes

The geometry for a cylindric waveguide with arbitrary cross-section is depicted in
Figure 9. Standard waveguide theory, see e.g., [1], gives that the z-dependence of
all field vectors in the waveguide is given by e±ikzz, where kz is the propagation
constant and the + (−) sign indicates propagation along the positive (negative)
z-direction. In a waveguide, the total electric and magnetic fields are decomposed
in the following way

E±(r, ω) = (ET(ρ, ω) ± ẑEz(ρ))e±ikzz,

η0H
±(r, ω) = (±η0HT(ρ, ω) + ẑHz(ρ))e±ikzz.

(5.12)

In the waveguide in Figure 9(a) two different modes, the transverse electric (TE)
mode and the transverse magnetic (TM) mode, can exist. In the waveguide with an
inner conductor, cf. Figure 9(b), the transverse electromagnetic (TEM) mode can
also exist. Thus Hz = 0 for the TM modes, Ez = 0 for the TE modes, and both
Hz = 0 and Ez = 0 for the TEM mode.

For a homogeneous hollow waveguide, the waveguide modes are derived from the
eigenvalue problem, see e.g., [3], given by Helmholtz’ equation,

∇2
TΦvn(ρ) + k2

tvnΦvn(ρ) = 0, ρ ∈ Ω, (5.13)

and the boundary conditions. Here k2
tvn = k2−k2

zvn, where k = k0
√
εµ, and ∇2

T is the
transverse part of the ∇2-operator. For the TM-case (v = 2), Φ2n(ρ) = Ez2n(ρ) and
the solution must fulfill the Dirichlet boundary condition Φ2n(ρ) = 0 at the metallic
walls, while for the TE-case (v = 1), Φ1n(ρ) = Hz1n(ρ) and the solution must fulfill

the Neumann boundary condition ∂Φ1n
∂n

(ρ) = 0 at the perfectly conducting walls.

The eigenmode for the TEM-case (v = 0) is derived from the Laplace equation,
with a Dirichlet boundary condition Φ(ρ) = Φi, where Φi is a real constant, at the
different parts of the metallic walls.
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The transverse eigenmodes for TE- and TM-modes are given by

ETvn(ρ, ω) =
i

k2
tvn(ω)

(kzvn(ω)∇TEzvn(ρ) − k(ω)η(ω)ẑ ×∇THzvn(ρ)),

η0HTvn(ρ, ω) =
i

k2
tvn(ω)

(kzvn(ω)∇THzvn(ρ) + k(ω)
1

η(ω)
ẑ ×∇TEzvn(ρ)),

(5.14)

where η =
√

µ
ε
, and for TEM-modes

ET0n(ρ, ω) = −∇TΦ(ρ),

η0HT0n(ρ, ω) = − 1

η(ω)
ẑ ×∇TΦ(ρ).

(5.15)

The transverse magnetic waveguide modes can be expressed in transverse electric
waveguide modes as

HTvn(ρ, ω) =
Y i

vn

η0

ẑ × ETvn(ρ, ω), (5.16)

where

Y i
vn =




√
εi

µi
, v = 0 (TEM),

ki
zn

µik0
, v = 1 (TE),

εik0

ki
zn
, v = 2 (TM),

(5.17)

is the admittance for the waveguide modes.
The sets of waveguide modes {ETvn}∞n=1 are complete and orthogonal, and the

modes are normalized as∫
Ω

ETvn(ρ) · E∗
Tv′n′(ρ) dx dy = δvv′δnn′ , (5.18)

where ∗ denotes complex conjugate.
In Figure 4, a number of examples of cross-sections for a waveguide are depicted.

For simple geometries, e.g., rectangular, circular and annular, there are well-known
analytic expressions for the waveguide modes, cf. [1]. Structures with rectangular
apertures are treated in [7] and structures with circular apertures with an inner
conductor are treated in [8]. For waveguides with more complicated cross-sections,
e.g., hexagonal, cross and tripole, there are generally no closed form expressions for
the waveguide fields. Instead these fields need to be determined numerically, and in
this paper FEM is utilized for this purpose.

6 The Scattering Matrices

In this section the scattering matrices for the different boundaries and uniform
sections are determined. For an FSS there are three types of boundaries:
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Figure 10: Propagation in a waveguide.

• Interface between two dielectric layers,

• Interface between a dielectric layer and an aperture layer,

• Interface between two aperture layers (a junction),

and two types of uniform sections:

• Dielectric layer,

• Aperture layer (a uniform section, a uniform waveguide).

