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Chapter 1

Introduction

Any (good) book in Surface and Colloid Chemistry1–4 will tell you how
important electrostatic interactions are. Charged entities are ubiquitous
in nature, and the forces between them control the behaviour of systems
in areas as mundane as foods and detergents, as technologically impor-
tant as materials science and as vital as the life sciences. Current reviews
and workshops continue to stress this issue5,6 , and it is a safe statement
to say that studying and understanding electrostatic interactions is of
great scientific and practical relevance.

The same kind of references will also tell you that the classical de-
scription of charge-charge interactions in condensed media, of which wa-
ter plays a central role, is based on the so-called dielectric continuum
model. In this model the interaction between two charges qi and qj in a
medium, ωmed.

qi qj , is just the interaction in vacuum (i.e., Coulomb’s law7),
scaled down by a constant:

ωmed.
qi qj =

Uvac.qi qj

εr
=

1
4πε0εr

qi qj
rij

(1.1)

where rij is the distance between the two charges and ε0 is the permit-
tivity of vacuum. The scaling factor is the well-know dielectric constant
of the medium, εr, and for water it is around 80.

Replacing a complex reality such as a solvent, with all its molecules
and degrees of freedom, by a single number, εr, is obviously a huge
simplification, and this has afforded and still affords considerable progress
in our understanding of electrostatic phenomena in liquid media. Such
a description enters the picture both in the DLVO theory of colloidal
stability8,9 , through the Poisson-Boltzmann (PB) equation, as in general
in computer simulations or analytical theories where the charge-charge
potential is given by Equation 1.1. In computer simulations Equation 1.1
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is known as the Primitive Model (PM) (see, e.g.10 , for a review with
examples of its use), a nomenclature which I will use interchangeably
with the more general dielectric continuum model. It is evident that
replacing the treatment of all solvent molecules explicitly in a simulation
by an implicit solvent, as in Equation 1.1, can reduce the computational
effort by orders of magnitude, and allow the study of much larger systems.

Equation 1.1 is macroscopic in essence, being derived for bulk con-
ditions, where the separation rij between the charges is large. As we
shorten the separation between the charges, we would expect this model
at some point to break down, and that we would need to start consider-
ing the solvent explicitly, rather than implicitly. However, considerable
evidence has been accumulated over the past decades of a surprisingly
good agreement between experiment and theoretical efforts developed
using the dielectric continuum model, in particular down to length scales
of a few molecular diameters. Examples include properties as diverse
as activity coefficients in (concentrated) sea water solutions11,12 , phase
behaviour in surfactant systems in lamellar phases13–15 and even in other
geometries16 , the cohesion and setting in cement17–22 and forces between
mica surfaces in electrolyte solutions23,24 .

The broader context of this thesis is then the central question of why
the primitive model is working under conditions for which we would not
expect it to work. The particular problem one chose to deal with is
the interaction between two (planar) electrical double layers, i.e., two
charged surfaces and their associated counterions. This is a classical
system in Surface and Colloid Chemistry1–4,9 , and has been extensively
studied over the years both experimentally and theoretically. The focus
is on the force between these charged objects, which is a fundamental
property of the system, determining its conditions of stability. Using
computer simulations the double layer forces (at short separations) in
an explicit molecular solvent have been studied, and one investigated
how the corresponding primitive model picture conforms to the explicit
solvent situation. One specific test was the reproduction, in a molecular
solvent, of the ion-ion correlation attraction effect25 , which is already
very well documented in the PM.

The original scientific contributions are made up by the research ar-
ticles appended at the end of this thesis summary. In the context of this
thesis Paper I is seen mostly as yet another example of the success of the
dielectric continuum model, under conditions which should challenge its
validity. Paper V and the calculation of the dielectric constant of general
dipolar fluids comes as a requisite for the comparison between primitive
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model and corresponding molecular solvent results, for sufficiently high
εr. The ambition of this summary is to set the stage for a better under-
standing of the papers. One clear goal is to relate the work performed
here with molecular solvents to the corresponding Poisson-Boltzmann
and PM pictures, which are well established in the field. This should
allow the reader to understand the approximations these possibly more
familiar theories introduce, and how the work here builds up on that.
I present some further details of the models, make more general ther-
modynamic considerations and give some gist of the main method used
(Monte-Carlo simulations). At no point is the intention to be extensive,
nor many times fully rigorous, but rather to highlight some important
aspects not covered in the papers, focusing on the underlying physics,
rather than on mathematical or formal aspects. The remaining sections
of this introduction intend to give the reader some insight into how the
dielectric continuum model comes about, as well as on some of its im-
portant implications.

1.1 On the origin of εr in the primitive model

A central piece in classical electrostatics is Poisson’s equation7 ,

∇2Φ(x, y, z) = −ρ(x, y, z)
ε0

(1.2)

which relates a charge distribution ρ in vacuum with the electrostatic
potential Φ it creates at a point in space of coordinates (x, y, z). The
Laplace operator ∇2 stands for the partial second derivatives of the func-
tion with respect to the spacial coordinates, i.e., ∇2 = ∂2

∂x2 + ∂2

∂y2
+ ∂2

∂z2
.

In the simplest case where the charge distribution is a single point charge
q located at point i in space (of coordinates (xi, yi, zi)) the solution for
the potential at a point j is7,26

Φqi(xj , yj , zj)
vac. =

1
4πε0

qi
rij

(1.3)

with rij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2, i.e., the distance be-
tween points i and j. If another point charge is located at point j one
immediately obtains Coulomb’s law for the potential energy of interac-
tion between both charges in vacuum:

Uvac.qi qj =
1

4πε0
qi qj
rij

(1.4)
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How do we now get the (average) interaction between two charges in
a medium (or solvent) of dielectric constant εr, avoiding having to con-
sider all charge-solvent and solvent-solvent interactions explicitly? Let’s
assume our solvent is composed of particles which have a permanent
dipole moment µ (throughout the thesis summary bold will be used for
vector quantities). The treatment can be generalized for higher order
electric moments (quadrupoles, etc.), but the dipolar only case is both
instructive and the one of relevance for this thesis. The sum of the dipole
moments of all the solvent molecules in a given volume V divided by that
same volume, i.e., the dipole moment density, is another important quan-
tity called the electric polarization P:

P(x, y, z) =
〈∑

n µn
V

〉
(1.5)

where the brackets denote an average over the different configurations
of the system (for which both the dipole orientations and the number of
dipoles n in V may vary). Writing P as a function of (x, y, z) assumes a
sufficiently small volume V around (x, y, z). It can be shown7 that the
negative of the divergence of the polarization, −∇ ·P, creates an electro-
static potential at point (x, y, z) in space just like the charge distribution
ρ in Equation 1.2 did. We can therefore write Poisson’s equation for the
case of a charge distribution immersed in a dipolar medium as:

∇2Φ(x, y, z) = −ρnet(x, y, z)
ε0

+
∇ ·P(x, y, z)

ε0
(1.6)

where we have stressed that ρ is the distribution of the net charges, i.e.,
permanent charges on non charge neutral entities (e.g., ions). The exact
meaning of the divergence operator is not important for our purposes
here and one should just keep in mind that ∇·P accounts for the effects
of the non-uniformity of the polarization7 . Another way of putting it is
to say that the polarization only has the character of a net charge at the
surface of a volume1 .