6.1 Scattering Matrix of a Uniform Section

Figure 10 shows propagation through a uniform waveguide, i.e., a uniform section.
The scattering coefficients on each side of the section are related to each other by{

A+
vn(z1) = Ieikzn(z1−z0)A+

vn(z0),

A−
vn(z1) = Ie−ikzn(z1−z0)A−

vn(z0),
(6.1)

which can be written in matrix form as(
A−(z0)
A+(z1)

)
=

(
0 Ew(z1 − z0)

Ew(z1 − z0) 0

)
︸ ︷︷ ︸

Pw

(
A+(z0)
A−(z1)

)
, (6.2)

where

Ew
vn,v′n′(z) = eikznzδvv′δnn′ . (6.3)

A substantial number of evanescent modes must be included in the analysis.
This is because the uniform section will be relatively short in length so that the
decaying modes are not negligible at the next junction.
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Figure 11: Interfaces between waveguides.

6.2 Scattering Matrix of a Junction

First the case with the larger waveguide on the left-hand side and the smaller
waveguide on the right-hand side, see Figure 11(a), is studied.

The electric and magnetic fields inside the two waveguide sections are expanded
in waveguide modes as


Ea

T(r) =
∑
vn

(a+
vneika

znz + a−vne−ika
znz)Ea

Tvn(ρ),

Ha
T(r) =

∑
vn

(a+
vneika

znz − a−vne−ika
znz)Ha

Tvn(ρ),
z < z0,




Eb
T(r) =

∑
vn

(b+vneikb
znz + b−vne−ikb

znz)Eb
Tvn(ρ),

Hb
T(r) =

∑
vn

(b+vneikb
znz − b−vne−ikb

znz)Hb
Tvn(ρ),

z > z0,

(6.4)

The boundary conditions at the interface z = z0 are enforced. The boundary con-
ditions say that the tangential electric field is continuous over the entire surface Ωa,
while the tangential magnetic field is continuous over the joint surface Ωb, i.e.,

Ea
T(ρ, z0) =

{
Eb

T(ρ, z0), ρ ∈ Ωb,

0, ρ ∈ Ωa \ Ωb,

Ha
T(ρ, z0) = Hb

T(ρ, z0), ρ ∈ Ωb.

(6.5)

Introducing

A±
vn(z) = a±vne±ika

znz,

B±
vn(z) = b±vne±ikb

znz,
(6.6)
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and enforcing the boundary conditions of the fields at the interface z = z0 yield

∑
vn

(A+
vn(z0) + A−

vn(z0))E
a
Tvn(ρ) =




∑
vn

(B+
vn(z0) +B−

vn(z0))E
b
Tvn(ρ), ρ ∈ Ωb,

0, ρ ∈ Ωa \ Ωb,∑
vn

(A+
vn(z0) − A−

vn(z0))H
a
Tvn(ρ) =

∑
vn

(B+
vn(z0) −B−

vn(z0))H
b
Tvn(ρ), ρ ∈ Ωb.

(6.7)

To obtain a linear system of equations for the waveguide coefficients, the inner
product is taken between Eq. (6.7a) and Ha∗

Tv′n′ , and between Eq. (6.7b) and Eb∗
Tv′n′ .

The following inner product integrals appear

Qa
vn,v′n′ =

∫
Ωa

ẑ · (Ea
Tvn × Ha∗

Tv′n′) dS =
Y a∗

vn

η0

δvv′δnn′ ,

Qb
vn,v′n′ =

∫
Ωb

ẑ · (Eb
Tvn × Hb∗

Tv′n′) dS =
Y b∗

vn

η0

δvv′δnn′ ,

(6.8)

and

Cvn,v′n′ =

∫
Ωb

ẑ · (Eb
Tvn × Ha∗

Tv′n′) dS

=

∫
Ωb

Eb
Tvn · (Ha∗

Tv′n′ × ẑ) dS =
Y a∗

v′n′

η0

∫
Ωb

(Eb
Tvn · Ea∗

Tv′n′) dS .

(6.9)

With these definitions, the linear system for the waveguide coefficients is{
Qa(A+(z0) + A−(z0)) = Ct(B+(z0) + B−(z0)),

C∗(A+(z0) − A−(z0)) = Qb∗(B+(z0) − B−(z0)).
(6.10)

This can be written with a scattering matrix as(
A−(z0)
B+(z0)

)
=

(
Ss

11 Ss
12

Ss
21 Ss

22

)
︸ ︷︷ ︸

Ss

(
A+(z0)
B−(z0)

)
, (6.11)

where the elements of the scattering matrix are, see Appendix A.1,


Ss
11 = −(Qa + CtQb∗−1C∗)−1(Qa − CtQb∗−1C∗),

Ss
12 = 2(Qa + CtQb∗−1C∗)−1Ct,

Ss
21 = 2(Qb∗ + C∗Qa−1Ct)−1C∗,

Ss
22 = (Qb∗ + C∗Qa−1Ct)−1(Qb∗ − C∗Qa−1Ct).

(6.12)

If the smaller waveguide is on the left and the larger waveguide on the right, cf.
Figure 11(b), the linear system for the waveguide coefficients is(

A−(z0)
B+(z0)

)
=

(
Sg

11 Sg
12

Sg
21 Sg

22

)
︸ ︷︷ ︸

Sg

(
A+(z0)
B−(z0)

)
, (6.13)

where the elements of the scattering matrix are, see Appendix A.1,

Sg
11 = Ss

22, Sg
12 = Ss

21, Sg
21 = Ss

12, Sg
22 = Ss

11. (6.14)
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Figure 12: Interface between a dielectric layers and an aperture layers.

6.3 Interface between dielectric and aperture layer

First the case with the dielectric layer to the left and the aperture layer to the right,
see Figure 12(a), is studied.

The fields inside the dielectric layer are expanded in Floquet waves as


Ea
T(r) =

∑
lmn

(a+
lmneiγa

mnz + a−lmne−iγa
mnz)Ra

Tlmn(ρ),

Ha
T(r) =

∑
lmn

(a+
lmneiγa

mnz − a−lmne−iγa
mnz)T a

Tlmn(ρ).
(6.15)

The fields inside the apertures are expanded in waveguide modes as


Eb
T(r) =

∑
vn

(b+vneikb
znz + b−vne−ikb

znz)Eb
Tvn(ρ),

Hb
T(r) =

∑
vn

(b+vneikb
znz − b−vne−ikb

znz)Hb
Tvn(ρ).

(6.16)

The boundary conditions at the interface z = z0 are enforced. The boundary
conditions say that the tangential electric field is continuous over the entire interfaces
D, while the magnetic field is continuous over the apertures Ω, i.e.,

Ea
T(ρ, z0) =

{
Eb

T(ρ, z0), ρ ∈ Ω,

0, ρ ∈ D \ Ω,

Ha
T(ρ, z0) = Hb

T(ρ, z0), ρ ∈ Ω.

(6.17)

Introducing

A±
lmn(z) = a±lmne±iγa

mnz,

B±
vn(z) = b±vne±ikb

znz,
(6.18)
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and enforcing the continuity condition of the field at the interface z = z0 yield

∑
lmn

(A+
lmn(z0) + A−

lmn(z0))R
a
Tlmn(ρ) =




∑
vn

(B+
vn(z0) +B−

vn(z0))E
b
Tvn(ρ), ρ ∈ Ω,

0, ρ ∈ D \ Ω,∑
lmn

(A+
lmn(z0) − A−

lmn(z0))T
a
Tlmn(ρ) =

∑
vn

(B+
vn(z0) −B−

vn(z0))H
b
Tvn(ρ), ρ ∈ Ω.

(6.19)

To obtain a linear system of equations for the waveguide coefficients, the inner
product is taken between Eq. (6.19a) and T a∗

Tl′m′n′ , and between Eq. (6.19b) and
Eb∗

Tv′n′ . The inner product integrals are

Rlmn,l′m′n′ =

∫
D

ẑ · (Ra
Tlmn × T a∗

Tl′m′n′) dS =
Y a∗

lmn

η0

δll′δmm′δnn′ , (6.20)

Qvn,v′n′ =

∫
Ω

ẑ · (Eb
Tvn × Hb∗

Tv′n′) dS

=

∫
Ω

Eb
Tvn · (Hb∗

Tv′n′ × ẑ) dS

=
Y b∗

v′n′

η0

∫
Ω

(Eb
Tvn · Eb∗

Tv′n′) dS =
Y b∗

vn

η0

δvv′δnn′ ,

(6.21)

and

Cvn,l′m′n′ =

∫
Ω

ẑ · (Eb
Tvn × T a∗

Tl′m′n′) dS

=

∫
Ω

Eb
Tvn · (T a∗

Tl′m′n′ × ẑ) dS =
Y a∗

l′m′n′

η0

∫
Ω

(Eb
Tvn · Ra∗

Tl′m′n′) dS .

(6.22)

With these definitions, the linear system for the coefficients is{
R(A+(z0) + A−(z0)) = Ct(B+(z0) + B−(z0)),

C∗(A+(z0) − A−(z0)) = Q∗(B+(z0) − B−(z0)),
(6.23)

which can be written with a scattering matrix as(
A−(z0)
B+(z0)

)
=

(
Sl

11 Sl
12

Sl
21 Sl

22

)
︸ ︷︷ ︸

Sl

(
A+(z0)
B−(z0)

)
. (6.24)

The elements of the scattering matrix are, see Appendix A.1,


Sl
11 = −(R + CtQ∗−1C∗)−1(R − CtQ∗−1C∗),

Sl
12 = 2(R + CtQ∗−1C∗)−1Ct,

Sl
21 = 2(Q∗ + C∗R−1Ct)−1C∗,

Sl
22 = (Q∗ + C∗R−1Ct)−1(Q∗ − C∗R−1Ct).