To proceed we must introduce a relation between the polarization P
and the electrostatic potential Φ. An electrostatic potential is related to
an electric field E by

E(x, y, z) = −∇Φ(x, y, z) (1.7)

i.e., the components of the field in the different directions are the partial
derivatives of the potential with respect to the corresponding spacial
coordinates (e.g., Ex = −∂Φ

∂x ). It is more or less intuitive that if we apply
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an electric field to a dipolar medium the dipoles will orient themselves
(i.e., polarize) in the direction of this field. A possible relation between
P and E is1,7

P = ε0(εr − 1)E = −ε0(εr − 1)∇Φ (1.8)

The two main approximations introduced are then that the polariza-
tion is always directly proportional to the electric field, regardless of its
strength (this is the so-called linear response approximation) and that
the medium is isotropic, i.e., a field in one direction polarizes the ma-
terial only in that direction. See, e.g.27 , for a discussion of the cases
when these approximations are not introduced. The medium further is
assumed to be uniform, i.e., εr does not depend on the point in space
where one is. Equation 1.8 means that

∇ ·P = −ε0(εr − 1)∇ · ∇Φ = −ε0(εr − 1)∇2Φ (1.9)

and introducing this result in Equation 1.6 we obtain a modified Poisson
equation, which reads:

∇2Φ(x, y, z) = −ρnet(x, y, z)
ε0εr

(1.10)

An electrostatic problem in a medium is then just like the corresponding
one in vacuum, provided the fields (or potentials) given by the charges
in vacuum are scaled down by εr. The solution of Equation 1.10 for a
single point charge is

Φqi(xj , yj , zj)
med. =

1
4πε0εr

qi
rij

(1.11)

from which one immediately obtains Equation 1.1.

Before proceeding one further important remark should be made on
nature of ωmed.

qi qj , and on why a different symbol is used for it as compared
to Uvac.qi qj . Suppose we have more generally a system of m charges (ions)
immersed in n dipoles (as a simple model for water molecules). The
total potential energy of the system Utot comprises charge-charge, charge-
dipole and dipole-dipole interactions (all in vacuum), and is a function of
the spacial coordinates of all the particles, (rm,Rn) (r is a vector giving
the coordinates of one of the charges in the system, and there are m
such vectors; similarly for the dipoles). A fairly standard procedure in
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Statistical Mechanics is to integrate or average out the degrees of freedom
of the particles we are not primarily interested in, to obtain an effective
energy function which only depends on the coordinates of the remaining
particles28 :

ωeff (rm) = −kBT ln
∫
exp

[
−Utot(r

m,Rn)
kBT

]
dRn (1.12)

where kB is Boltzmann’s constant and T the temperature. Equation 1.1
is a particular case of this, for the simple situation of only two charges
immersed in a medium. The presence of T on the rhs of Equation 1.12
immediately gives it away: whereas Utot is a pure energy (the same going
for Uvac.qi qj ), ωeff and ωmed.

qi qj are actually free energies.

1.2 The link between εr and molecular proper-
ties: an illustration

Equations 1.8 and 1.11 tell us that the dielectric constant of a material
is a measure both of how it is affected by an (external) electric field,
and also of how this material on its turn affects the fields (or potentials)
inside the medium it constitutes. By now it should be no surprise that εr
depends directly on the properties of the molecules the medium is made
of. There are elegant analytical theories which make such links, like the
Debye and Onsager equations27 , but which are not free from serious
defficiencies and/or a limited range of validity/accuracy. A thorough
discussion of these issues is given in the literature27 , and will not be
taken up here. However, they still give (at least) important insight into
the connection between εr and microscopic or molecular quantities. The
Debye equation reads:

εr − 1
εr + 2

=
n

3ε0V

(
α+

µ2

3kBT

)
(1.13)

where n/V is a particle number density, and the equation was written for
the case of only one type of particles in the system. Unlike in the treat-
ment of the previous section, the equation was generalized to the case
of particles which have a polarizability α, besides the permanent dipole
moment (of magnitude µ). We therefore see that εr grows with the dipole
moment and polarizability of the molecules, as well as with the particle
number density. This is only logical since µ and α quantify the response
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of the molecules to an electric field (the field from a point charge, for
example). The first term between brackets on the rhs of Equation 1.13
is usually known as the electronic polarizability. It measures how much
the electrons in the molecule are displaced with respect to the positive
charges, giving rise to induced dipole moments. I will not be concerned
with this effect in this thesis. By analogy, µ2/3kBT is usually referred
to as the orientation polarizability, quantifying how much the permanent
dipoles of the molecules align in an electric field, against the randomizing
effect of entropy (T ).

1.3 The complicated reality that εr encloses

The derivation of the primitive model (Equation 1.1) from Poisson’s
equation in Section 1.1, as well the concept of effective potential in Equa-
tion 1.12 already gave an overview of the complex reality a dieletric con-
tinuum encloses. To put it short, the primitive model is far from being
primitive! The treatment in Section 1.1 uses equations of macroscopic
electrostatics, and there is no a priori guarantee that these should remain
valid for microscopic length scales. The same goes for the approxima-
tions introduced in Equation 1.8 (polarization directly proportional to
electric field, uniform dielectric medium, ...). These become more and
more questionable as the distance between charges gets smaller. For a
charged species (let’s say a simple ion or a macroion) the electrostatic
potential it creates in its vicinity increases as the distance to its center
decreases (Equation 1.3). This means that a dipole close to this charge
will be more and more aligned with its field as we decrease their distance,
and one has the concept of solvation shells. Below a certain distance, for
a sufficiently high charge, despite the increase in the field, the dipole is
already fully aligned, and P is no longer proportional to E (one is in a
so-called saturation regime; to be more stricly correct one should actu-
ally be aware that the saturation regime does not start only when the
field is sufficiently high that the dipole is completely aligned with it; the
deviation from the linear regime begins for a sufficiently high dipole-field
interaction, µ·E, and for µ·E = kBT one can certainly already expect
some deviation in the direct proportionality between P and E). Even
if this is not the most complete view of the solvation environment of a
charge, it illustrates one of the possible failures of the continuum theory.
In the same line of thought, we can imagine that as two charges come to-
gether their solvation environments start overlapping, and in this regime
one could think that the average of Equation 1.12 is no longer valid, since
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the solvent in the inter-charge space is not merely ”tumbling around”. A
further point is that very simply the number of solvent molecules which
fits between two charges is not a continuum, but a discrete number,
and for sufficiently short separations this should have an effect on the
charge-charge interactions.

As also mentioned before, the primitive model is an effective po-
tential, and the interaction energy there is not a pure energy, rather a
free energy. Besides the (unscreened) charge-charge interaction it also
encloses the charge-solvent interaction, the change in solvent-solvent in-
teraction due to the presence of the charges as well as the change in
solvent entropy. A detailed discussion of this is given in1 , to which the
reader is referred, where some direct consequences of these facts are fur-
ther explored. One particular point to keep in mind is that the dielectric
constant (for water) is temperature dependent, which immediately gives
the entropy connection.

To conclude, I hope to have given sufficient arguments to why one
would think that the primitive model should not work at short length
scales (small charge-charge separations). Since the contrary seems to be
happening, it is then of fundamental interest (but with many practical
implications!) to understand why.