(6.25)
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Figure 13: (a) Interfaces between two dielectric layers. (b) Propagation in a di-
electric layer.

If the aperture layer is to the left and the dielectric layer to the right, see Fig-
ure 12(b), the linear system for the waveguide coefficients are(

A−(z0)
B+(z0)

)
=

(
Sr

11 Sr
12

Sr
21 Sr

22

)
︸ ︷︷ ︸

Sr

(
A+(z0)
B−(z0)

)
, (6.26)

where the elements of the scattering matrix are, see Appendix A.1,

Sr
11 = Sl

22, Sr
12 = Sl

21, Sr
21 = Sl

12, Sr
22 = Sl

11. (6.27)

6.4 Scattering matrix for an interface
between two dielectric layers

In the case of an interface between two dielectric layers, see Figure 13(a), the fields
inside the dielectric layer are expanded in Floquet waves as


Ea

T(r) =
∑
lmn

(a+
lmneiγa

mnz + a−lmne−iγa
mnz)Ra

Tlmn(ρ),

Ha
T(r) =

∑
lmn

(a+
lmneiγa

mnz − a−lmne−iγa
mnz)T a

Tlmn(ρ),
z < z0,




Eb
T(r) =

∑
lmn

(b+lmneiγb
mnz + b−lmne−iγb

mnz)Rb
Tlmn(ρ),

Hb
T(r) =

∑
lmn

(b+lmneiγb
mnz − b−lmne−iγb

mnz)T b
Tlmn(ρ),

z > z0.

(6.28)

The boundary conditions at the interface z = z0, that the tangential electric and
magnetic fields are continuous over the entire interfaces D, are enforced.

Ea
T(ρ, z0) = Eb

T(ρ, z0), ρ ∈ D,

Ha
T(ρ, z0) = Hb

T(ρ, z0), ρ ∈ D.
(6.29)
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Introducing

A±
lmn(z) = a±lmne±iγa

mnz,

B±
lmn(z) = b±lmne±iγb

mnz,
(6.30)

and enforcing the continuity condition of the fields at the interface z = z0 yield∑
lmn

(A+
lmn(z0) + A−

lmn(z0))R
a
Tlmn(ρ) =

∑
lmn

(B+
vn(z0) +B−

lmn(z0))R
b
Tvn(ρ),

∑
lmn

(A+
lmn(z0) − A−

lmn(z0))T
a
Tlmn(ρ) =

∑
lmn

(B+
vn(z0) −B−

lmn(z0))T
b
Tvn(ρ).

(6.31)

To obtain a linear system of equations for the coefficients, the inner product is
taken between Eq. (6.31a) and T a∗

Tl′m′n′ , and between Eq. (6.31b) and Rb∗
Tl′m′n′ . The

following inner product integrals are defined

Ra
lmn,l′m′n′ =

∫
D

ẑ · (Ra
Tlmn × T a∗

Tl′m′n′) dS

=

∫
D

Ra
Tlmn · (T a∗

Tl′m′n′ × ẑ) dS

=
Y a∗

l′m′n′

η0

∫
D

(Ra
Tlmn · Ra∗

Tl′m′n′) dS =
Y a∗

lmn

η0

δll′δmm′δnn′ ,

(6.32)

Rb
lmn,l′m′n′ =

∫
D

ẑ · (Rb
Tlmn × T b∗

Tl′m′n′) dS =
Y b∗

lmn

η0

δll′δmm′δnn′ , (6.33)

and

Clmn,l′m′n′ =

∫
D

ẑ · (Rb
Tlmn × T a∗

Tl′m′n′) dS

=

∫
D

Rb
Tlmn · (T a∗

Tl′m′n′ × ẑ) dS

=
Y a∗

l′m′n′

η0

∫
D

(Rb
Tlmn · Ra∗

Tl′m′n′) dS =
Y a∗

lmn

η0

δll′δmm′δnn′ .