Chapter 2

Implicit solvent in a
mean-field picture

The forces between charged objects in solution are central for the un-
derstanding of such systems, and the structures adopted are merely a
consequence of the underlying interactions. This was recognized long
ago and led to what is the cornerstone of the theoretical interpreta-
tion of colloidal stability: the DLVO theory8,9 . It combines a descrip-
tion of electrostatics through the Poisson-Boltzmann equation with van
der Waals interactions and is still today a powerful tool in rationalizing
many relevant problems in Surface and Colloid Chemistry. The focus of
this thesis being on electrostatic forces I will therefore devote the next
pages only to the Poisson-Boltzmann component. The general state of
affairs can be found in standard textbooks1–4 and there is a plethora
of examples of how successful the Poisson-Boltzmann equation can be
in describing charge-charge interactions in dielectric media. Some ”clas-
sics” include surface forces in electrolyte solutions29,30 , phase behaviour
in surfactant systems under a range of conditions (salt contents, aggre-
gate shapes, etc.)16,31 and electrostatic potentials of binding sites of
enzymes32 . Other examples include the analysis of the forces between
macroions for a range of parameters33 , and very recently a direct quan-
titative comparison between theory and experiment in the case of forces
between single pairs of polystyrene beads34 . My primary interest here
is to show how this classical level of description is connected to the the
primitive model and finally to the simulations with molecular solvents
which are the original contributions of this thesis. Another purpose is to
stress the two main approximations which the Poisson-Boltzmann theory
introduces. Such background is also suitable for the analysis of Paper I.
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Let’s suppose we have a solution with small mobile charged species
(from now on ions), and which in the cases of interest below is con-
fined between some charged interfaces. The Poisson-Boltzmann equation
reads1,2 :

∇2Φ(x, y, z) = − 1
ε0εr

∑
i

qi ci0 exp

(−qi Φ(x, y, z)
kBT

)
(2.1)

where the summation is over the different types of ions in solution. In
the modified Poisson equation (1.10) the distribution of our net charges
can be written as

ρnet =
∑
i

qi ci(x, y, z) (2.2)

where ci(x, y, z) is the concentration of ions i at a certain point in the
solution. At equilibrium the concentration profiles obey a Boltzmann
distribution:

ci(x, y, z) = ci0 exp

(−qi Φ(x, y, z)
kBT

)
(2.3)

and we immediately obtain Equation 2.1. ci0 is the concentration of ions
of species i at a point where the electrostatic potential Φ is zero, normally
the bulk.

Besides the assumption of a continuum solvent which comes from the
modified Poisson equation (1.10), and which as we will see is common
to the primitive model, one introduced a further important approxima-
tion. The electrostatic potential Φ is not only the potential from sources
external to the solution (like our charged interfaces below), but includes
also the mean potential from the mobile charged specied (the ions). The
word to keep in mind here is mean, and a so-called mean-field approxi-
mation has been made. In the context of Equation 2.1 the ions are no
longer seen as individual particles which have different positions in space
as a function of time, but rather as a mean electrostatic potential and a
mean particle distribution. The reader is referred to1 for further discus-
sion and to35 for a formal derivation of Equation 2.1 with a great deal
of emphasis on the concept of mean electrostatic potentials. Another
derivation of Equation 2.1 is given in36 . This is instructive in pointing
out how the Poisson-Boltzmann approximation implies replacing the two
particle distribution functions (for the ions) by a product of one parti-
cle distribution functions, i.e., the pair correlation function between the
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ions is always constant and equal to one, i.e., the correlations between
the ions have been ignored.

The Poisson-Boltzmann equation can now be solved for a variety of
problems (boundary conditions) and provide fundamental properties of
the systems. Two examples of particular interest for the current thesis
follow.

2.1 Double layer forces on the Poisson-Boltz-
mann level

2.1.1 Two interacting double layers

The model system of greatest interest for us througouht this thesis is that
of two infinite like-charged plates of smeared-out surface charge density
σ, with their associated counterions only, i.e., two identical, salt-free elec-
trical double layers. The interaction between charged plates is a standard
in Surface and Colloid Chemistry textbooks1–4 . This is a good model
to study the behaviour of, e.g., lamellar liquid crystalline phases formed
by ionic surfactants37 or of clay systems38 , and even the interactions be-
tween curved charged surfaces provided the radius of curvature is large
enough. The salt-free case is chosen here for simplicity, since the focus
is on the solvent effects on charge-charge interactions. The effects of
added salt for interacting double layers are important in their own right
(e.g.,39–41) and would without doubt also be interesting cases to study
in molecular solvents. However, the general strategy envisaged for this
thesis in what regards double layer forces in molecular solvents was to
start with as simple a system as possible and to build up in complexity
in small and controlled steps. An illustration of this system is given in
Figure 2.1, and the reader is allerted to the fact that for clarity the view
depicted is actually the one of the primitive model, with explicit mobile
counterions and implicit solvent.

2.1.2 The forces in the mean field

In this thesis I am ultimately interested in the forces between the two
charged plates in the system of Figure 2.1 B.) when the solvent is de-
scribed with explicit molecular detail, rather than implicitly through its
dielectric constant only. I therefore start by considering how these forces
are described on the Poisson-Boltzmann level to in the next chapter con-
tinue through the primitive model until finally reaching the molecular
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Figure 2.1: A.) A more ”realistic” view of a possible experimental real-
ization of the model system in B.): two half-lamellas and the intervening
solution in the lamellar phase of an ionic surfactant system. No solvent
is displayed for clarity. B.) Two like-charge plates of smeared-out surface
charge density with counterions only in the primitive model.

solvent, for which a great deal of results is given in Papers II-IV.
In the framework of the Poisson-Boltzmann equation the force F

between two like-charged plates for the salt free case has a particularly
simple appearence42,43 (see also37 for some important comments and the
relation to the primitive model and1 for a more pedagogical derivation):

F

Area
= Posm = kBTc(mp) (2.4)

where c(mp) is the concentration of counterions at the midplane between
the two charged surfaces and one has expressed the result in force per
area, i.e., a pressure. The subscript osm stands for osmotic, and is further
discussed in subsection 3.2.3. The explicit relation to system properties
(ion valency, surface charge density, plate-plate separation, temperature
and dielectric constant) need not worry us here. It requires having the
solution of the Poisson-Boltzmann equation for the electrostatic poten-
tial Φ as a function of z, the coordinate corresponding to the position in
the direction perpendicular to the two plates (the potential gives us the
counterion concentration at any point in the solution either through its
double derivatives, see Equations 1.10 and 2.2, or through Equation 2.3).
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Note that for the system of Figure 2.1 B.) the Poisson-Boltzmann equa-
tion (2.1) is an ordinary differential equation in z, due to the lateral
symmetry in x, y (parallel to the plates), and it has a simple analyti-
cal solution for the potential Φ(z)44 . The ion concentration profile is
likewise expressed as a function of z only.

In the case of added salt, i.e., with several charged species in so-
lution, the counterpart of Equation 2.4 just sees c(mp) replaced by∑

i ci(mp), where again i are the different ionic species. The solution of
the Poisson-Boltzmann equation in the salt case is however much more
complicated39 . A final comment is that in the case of the equilibrium
with a bulk electrolyte solution, the relevant quantity to look at is the
net force or pressure between the walls, defined as the difference between
the pressure for the confined solution (Equation 2.4 extended to several
ionic species) and the pressure in the bulk43 . I do not go further in this
since I am not interested in salt cases, but note that the concept of net
pressure or force will be important for the molecular solvent simulations
(see subsection 3.2.3).

Equation 2.4 tells us that the pressure between the two like-charged
surfaces is always positive, i.e., the two plates always repel each other.
This is what one would expect intuitively, since like-charges repel each
other. However, one should stress that the repulsion between the walls
has an entropic character: as the two double layers come closer the ions
loose entropy due to the increased confinement. An important conse-
quence of the mean field approximation is that the average field felt by
the ions, at the midplane, is zero by symmetry, which means that only
the entropic term counts to the free energy. I will return to this when
analysing the primitive model in the next chapter. See1 for a further
discussion of energy versus entropy in such systems.

If one wants a view of the slit system in Figure 2.1 B.) on the Poisson-
Boltzmann level perhaps the most informative is to draw the electrostatic
potential profile between the charged walls, as is done in Figure 2.2. The
ion profile has a similar appearence (with the sign reversed). So in the
Poisson-Boltzmann analysis we have lost the individuality of the ions
displayed in Figure 2.1, and instead have two smeared-out, uniform (with
respect to x, y, i.e, without lateral inhomogeneities) and mean counterion
clouds, which are squeezed against each other as the distance between
the charged plates is reduced.

We are now ready to put the whole puzzle together and look at the
pressure between the plates as a function of their separation. Figure 2.3
compares typical curves for monovalent and divalent counterions. We can
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sep

Φ = 0

Figure 2.2: Schematic representation of the mean electrostatic potential
Φ between two like-charged plates in the Poisson-Bolzmann equation.
The situation displayed is that for sufficiently large plate separation. At
shorter separations the counterion clouds outside each of the charged
surfaces start interacting and the potential is modified (to some approx-
imation it can be taken as the sum of the potentials due to each of the
charged plates with their counterions, when isolated).

see that we can increase or decrease the repulsion by tuning the system
parameters, and in this case it is somewhat obvious that this repulsion
should be reduced for the divalent case, since we have half the number
of ions in the slit, as compared to the situation with monovalent counte-
rions. The global picture is always that of an entropic repulsion, though,
as noted above. For sufficiently large inter-plate separation this repulsion
goes to zero, since the concentration of counterions at the midplane also
goes to zero, i.e., the two double layers effectively stop interacting with
each other.

2.2 The electrostatic chemical potential for a
DNA-CTA system

Another example of the (successful) use of the Poisson-Boltzmann equa-
tion is given by the theoretical analysis made in Paper I. This further
proves to be one more situation where the implicit description of water
through its εr alone works, when one would not expect it to. In other
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Figure 2.3: Schematic plots for the osmotic pressure as a function of in-
terplate separation for two planar, salt-free double layers at the Poisson-
Boltzmann level. Two counterion valencies are compared at the same
surface charge density and dielectric constant.

words, in the context of this thesis it is another motivation for the more
in-depth analysis of double layer forces performed in Papers II-IV.

Paper I is a combined experimental and theoretical study of the water
uptake properties of an aggregate between DNA and the cationic surfac-
tant CTA (hexadecyltrimethylammonium). These form charge-neutral
complexes with two-dimensional hexagonal packing, where each CTA
cylinder is surrounded by six DNA double helixes (negatively charged).
The CTA cylinders are further hexagonally distorted. See Paper I for an
illustration of the system. These complexes were well-characterized ex-
perimentally, mainly through scattering and calorimetric techniques. Of
particular interest for the theoretical analysis are the sorption isotherms,
giving the amount of water taken up by the complexes (i.e., their swelling)
as a function of water activity (or equivalent chemical potential). When
one adds salt to these systems the electrostatic attraction between the
negative charges on DNA and the positive charges on CTA is screened,
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and the complexes take up more water as compared to what happens
in the absence of salt. (Note that this is the only example in this the-
sis where we considered salt effects, and that in this context screening
refers to screening of electrostatic interactions by an electrolyte, as in the
concept of the Debye screening length1–4 , not screening by the solvent.)

The quantity to calculate in order to compare with the experimental
results was the chemical potential of water for each water content,

νH2O =
∂Gtot
∂nH2O

(2.5)

where Gtot is the total Gibbs free energy of the system, and nH2O the
number of water molecules (note that in this thesis summary ν is used for
the chemical potential, rather than the more conventional µ, also used
in Paper I, to avoid confusion with the dipole moment). A free energy
model for the system was put up, which draws its elements from previ-
ous work on phase equilibria in surfactant systems (e.g.16,31). Besides
the electrostatic free energy, the model further includes a short-range
repulsive term and a deformation term. These last two components will
not be discussed here, since my focus on this thesis is on electrostatics,
and the reader is referred to Paper I for further details on them.

In the definition of the electrostatic component of the chemical po-
tential of water in the complexes, (νH2O)el = ∂Gel

∂nH2O
, Gel is in general the

sum of two terms. When no salt is added to the complexes one only has
an energy component given by the integral of the electric field squared
over the volume of the water regions7,16 :

Uel =
1
2
ε0εr

∫
(∇Φ)2dV (2.6)

(see also Equation 1.7)(U is used for the energy to avoid confusion with
the electric field; note the different notation in Paper I). It is appropriate
to stress that the electrostatic energy for a charge distribution ρ which
creates a potential Φ in vacuum is7 Uvac.el = 1

2ε0
∫

(∇Φ)2dV , and Equa-
tion 2.6 is linked to it by the same kind of arguments and approximations
which connected the Poisson and the modified Poisson equations (1.2
and 1.10) in the Introduction. When we add salt to the system, besides
the energetic component we have the entropy of mixing of the ions16,42 :

−TSmix = kBT
∑
i

∫
ci

(
ln

(
ci
c0

)
− 1
)
dV (2.7)
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where again the integral is over the water domains. ci are ion concentra-
tion profiles just as in Equation 2.3, and c0 is the concentration of water
(∼ 0.033 particles/Å3 or equivalently 55 M).

In Paper I the Poisson-Boltzmann equation (2.1) was solved for the
water domains between the DNA and CTA regions, for different amounts
of salt added to the system (and for each of these cases for varying water
content, obviously), in order to obtain the electrostatic potentials and
ion distribution profiles needed in Equations 2.6 and 2.7. Due to the
presence of salt, as well as to the complexity of the boundary condi-
tions/geometry, this has to be done using numerical methods (see Paper
I for more information, as well as for other details of the model). The
main point which I wish to emphasize, and which will be taken up again
in the Conclusions, is that the dielectric continuum model was used un-
der quite demanding conditions, which give no a priori guarantee of its
validity (the water layer separating the charged surfaces - the DNA and
CTA domains - is far from a bulk, the geometry is complex, in partic-
ular because of the deformation of the CTA cylinders, and the electric
fields across the thin aqueous region are high, due to the surface charge
densities involved).

A final comment on the DNA-CTA work should be made. In this case
one was not strictly interested in pressures, but rather in the chemical
potential of water in the complexes, and this was never intended as a
direct double layer force study in the sense of Papers II-IV. One should
note, however, that the chemical potential of the solvent and the osmotic
pressure are directly related quantities, as in the classical osmosis exper-
iment45 . It is also obvious that the amount of water taken up by the
complexes, i.e., their swelling, is related to the forces which hold its com-
ponents together. Some further comments are made in subsection 3.2.3.





Chapter 3

Beyond the mean field:
implicit and explicit
solvents

The Poisson-Boltzmann equation can take us a long way. However, there
are situations where it can fail even qualitatively. This should not sur-
prise us, since at some point one should pay the price for the approxi-
mations which were introduced. Abandoning the mean-field description
while still using the dielectric continuum model for the solvent is the sub-
ject of classical and well-established work on electrostatic interactions in
liquid media, which is therefore taken up first (Section 3.1).

To avoid the mean-field approximation requires treating the charged
species explicitly, like it is displayed in Figure 2.1. One possibility is to
study the system with computer simulations. As in a reality, the ions
will move around, and a given property of interest will be obtained by
taking an average over the different configurations adopted.

More than 25 years ago it was shown with Monte Carlo simulations
that two like-charged plates with their associated counterions could, un-
der certain conditions, attract at short separations37 . This effect has
since then been confirmed by further Monte Carlo simulations46,47 , as
well as using other theoretical approaches, among them integral equation
methods47,48 and density functional theory49 . Again I stress that this
seminal work was performed in the context of the dielectric continuum
model (i.e., with implicit solvent), but the interactions between the ions
entered the study explicitly through Equation 1.1. The simulations were
performed with the so-called primitive model (PM).

This counterintuitive effect of having two large objects of the same
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charge which can attract each other is named ion-ion correlation attrac-
tion. In the mean field the two like-charged plates in Figure 2.1 effec-
tively do not interact with each other electrostatically. The field across
the midplane is zero since on average each half-space (one surface with
its counterions) is neutral. This only true on average, though. In reality
there are instantaneous deviations from this, which give rise to electric
fields from one half-space on the other, and can lead to an attraction.
One ion is no longer interacting with a mean potential from all other
ions, but rather its position is correlated with those of all the remaining
mobile charged species. One way to picture this attraction is to recognize
that each ion will create a void of ions of the same charge around itself.
For an ion close to the midplane this is equivalent to having a charge
of opposite sign on the other half-space, hence the attraction50 . There
is a noticeable analogy between these correlated fluctuations in charge
positions leading to an attraction and the disperison interaction, and the
reader is referred to25 for further discussion, where also simple models
for the correlation effect are presented.