(6.34)

The linear system for the coefficients is{
Ra(A+(z0) + A−(z0)) = Ct(B+(z0) + B−(z0)),

C∗(A+(z0) − A−(z0)) = Rb∗(B+(z0) − B−(z0)),
(6.35)

which can be written with a scattering matrix as(
A−(z0)
B+(z0)

)
=

(
Sb

11 Sb
12

Sb
21 Sb

22

)
︸ ︷︷ ︸

Sb

(
A+(z0)
B−(z0)

)
. (6.36)
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The elements of the scattering matrix are, see Appendix A.1,


Sb
11 = −(Ra + CtRb∗−1C∗)−1(Ra − CtRb∗−1C∗),

Sb
12 = 2(Ra + CtRb∗−1C∗)−1Ct,

Sb
21 = 2(Rb∗ + C∗Ra−1Ct)−1C∗,

Sb
22 = (Rb∗ + C∗Ra−1Ct)−1(Rb∗ − C∗Ra−1Ct).

(6.37)

6.5 Propagation matrix for a dielectric layer

Figure 13(b) shows propagation through a dielectric layer. The scattering coefficients
on each side of the layer are related to each other as{

A+
mn(z1) = Ieiγmn(z1−z0)A+

mn(z0),

A−
mn(z1) = Ie−iγmn(z1−z0)A−

mn(z0),
(6.38)

which can be written in matrix form as(
A−(z0)
A+(z1)

)
=

(
0 Ed(z1 − z0)

Ed(z1 − z0) 0

)
︸ ︷︷ ︸

Pd

(
A+(z0)
A−(z1)

)
, (6.39)

where the element of the propagation matrix are

Ed
mn,m′n′(z) = eiγmnzδmm′δnn′ . (6.40)

7 Numerical results

The current method is implemented by a code written in MATLAB. The eigen-
value problem for the waveguide modes was solved by FEMLAB [2]. FEMLAB is a
commercial FEM program, which can be integrated in MATLAB as a toolbox.

7.1 Convergence

Since the sets of Floquet modes {RTlmn} and waveguide modes {ETvn} are complete
sets and the fields are supposed to be continuous, the expansions of the fields (5.2)
and (5.3) are convergent.

A substantial number of evanescent modes must be included in the analysis.
This is because the uniform sections will be relatively short in length and thus the
amplitude of the decaying modes may still be significant at the next junction.

An important question is: How many Floquet modes and waveguide modes are
needed? If the transverse modes are varying equally fast, see Figure 14, we get
a good mode matching. The transverse wave number is a good approximation of
how fast the transverse modes are varying. The rule is that the maximum of the
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τmn ka
tlm kb

tlm

Figure 14: The rule of thumb is that the value of the maximum transverse wave
number should be the same in all regions to obtain good mode matching.

transverse wave number in all the layers should be the same. Thus the number of
modes in the different layers is determine by, see Figure 14,

|τmn|max ≈ |ka
tlm|max ≈ |kb

tlm|max. (7.1)

In the numerical examples, the number of the Floquet modes are first fixed and
then the number of waveguide modes are determined by Eq. (7.1). The number
of Floquet modes are increased until the solution is stable. Floquet mode index
up to 8, i.e., −8 ≤ m,n ≤ 8 (see (5.2) and (5.6)), has been used in the numerical
examples, this correspond to 578 Floquet modes and approximately 90 waveguide
modes.

The numerical waveguide modes are supposed to be reliable, since a thoroughly
tested commercial code has been used to calculate the modes. The modes have also
been compared to the cases where analytical waveguide modes exist.

7.2 Puck Plate Bandpass Radome

7.2.1 Circular geometry

Figure 15 shows the geometry of a thick-screen Puck Plate (PP) FSS with circular
cross-section. The metallic plate is perforated with circular apertures which are
partly filled with a dielectric material.

A comparison with predicted results obtained by Wu [12] is depicted in Figure 16.
The reflection and transmission are shown at normal incidence (θ = 0◦) and at
θ = 50◦, and the solid lines are calculated by the current method and the dashed
lines by Wu. The calculations by the current method agree very well with the results
by Wu.

Figure 17 shows the predicted transmission response of this bandpass radome at
several incident angles (θ = 0◦, 30◦, 50◦, 70◦) for TE- and TM-polarizations. For TE-
polarizations, the passband become more narrow and its center frequency decreases
when the angle of incidence increases. For TM-polarizations, the passband becomes
broader and its center frequency increases when the angle of incidence increases.

The are several features that can be noted; First, the bandwidth of this design
is fairly narrow. It can be adjusted by varying the dielectric constant of the load
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Figure 15: Geometry of the Puck Plate Bandpass FSS.

16.5 16.7 16.9 17.1 17.3 17.5 17.7 17.9 18.1 18.3 18.5
Frequency [GHz]

-30

-28

-26

-24

-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

P
ow

er
 L

os
s 

[d
B

]

TE-incidence with theta = 50Normal incidence

Transmisson preducted by Wu
Reflection preducted by Wu
Calculated Transmisson
Calculated Reflection

16.5 16.7 16.9 17.1 17.3 17.5 17.7 17.9 18.1 18.3 18.5
Frequency [GHz]

-30

-28

-26

-24

-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0
P

ow
er

 L
os

s 
[d

B
]

Transmisson preducted by Wu
Reflection preducted by Wu
Calculated Transmisson
Calculated Reflection

(a) (b)

Figure 16: Comparison with predicted results obtained by Wu [12] at normal
incidence and at θ = 50◦.
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Figure 17: The dependence of the angle of incidence for TE- and TM-incidence for
the PP-FSS in Figure 15.
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Figure 18: (a) The dependence of the permittivity. (b) The dependence of the
diameter of the aperture. (c) The dependence of the thickness of the aperture filler.
The geometry of the PP-FSS is in Figure 15.
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Figure 19: Geometry of the Hexagonal Puck Plate Bandpass FSS.

material, the plate thickness, and the aperture diameter. The resonance of the
passband varies with the scan angle and with the polarization of the incident wave.
There is no flat passband region because the input impedance of the FSS varies
with the angle of incidence and with the polarization. This behavior is typical
for this type of thick-screen FSS, when no irises are used in the apertures and no
dielectric layers are added to the outside of the conductive thick-screen region to
help counteract the effects of the varying input impedance. Because the passband of
this thick-screen radome is not stable with the scan angle, it has limited applications
where wide scan ability and wide bandwidth are not required.

The dependence of permittivity, diameter and thickness are shown in Figure 18.
In (a) it is shown that the passband becomes more narrow and with a center fre-
quency that decreases when the constant of permittivity increases, and in (b) it is
shown that the passband becomes broader and with a center frequency that de-
creases when the diameter of aperture increases. In Figure 18(c) it is shown that
the passband becomes more narrow and its center frequency decreases when the
thickness of dielectric puck increases.

7.2.2 Hexagonal geometry

In Figure 19 the geometry of a hexagonal Puck Plate Bandpass FSS is depicted. It
has almost the same grid and cross-section as in the last example, but now there is a
hexagonal cross-section instead of circular. The calculated transmission at different
angles of incidence for TE- and TM-polarization are plotted in Figure 20. For TE-
polarizations, the passband become more narrow and its center frequency decreases
when the angles of incidence increases, and for TM-polarizations, the passband
become broader when the angles of incidence increases. The dependence of incident
angle for hexagonal apertures is similar to circular apertures, by the dependence are
stronger.
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Figure 20: Calculated transmission at different angles of incidence for the PP-FSS
in Figure 19.

7.3 The Artificial Puck Plate Radome

7.3.1 Circular geometry

Figure 21 shows the grid and cross-section of an Artificial Puck Plate (APP) FSS
with circular cross-section. Irises are included in both apertures and the apertures
are filled with dielectric material.

The plots in Figure 22 show calculated transmitted power for four different per-
mittivities of the puck and five different thicknesses of the puck. It is shown, as for
PP-FSS, that the passband become more narrow and with a center frequency that
decreases when the constant of permittivity increases. The thickness of the puck
must be adjusted to fit to the permittivity of the puck. If the thickness is to small,
there is a dip between the two resonant frequencies with full transmission, and if
the thickness is to large, there is no full transmission at any frequency.

In Figure 23 the calculated reflected and transmitted power for the APP-FSS in
Figure 21 are depicted for both TE- and TM-incidence. The reflection and transmis-
sion are plotted for a number of different incident angles; (θ = 0◦, 15◦, 30◦, 45◦, 60◦).
The passband remains stable and is centered around 32.5 GHz. The reflection loss
is low for TE-polarization, but for TM-polarization the reflection loss is very large
for large angles of incidence. This dependence of incident angle is eliminated by
dielectric slabs on either side of the metallic plate.

7.3.2 Wu

Figure 24 shows the geometry of a Ka-band Artificial Puck Plate thick-screen band-
pass radome. Irises are included in both apertures and dielectric sheets have been
added to the exterior in order to stabilize the scan performance.

Figure 25 shows the measured and calculated, transmission and reflection curves
of the Ka-band APP bandpass radome. The plots are done for two different angles
of incidence; 15◦ and 60◦. The curves are compared with the results obtained in the
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Figure 21: Geometry of the Artificial Puck Plate FSS.
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Figure 22: Calculated transmission at different permittivity and thickness for the
APP-FSS in Figure 21.
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Figure 23: Calculated reflection and transmission of the APP-FSS in Figure 21 at
different angles.
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Figure 24: The Grid (a) and Cross-section (b) of the Artificial Puck Plate FSS.
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book edited by Wu [12]. The solid lines are calculated by the current method, the
dashed and dotted line by Wu and the dots are from measurements. The calculations
agree very well with measurements and with the results by Wu.