Ion-ion correlation attraction is important under the conditions of
high electrostatic coupling, i.e., high enough counterion valency q, high
enough surface charge density σ and/or low enough dielectric constant
εr. This can be put quite elegantly in terms of the dimensionless pa-
rameters which characterize the system37 . Not so long ago the ion-ion
correlation phenomenon has been formulated in a field-theoretical frame-
work, in what is known as the strong coupling theory51,52 . One obtains
an analytical solution for the problem of the interplate pressure in a sys-
tem like in Figure 2.1, valid for strong coupling, the Poisson-Boltzmann
result being its counterpart in the weak coupling limit. Again in this
context the concept of a coupling parameter Ξ emerges, and one has
Ξ ∝ q3σ/(εrT )2.

It is important to realize that the ion-ion correlation attraction phe-
nomenon is important under a range of experimentally accessible condi-
tions, and for a big variety of systems. Note that many of the examples
given above as successes of the dielectric continuum model are in fact also
from systems which display ion-ion correlation attraction. Among them
are the swelling of lamellar phases of ionic surfactants, which is much
more pronounced with monovalent than with divalent counterions13–15

and also the swelling of clays or the cohesion properties of cement17–22,38 ,
where the attraction between like-charged plates with divalent counte-
rions is explaining the underlying phenomena. The direct comparison
between force measurements and calculated force curves for mica in the
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presence of calcium ions is also worth mentioning in this context53,54 .
All the theoretical efforts mentioned so far in this chapter were under-
taken for a system with the same essential elements as that in Figure 2.1,
and a big advantage is the connection with experimental studies of ac-
tual realizations of the model. This further motivates the choice made
in this thesis work regarding the model system to work with. The ion-
ion correlation attraction comes as an extra effect which one can seek
to reproduce in a theoretical study of double layer forces in a molecular
solvent.

Ion-ion correlations also play a role in DNA compaction55–59 , in par-
ticular with multivalent ions and in solvents with a dielectric permittivity
lower than water. This is again well suported both by theory and experi-
ment, and it is obviously of relevance taking into account the importance
of DNA in living organisms. The reader is referred to25 for further ex-
amples of experimental manifestations of ion-ion correlation attraction.
Other examples of the phenomenon in different geometries include the
attraction between like-charged spheres and cylinders, and a collection
of different studies can be found in reference60 . See, e.g.,61,62 for the
attraction between DNA molecules modelled as cylinders with different
levels of ”decoration” and63,64 for the interaction between like-charged
macroions, of relevance, e.g., for the behaviour of SDS (sodium dodecyl
sulfate) micelles65 .

3.1 Double layer forces in the primitive model

In this section the main physical elements regarding interactions, forces
and thermodynamics for the system of Figure 2.1 will be presented, the
same being done in Section 3.2 with the molecular solvent model used in
this thesis work. Up to here I have used the concepts of force and pressure
more or less interchangeably. Of course, the two are trivially related, the
advantage with the second being that it is an intensive property. In
the context of this chapter, however, a distinction will be made. In our
simulation procedure the particles will occupy different positions subject
to entropy and interactions. For each of these states or configurations
we have forces, for which I will use the symbol F . The symbol P will be
reserved for average pressures, obtained from the forces for the different
configurations with the methods of Chapter 4.
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3.1.1 The model and interactions

In the primitive model we already know that the ions interact through
Equation 1.1. The total ion-ion energy is therefore

U tot.q q =
1

4πε0εr

N−1∑
i=1

N∑
j=i+1

qi qj
rij

(3.1)

for N ions in our system. In this chapter I will use U for all the energy
contributions to the Hamiltonian of the system which enter the simu-
lation protocol. The ions are confined between two infinite walls, each
with a smeared-out surface charge density σ. The electrostatic potential
from each of them is up to a constant given by

Φw = − σ|z|
2ε0εr

(3.2)

where |z| is the absolute value of the distance from the wall (perpen-
dicular direction). One therefore has a contribution to the total energy
of the system given by summing qiΦw over all ions and doing that for
both walls. One of the beauties of the slit system studied in this thesis
is that its symmetry affords a great number of simplifications. This will
be explored a bit more in Section 4.3 but the full details are outside the
goal of this summary (see, for example, Paper II). The potential at a
point between both walls when separated by a distance sep is

− σ|z|
2ε0εr

− σ|sep− z|
2ε0εr

= −σ sep
2ε0εr

(3.3)

i.e., a constant. This means that the corresponding ion-wall energy will
therefore not influence our Monte Carlo procedure, which is only sensitive
to energy differences. More importantly, one should realize that in such
a system the ions individually do not have a preference for any position
between the walls and, for example, if they accumulate at the charged
plates it is due to ion-ion repulsion, rather than to an ion-wall attraction.

In principle, provided our walls were impenetrable, so that the ions
would not move pass them, we could simulate a system with the poten-
tials already presented. This would mean we would be using point ions
(i.e., ions without a size), as was done in classical work on double-layer
forces37 . This is fine in the counterion only case, since on electrostatic
grounds alone each ion creates a volume around itself which essentially no
other ion occupies (the so-called Coulomb hole). In a general case where
one has attractive electrostatic interactions, like in the next section, it
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is no longer possible to use the point ion approach, since the particles
would collapse onto each other. For a direct comparison between the
results of primitive model and molecular solvent simulations it is there-
fore desirable to use the same treatment of molecular size throughout.
The simplest possibility is to have the ions represented as hard spheres
(like in Figure 2.1). The potential is zero outside the sphere and infinite
inside, so that nothing can penetrate, regardless of electrostatics. For
technical reasons connected with the pressure evaluation, in this work a
Lennard-Jones potential was used instead (i.e., soft spheres):

U tot.q q LJ =
N−1∑
i=1

N∑
j=i+1

4ε

[(
ς

rij

)12

−
(
ς

rij

)6
]

(3.4)

where ς is the molecular size (the particle diameter) and ε the value of
the maximum attractive interaction between both particles (at a center-
to-center distance of 6

√
2 ς). For a low ε such a potential can for the

purpose be considered as sufficiently close to a hard sphere potential. In
the same line of thought, instead of seeing hard, impenetrable walls, the
ions interact with two Lennard-Jones surfaces:

U tot.q w LJ =
N∑
i=1

(
A

z9
i

− B

z3
i

)
(3.5)

(a similar sum has to be done for the opposite wall). The A and B pa-
rameters are obtained assuming that the walls are composed of the same
Lennard-Jones particles as the solution, at cubic close packing (packing
density=0.74). For a single ion:

Uqi wLJ = % 4ε
∫ 2π

0

∫ ∞
0

∫ ∞
0

(
ς√

δ2 + (zi + ζ)2

)12

−
(

ς√
δ2 + (zi + ζ)2

)6

δ dδ dζ dϕ (3.6)

where the integration is performed in cylindrical coordinates (see Paper
II for the solution for A and B). % is the density, 0.74/(4

3π( ς2)3).

3.1.2 The forces

To calculate the average pressure between the charged walls is an ap-
plication of the virial theorem66,67 . At equilibrium, the pressure in the
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direction perpendicular to the plates is the same throughout the system,
for a certain surface-surface separation. One can place an imaginary
plane (parallel to the two charged plates) at any position between them,
and calculate the forces across that plane. Two locations are commonly
chosen for the pressure calculation: the midplane between the walls and
one of the walls37,40,43,46 .