Figure 26 shows transmission and reflection for incidence between 0◦ and 60◦.
The passband remains stable and is centered around 36 GHz. The reflection loss is
very low. This performance is ideally suited for applications involving a wide-angle
scanning antenna behind a bandpass radome. Note that the bandwidth of this FSS
is not extremely high but it meets the requirements for which this radome was
designed. The bandwidth can be easily adjusted by changing the dielectric constant
of the load material, but more narrow bandwidth yields tighter tolerance and more
advanced fabrication techniques.

7.3.3 Hexagonal geometry

In the example in Figure 27 there are almost the same grid and cross-section as in the
last example, but now the cross-section is hexagonal. In the last example with the
circular cross-section, analytical waveguide modes could have been used, but with
the hexagonal cross-section numerical waveguide modes must be use. The waveguide
modes are calculated with FEM. The plots in Figure 28 are done for both TE- and
TM-incidence, and for five different incident angles; normal incidence, 15◦, 30◦, 45◦

and 60◦. The curves show that the passband remains stable and the reflection loss
is very low.

8 Conclusions

The conclusions from the study is that this method, based on the mode matching
technique and the finite element method (FEM), can handle arbitrary frequency
selective structures. The result of the method is in accordance with other methods
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Figure 25: Comparison with measured and predicted, reflection and transmission
done by Wu [12] for the FSS in Figure 24.
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Figure 26: Calculated reflection and transmission at different angles of incidence
for the FSS in Figure 24.
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Figure 27: Geometry of the Artificial Puck Plate FSS.
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Figure 28: Calculated reflection and transmission at different angles of incidence
for the APP-FSS in Figure 27.

and measurements. The result of the present method is also in accordance with the
result of an established integral equation method, i.e., the spectral Galerkin method,
where the thickness of the screen is assumed to be zero. Hence, the present method
can also handle structures with thin-screen FSS.

Irises at the apertures stabilize passband for different incident angles. Dielectric
sheets make the FSS independent of the incident angles. The bandwidth decreases
when the thickness of the aperture layer is increased and when the permittivity of
the aperture layer is increased.
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Appendix A The linear systems

A.1 The linear system for the waveguide coefficients

The linear system is given by{
R(A+ + A−) = Ct(B+ + B−),
C∗(A+ − A−) = Q∗(B+ − B−),

(A.1)

where the sizes of the vectors A± and B± are na and nb, respectively. The matrices
R and Q are quadratic, and the matrix C is not necessarily quadratic.
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The linear system is rewritten as{
A− = R−1Ct(B+ + B−) − A+,
B+ = Q∗−1C∗(A+ − A−) + B−.

(A.2)

The upper expression is inserted in the lower expression in (A.1), and the lower
expression is inserted in the upper expression in (A.1). This gives{

R(A+ + A−) = CtQ∗−1C∗(A+ − A−) + 2CtB−,
2C∗A+ − C∗R−1Ct(B+ + B−) = Q∗(B+ − B−),

⇔
{

(R + CtQ∗−1C∗)A− = −(R − CtQ∗−1C∗)A+ + 2CtB−,
(Q∗ + C∗R−1Ct)B+ = 2C∗A+ + (Q∗ − C∗R−1Ct)B−,

⇔
{

A− = −(R + CtQ∗−1C∗)−1(R − CtQ∗−1C∗)A+ + 2(R + CtQ∗−1C∗)−1CtB−,
B+ = 2(Q∗ + C∗R−1Ct)−1C∗A+ + (Q∗ + C∗R−1Ct)−1(Q∗ − C∗R−1Ct)B−.

(A.3)

The linear system can now be written with a scattering matrix as(
A−

B+

)
=

(
Sl

11 Sl
12

Sl
21 Sl

22

) (
A+

B−

)
, (A.4)

where the element of the scattering matrix are


Sl
11 = −(R + CtQ∗−1C∗)−1(R − CtQ∗−1C∗),

Sl
12 = 2(R + CtQ∗−1C∗)−1Ct,

Sl
21 = 2(Q∗ + C∗R−1Ct)−1C∗,

Sl
22 = (Q∗ + C∗R−1Ct)−1(Q∗ − C∗R−1Ct).

(A.5)

The sizes of the matrices are

Sl
11 : na × na, Sl

12 : na × nb, Sl
21 : nb × na, Sl

22 : nb × nb. (A.6)

If the vectors A and B are exchanged in (A.1), the linear system is given by{
C(A+ + A−) = R(B+ + B−),

Q∗(A+ − A−) = C∗t(B+ − B−).
(A.7)

The matrices R and Q are quadratic, but the matrix C does not have to be
quadratic.