3.1.2.1 At the midplane

At the midplane the pressure is a sum of three terms:

Posm = kBTc(mp) + Pel + PLJ (3.7)

The first term already appeared in the corresponding Poisson-Boltzmann
expression (Equation 2.4), and is normally known as the ideal entropic
term. The remaining two correspond to the sum of all electrostatic and
Lennard-Jones forces between entities (particles and walls) on opposite
sides of the midplane. Again I stress that what is represented above are
averages of forces (divided by an area) over different configurations of
the system, obtained through Monte Carlo simulations.

The average electrostatic force exerted by one half-space (ions plus
wall) on the wall on the other half-space is zero by electroneutrality46 ,
a further simplification for the slit system. One can easily arrive at this
result by recognizing from Equation 3.2 that the component of the field
in the z direction (perpendicular to the plate) from an infinite charged
surface is

Ezw =
σ

2ε0εr
(3.8)

i.e., independent of distance. The force from all the charge in one half-
space on the wall in the opposite half-space, a product of the type
charge×field, is therefore zero, since the total charge of one half space
(ions plus wall) is on average zero. The force on the ions in one half-
space by the ions and wall in the opposite half-space is not zero, though.
The total ion-ion electrostatic force in the z direction is, for a certain
configuration of the system:

F tot., zqq =
1

4πε0εr

N−1∑
i=1

N∑
j=i+1

qi qj |rzij |
r3
ij

; (zi < 0 ; zj > 0) (3.9)



3.1 Double layer forces in the primitive model 25

where rzij is the z component of the vector connecting i and j. The
condition after the equation means that one only sums forces between
particles on opposite sides of the midplane, which is located at z = 0
in the coordinate system chosen (i.e., one sums when (zi < 0 ; zj > 0)
and vice-versa). Equation 3.9 can be obtained from Equation 3.1 by
the relation F = −∇U . Remembering that the force will be a product
of charge×field, it is easy to see from Equation 3.8 that the total force
exerted by the wall in one half space on all the ions in the other half-space
averages to a constant value, when taken per unit area (i.e., a constant
pressure):

〈
F tot., zqw

〉
Area

=
1

Area

〈
N∑
i=1

qi
σ

2ε0εr

〉
; (zi < 0 ; zw > 0)

=
Nq

2Area
σ

2ε0εr
= − σ2

2ε0εr
(3.10)

since on average one has half of the (like-charged) ions in one half-space,
and by electroneutrality that total ionic charge divided by area must be
−σ. We will encounter the −σ2/(2ε0εr) term again just below. Due
to some specificities of the simulation procedure in what regards the
treatment of long-range electrostatic interactions, Equation 3.10 is in
practice not directly used for the pressure evaluation at the midplane,
being cancelled by another term. See more details in Section 4.3 and in
Paper II.

In a very similar way, using F = −∇U one can obtain the formulas
needed in the calculation of PLJ from Equations 3.4 and 3.5. Again one
must remember to count only forces between entities (particles and walls)
on opposite sides of the midplane. The Lennard-Jones force exerted by
one wall on the other has not normally been considered in this thesis
work. See a comment on it in Paper II.

A note on hard spheres

Had one used a hard sphere potential to represent excluded volume
effects, rather than Equation 3.4 (and also having hard instead of soft
walls), and Equation 3.7 would read instead:

Posm = kBTc(mp) + Pel + Pcol (3.11)
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The Lennard-Jones term is replaced by a component corresponding to
collisional integrals between the hard spheres across the midplane. De-
tails can be found in46 , but it suffices to say that these are more cum-
bersome to evaluate than the direct calculation of a Lennard-Jones force.
This would become a bigger drawback with more particles in the system,
i.e., in the molecular solvent cases.

3.1.2.2 At the walls

If one evaluates Equation 3.11 at one of the charged walls, the collisional
term will disappear, since there are no particle-particle contacts across
that plane, and the ideal entropic term becomes kBTc(walls), i.e., the
concentration of ions at the walls. The electrostatic term now corre-
sponds to the forces on that wall from all the ions and the remaining
wall. From Equation 3.8, and with similar arguments as above, we can
see that Pel = −σ2/(2ε0εr) (the wall-wall electrostatic pressure cancels
with the pressure on the wall from half of the ions, and one gets the term
corresponding to the remaining charges). The total pressure is then

Posm = kBTc(walls)−
σ2

2ε0εr
(3.12)

where the electrostatic component is usually known as the Maxwell term.
The reason for having started with the hard spheres version of the pres-
sure equation here is that the above result can be given a more formal
framework than the ”virial-like derivation” made here, and it is the clas-
sical contact value theorem43,68 .

With Lennard-Jones particles the concentration of ions at the walls
is zero, but one instead has a Lennard-Jones force from all the particles
in the system:

Posm = PLJ −
σ2

2ε0εr
(3.13)

where PLJ is an average over different configurations of the system. One
should not forget the difference with respect to the corresponding term
in Equation 3.7 (only Lennard-Jones forces from all the particles on one
wall, again using the gradient of Equation 3.5, rather than particle-
particle and particle-wall forces across the midplane). Equation 3.13
can be obtained from Equation 3.7 with the same kind of reasoning
that linked the two corresponding hard spheres equations (wall and mid-
plane). Similarly to before, it turns out more convenient to use an equa-
tion like 3.13 than 3.12. The former relies on a direct computation from
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force formulas, whereas the latter requires evaluating the concentration
at the walls by extrapolation of the (in that region rapidly varying) ion
concentration profiles. Note that the concentration profiles close to the
midplane are much more well-behaved, and this is not a problem in Equa-
tion 3.7 (the concentration profile will have the same qualitative look as
in Figure 2.2, with the sign changed, as indicated when discussing the
Poisson-Boltzmann theory).

3.1.2.3 Comparison to the mean-field

Now suppose we have already obtained proper averages for the quantities
needed in either Equation 3.7 or 3.13 through, for example, Monte Carlo
simulations. The primitive model picture corresponding to the mean-
field, Poisson-Boltzmann solution in Figure 2.3 is schematically displayed
in Figure 3.1. The most striking effect is the qualitative difference be-
tween the results for divalent counterions. For monovalent counterions
we have quantitative deviations (see, e.g.,37), but we still get the tradi-
tional double layer repulsion. However, for divalent counterions, at the
surface charge density and dielectric constant chosen, the electrostatic
coupling (remember Ξ) is sufficiently high that the repulsion is turned
into an attraction, due to ion-ion correlations. The coupling parameter
Ξ also tells us that we could again turn the attraction into a repulsion
by decreasing σ or increasing εr (see Paper II).

Had we done a simulation with point ions instead then the PLJ term
in Equation 3.7 would disappear (but we would still get the same general
picture as in Figure 3.137). Comparing Equations 2.4 and 3.7, there will
be differences in the c(mp) terms between primitive model and Poisson-
Boltzmann solutions. Anyway, this component can only give an (en-
tropic) repulsive contribution to the pressure, and the fact that we can
get a correlation attraction at all comes from the Pel term (zero in the
mean-field).

An important conclusion is that the correlation attraction depends
on a balance between entropic repulsion and electrostatic attraction, and
one can enter (or leave) the correlation regime by changing c(mp) or
Pel. An obvious way of changing the ideal entropic term is by chang-
ing the counterion valency, as was done in the current example, and one
of changing Pel is changing εr. In fact, even though we need the nega-
tive Pel term to get the correlation attraction, it is important to realize
that in the example of Figure 3.1 the change from correlation attrac-
tion to double-layer repulsion came about essentially from an increase
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Figure 3.1: As in Figure 2.3 but for primitive model simulations.

in c(mp) for monovalent counterions, not from the (small) change in Pel
between the two counterion valencies (note: the PLJ term increases the
curve separation even further, see Paper III). Paper III gives several ex-
amples of what happens to the pressure in the system upon changing
q, σ and εr, together with the corresponding pressure components. In
the context of this thesis the analysis of the different pressure terms for
Equation 3.7, as well as their subcomponents, will turn out as a valuable
aid in providing insights into the system behaviour and aiding the com-
parison between primitive model and molecular solvent results (Papers
III and IV especially). A more ”mathematical” view of the correlation
attraction phenomenon is given in Section 4.3, also using pressure (sub-)
components (through the Pel term), in a more technical framework.

3.1.3 Thermodynamic framework

The thermodynamic state of the system in Figure 2.1 is specified by
the independent variables (N,V, T ), N being the number of ions for a
(constant) system volume V , and T the temperature. These are the
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same constraints which will later on be interesting to us since they are
also imposed on the Monte Carlo simulations in the primitive model. In
this context one works in the so-called Canonical ensemble.

The relevant thermodynamic potential (minimized at equilibrium69)
is the Helmoltz free energy A. From basic Thermodynamics45 , its dif-
ferential is:

dA = −PdV − SdT + νionsdNions (3.14)

where P is pressure, S entropy and ν chemical potential. For constant
temperature and number of particles we get:

P = −
(
∂A

∂V

)
T,Nions

(3.15)

This expression is useful since it shows that the integral of the pressure
with respect to system volume gives a free energy (note that in our
slit system the volume change is given by the change in surface-surface
separation, at constant surface area). This procedure is used in Papers
II and IV when integrating the osmotic pressure curves. See also the
follow-up in subsection 3.2.3.

3.2 Double layer forces in a dipolar fluid

We now come to the heart of this thesis work. We have already aban-
doned the mean-field description of charge-charge interactions and seen
the important effects which are captured. A natural follow-up is to go be-
yond the second important simplification which the Poisson-Boltzmann
theory introduced, and the primitive model kept: the dielectric contin-
uum model. This is especially interesting taking into account the puz-
zling fact that the implicit solvent description seems to be working when
we would not expect it to. The situation here is clearly much less devel-
oped, and there is certainly a long way to go before we master all the
finesses of charge-charge interactions in molecular solvents.

From a more global point of view one should first say that, despite the
considerable amount of evidence which substantiates how well-behaved
the primitve model is, it is common to find stated in the literature that
water outside surfaces behaves very differently from the bulk (e.g.,70,71) .
Just this on its own already tells you that there is certainly a problem
out there deserving further attention. Turning to our subject matter
more specifically, it can be said that most of the theoretical studies done
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for ions and (elaborate, discrete) water models between charged surfaces
have concentrated on structural properties like particle distribution pro-
files, and stayed away from surface forces (e.g.,72–74) . I note that this is
valid for the subject of double layer interactions in general, and is not
limited to the planar geometry nor to the ion-ion correlation attraction
phenomenon. As of the year 2000 reviews on the topic listed only a few
studies of discrete solvent effects on double layer forces75 , and still to-
day it is recognized that there is a need for even more general work on
electrical double layer properties beyond the primitive model76 .

One very simple molecular solvent which has been used in theoreti-
cal studies of the interaction between like-charged plates is the so-called
SPM (solvent primitive model). Here the charge-charge interactions are
still scaled by the dielectric constant of the medium, like in Equation 1.1,
but one further introduces neutral hard spheres in the system, which are
supposed to account for the effects of solvent granularity, by describing
the size of its molecules. The model looks like that of Figure 1 in Paper
II, but with the arrows corresponding to the dipoles removed. The primi-
tive model picture discussed in the previous section clearly does not come
forward in these studies, either because one finds only (essentially mono-
tonic) repulsive forces between the plates, even for divalent ions77 , or
because the behaviour is dominated by oscillatory profiles due to solvent
packing effects78,79 , being largely insensitive to ion valency. The SPM
has also been used to study the forces between neutral and like-charged
(spherical) colloidal particles80,81 . The effects of solvent granularity on
the forces are clearly displayed and in some cases (but not in others!)
an agreement with the primitive model solution was found. Besides this
plethora of results, it is important to realize that the SPM treats the
excluded volume effects (the size of the particles) and the electrostatics
on unequal footing, since only the former have been discretized (there
are no solvent dipoles or higher electric moments). This can constitute
an unballanced description.

Molecular solvent effects on forces between like-charged surfaces have
also been introduced at the McMillan-Mayer level, using integral equa-
tion methods. In this case the medium enters the picture through effec-
tive, solvent averaged ion-ion potentials. These are normally written as
the sum of Equation 1.1 with an extra (distance dependent) term, which
accounts for the molecular nature of the solvent. The ion-ion correlation
effect was reproduced, with an attraction between the surfaces for diva-
lent counterions, but one also found a solvent induced attraction when
only monovalent ions were present, a result not given by the PM82,83 .
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In general, the results are found to be very sensitive to the potentials
used84 . Note also that the effective ion-ion potentials are obtained from
bulk simulations, either at infinite dilution or at finite salt concentration,
which neglects the changes which can be introduced for inhomogeneous
systems, i.e., ions between two walls.

Solvent models where the particles are represented by spheres with
embedded dipoles and even higher order moments have also been con-
sidered. One example is a study of the interaction between like-charged
macroions in a monovalent electrolyte85 , where it was found that such
objects could attract for a given range of parameters. A system of ions
and dipoles between planar surfaces has also been considered86 . Here
one has however studied a slit formed by one charged and one uncharged
plate, and the focus was on structural information.

Credit should be given to the (simulation) work on forces for ions
and water between charged surfaces performed within the context of
the physical chemistry of clay systems87–93 . These studies are in general
characterized by using water models more elaborate than the simple dipo-
lar spheres, and in particular for having atomic detail level description
of the clay surfaces. Their merit tends to be more centered in address-
ing important but specific problems (e.g., influence of surface details or
chemical identity of counterions on the system properties), and they are
therefore outside the scope of this thesis. I stress that the focus here
is the general and fundamental question of the influence of the descrip-
tion of the solvent for charge-charge interactions, in this case assessed
through studies of such an important property as are double layer forces.
A particular interest is how the dielectric continuum model agrees (or
not) with a molecular description.

The Poisson-Boltzmann theory can be modified by adding a term
to the free energy which accounts for discrete solvent effects on ion-ion
interactions. This was also tried in studies of forces between planar like-
charged surfaces94 , where a solvent-mediated attraction was found with
only monovalent ions in solution. Such an approach has obvious con-
tact points with the McMillan-Mayer level of description, although the
formalism here tends to be simpler and one can extract some analytical
results. However, one again pays a price for approximations introduced
(in particular, as we already know, correlation effects cannot be cap-
tured). Even if aimed at a physical understanding of the system, this
approach is not really compatible with the level of (molecular) detail en-
visaged for this thesis work. One should also mention the work done on
the fundamental understanding of dielectrics in a slit95 . This gives you
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insight on the inadequacy of a constant εr in describing the dielectric
properties of a confined dipolar liquid, but still does not rule out that
Equation 1.1 is a good description for the charge-charge interactions.

Taking the previous paragraphs into account, it was therefore consid-
ered that the general problem of charge-charge interactions in dielectric
media at short distances was sufficiently complex to be worthy of a thor-
ough and systematic study. The strategy envisaged was to start with a
simple, yet relevant, and previously well-characterized model system (i.e.,
the slit of Figure 2.1) and to progressively increase the complexity of the
description, starting at the primitive model level. The first step is to in-
troduce a sufficiently simple (but balanced!) discrete solvent model, and
to study surface forces with computer simulations at this level of mole-
cular detail. Different levels of complexity can later on be introduced,
like the effects of discrete surface charges, more elaborate solvent models
(less symmetry, polarizabilities, etc.). Anyway, this should be done in
controlled steps, moving to the next (solvent/surface) model once the
previous is mastered. Otherwise one faces the danger of being lost in a
jungle of effects, with causes difficult to identify. This will at each stage
hopefully contribute to our understanding of why the primitive model
is behaving the way it is. This step-wise strategy includes even the in-
teraction parameters used in the simulations, see 4.3.1. One example
of its usefulness comes from comparing the work in Paper II with the
corresponding systems in Paper IV (the S0 case). Had one started the
studies with the kind of interaction parameters of Paper IV, rather than
with thoses of Papers II and III, one would be unware of the clear-cut
comparison with the PM that the dipolar solvent model can afford (Pa-
pers II and III). I would also like to stress how instrumental the analysis
of different pressure components can be in aiding the interpretation (also
in Paper IV).