The linear system is rewritten as{
B+ = R−1C(A+ + A−) − B−,

A− = A+ − Q∗−1C∗t(B+ − B−),
(A.8)
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and the upper expression is inserted in the lower expression in (A.7), and the lower
expression is inserted in the upper expression in (A.7). This gives{

2CA+ − CQ∗−1C∗t(B+ − B−) = R(B+ + B−),
Q∗(A+ − A−) = −2C∗tB− + C∗tR−1C(A+ + A−),

⇔
{

(R + CQ∗−1C∗t)B+ = 2CA+ − (R − CQ∗−1C∗t)B−,
(Q∗ + C∗tR−1C)A− = (Q∗ − C∗tR−1C)A+ + 2C∗tB−,

⇔
{

A− = (Q∗ + C∗tR−1C)−1(Q − C∗tQ−1C)A+ + 2(Q∗ + C∗tR−1C)−1C∗tB−,
B+ = 2(R + CQ∗−1C∗t)−1CA+ − (R + CQ∗−1C∗t)−1(R − CQ∗−1C∗t)B−.

(A.9)

The linear system can now be written with a scattering matrix as(
A−

B+

)
=

(
Sl

11 Sl
12

Sl
21 Sl

22

) (
A+

B−

)
, (A.10)

where the elements of the scattering matrix are


Sr
11 = Sl

22 = (Q∗ + C∗R−1Ct)−1(Q∗ − C∗R−1Ct),

Sr
12 = Sl

21 = 2(Q∗ + C∗R−1Ct)−1C∗,

Sr
21 = Sl

12 = 2(R + CtQ∗−1C∗)−1Ct,

Sr
22 = Sl

11 = −(R + CtQ∗−1C∗)−1(R − CtQ∗−1C∗).

(A.11)

A.2 The Cascading by Scattering Matrices

The two linear system, which shall be cascaded, are given by(
A−

B+

)
=

(
Sa

11 Sa
12

Sa
21 Sa

22

) (
A+

B−

)
and

(
B−

C+

)
=

(
Sb

11 Sb
12

Sb
21 Sb

22

) (
B+

C−

)
,

(A.12)

or equivalently{
A− = Sa

11A
+ + Sa

12B
−,

B+ = Sa
21A

+ + Sa
22B

−.

{
B− = Sb

11B
+ + Sb

12C
−,

C+ = Sb
21B

+ + Sb
22C

−.
(A.13)

The lower-left expression is inserted in the upper-right expression, and the upper-
right expression is inserted in the lower-left. This gives{

B− = Sb
11S

a
21A

+ + Sb
11S

a
22B

− + Sb
12C

−,
B+ = Sa

21A
+ + Sa

22S
b
11B

+ + Sa
22S

b
12C

−,

⇔
{

(I − Sb
11S

a
22)B

− = Sb
11S

a
21A

+ + Sb
12C

−,
(I − Sa

22S
b
11)B

+ = Sa
21A

+ + Sa
22S

b
12C

−.

(A.14)

The upper expression is inserted in the upper-left expression in (A.13), and the lower
expression is inserted in the lower-right expression in (A.13). This gives{

A− = (Sa
11 + Sa

12(I − Sb
11S

a
22)

−1Sb
11S

a
21)A

+ + Sa
12(I − Sb

11S
a
22)

−1Sb
12C

−,

C+ = Sb
21(I − Sa

22S
b
11)

−1Sa
21A

+ + (Sb
22 + Sb

21(I − Sa
22S

b
11)

−1Sa
22S

b
12)C

−.
(A.15)
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The linear system can now be written with a scattering matrix as(
A−

C+

)
=

(
Sc

11 Sc
12

Sc
21 Sc

22

) (
A+

C−

)
, (A.16)

where the elements of the scattering matrix are


Sc
11 = Sa

11 + Sa
12(I − Sb

11S
a
22)

−1Sb
11S

a
21,

Sc
12 = Sa

12(I − Sb
11S

a
22)

−1Sb
12,

Sc
21 = Sb

21(I − Sa
22S

b
11)

−1Sa
21,

Sc
22 = Sb

22 + Sb
21(I − Sa

22S
b
11)

−1Sa
22S

b
12.

(A.17)

The sizes of the submatrices are

Sa
11 : na × na, Sa

12 : na × nb, Sa
21 : nb × na, Sa

22 : nb × nb,
Sb

11 : nb × nb, Sb
12 : nb × nc, Sb

21 : nc × nb, Sb
22 : nc × nc,

Sc
11 : na × na, Sc

12 : na × nc, Sc
21 : nc × na, Sc

22 : nc × nc.
(A.18)
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