3.2.1 The model and interactions

The molecular solvent model used throughout this thesis work is a so-
called Stockmayer fluid. This consists of a Lennard-Jones sphere with
an ideal dipole located at its center. See Figure 1 in Paper II for a
pictorial representation. Again, the Lennard-Jones potential was chosen
for technical reasons connected to the pressure calculation, and one could
have used hard-spheres to model the excluded volume effects as well. A
physical dipole is formed by two charges of opposite sign, −q and q,
separated by a certain distance l, and its magnitude is µ = ql. One
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can reduce the distance l and increase the charges so that µ is constant,
and an ideal dipole is the construction one gets in the limit where the
two charges coincide27 (l → 0 ; q → ∞ ; ql = cte = µ). I stress that
in a dipolar fluid one has discretized the medium both with respect to
excluded volume and to electrostatic effects. One can conceive this as a
minimal model for, e.g., a water molecule. The dielectric response of the
solvent is now a direct consequence of its properties (µ, density), rather
than simply a scaling constant (εr) for the charge-charge interactions, as
in the primitive model.

The total electrostatic energy of the system now contains ion-ion, ion-
dipole and dipole-dipole interactions. The first are given by Equation 3.1
above, removing the εr scaling factor (i.e., the traditional Coulomb’s law
in vacuum). The formulas for the remaining two can be found in standard
textbooks96 . The total ion-(ideal) dipole interaction reads:

U tot.qµ =
1

4πε0

Nions∑
i=1

Ndip∑
j=1

qi
µj · rij
r3
ij

(3.16)

where µj · rij = µxj r
x
ij + µyj r

y
ij + µzjr

z
ij (scalar product between the dipole

moment vector and the vector pointing from dipole j to ion i). For the
dipole-dipole interaction:

U tot.µµ =
1

4πε0

Ndip−1∑
i=1

Ndip∑
j=i+1

µi · µj
r3
ij

− 3(µi · rij)(µj · rij)
r5
ij

(3.17)

Yet another simplification afforded by the slit system is that the dipole-
wall electrostatic interaction is zero. This energy is for each dipole a
scalar product between the dipole moment vector and the field from the
two walls. A constant potential (Equation 3.3) implies a zero electric
field between the walls.

The formulas of Equations 3.4 and 3.5 now have to be extended to
include the Lennard-Jones interactions between all ion-dipole and dipole-
dipole pairs, as well as the interactions of the dipolar soft spheres with
the two Lennard-Jones walls.

A simple and direct manifestation of the molecular size, as well as of
the increased density in the molecular solvent case, is given by looking
at a concentration profile for dipolar particles alone between uncharged
walls. A schematic example is shown in Figure 3.2. Closer to the walls
one sees oscillations whose period reflects the molecular diameter, but
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Figure 3.2: Molecular packing effects in a typical concentration profile
for Lennard-Jones spheres confined between two walls. The walls are
located at −z and z.

as one goes more and more away from the surfaces (into the bulk), this
structure is lost. It should be noted that the profile is qualitatively
the same for dipolar and neutral Lennard-Jones spheres. Concentration
profiles and forces between two neutral walls with a Lennard-Jones fluid
in between (no dipoles) can be found in classical work by Snook and van
Megen97–99 . These oscillations will also come into play when one has ions
and dipoles between charged surfaces, and will reflect themselves on the
pressure curves, as is extensively discussed in Papers II-IV. Note further
that something qualitatively similar will also happen if the Lennard-
Jones potential is replaced by a hard-sphere one.

3.2.2 The forces

The pressure calculation in the molecular solvent case is done with simple
extensions of Equations 3.7 and 3.13. In the case of the evaluation at the
midplane, c(mp) is now a sum of ion and dipole concentrations. The Pel
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term has the same charge-charge components as before (removing the
εr factor), but now has to include the z components of forces between
ion-dipole and dipole-dipole pairs (averaged over different configurations
of the system), when each of the particles sits on opposite sides of the
midplane:

Pel =
1

Area

(〈
F tot., zqq

〉
+
〈
F tot., zqµ

〉
+
〈
F tot., zµµ

〉)
; (zi < 0 ; zj > 0)

(3.18)
where the ion-wall term (see Equation 3.10) was ommited for simplic-
ity. The revelant formulas can be obtained from the gradients of Equa-
tions 3.16 and 3.17, and are to be found in Paper II. Note that in that
context the treatment in Equation 3.18 will carry some further speci-
ficities (technicalities) due to the handling of long-range interactions. It
should not surprise us at this point that there are no dipole-wall electro-
static forces. A dipole gets a force from an electrical field gradient which,
from Equation 3.8, is zero. Finally, one should not forget the forces be-
tween Lennard-Jones ion-dipole and dipole-dipole pairs (opposite sides
of the midplane) and between soft walls in one half-space and particles
on the opposite half-space, which go into the PLJ term.

At the walls the only difference with respect to the primitive model
is that the PLJ term now includes also the Lennard-Jones forces from all
the dipoles on that wall. In a notation similar to that of Paper II:

Posm = LJiw + LJµw −
σ2

2ε0
(3.19)

where the LJ terms represent averages.
The general comparison of primitive model and molecular solvent

pressure curves is the main subject matter of this thesis, and the reader
is now referred to Papers II-IV.

3.2.3 Thermodynamic framework

A very important point for our slit in the molecular solvent studies (see
Figure 1 in Paper II) is that it is an open system with respect to the
dipoles. The number of ions and the temperature are always fixed. For a
certain plate-plate separation, the (average) number of dipoles between
the surfaces is given by their molecular properties (like the dipole moment
µ) and by the bulk chemical potential of the fluid. In other words,
one is always at equilibrium with a reservoir of bulk liquid, with which
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particles are exchanged. Within the context of Statistical Mechanics we
then work in the Grand-Canonical ensemble (strictly speaking, we have
what is normally referred to as a semi-Grand ensemble, since the system
is only open with respect to the dipoles, but not to the ions28). The
relevant thermodynamic potential is now a Grand-Canonical one, and
its differential reads:

dΩ = −PdV − SdT −Ndipdνdip + νionsdNions (3.20)

For constant temperature, number of ions and chemical potential of the
solvent, νdip, one obtains:

P = −
(
∂Ω
∂V

)
T, νdip, Nions

(3.21)

We can see that we can integrate a pressure curve as a function of plate-
plate separation to get a free energy (in the slit case dV = Area dsep,
Area being our constant plate area and sep the variable separation).

The quantity displayed in Papers II-IV is actually a net (osmotic)
pressure. This is defined as the difference between the pressure in the
direction perpendicular to the charged plates for our (confined) system
(which is what is covered in the previous subsection on forces, for exam-
ple), and the bulk pressure of our solvent:

Pnetosm = P confosm − P bulkosm (3.22)

The actual integration which is performed in Papers II and IV is:

Ωex(sep)
Area

=
∫ ∞
sep

P confosm (z)− P bulkosm dz (3.23)

from which we obtain an interaction free energy per unit area, at a certain
plate-plate separation. Remember that this happens at constant temper-
ature, number of ions, chemical potential for the solvent and plate area.
In Equation 3.23 a term Ωex(∞) has actually been dropped for simplicity,
which corresponds to twice the surface free energy of each plate. Strictly
speaking, what is reported are differences with respect to this constant
value. The quantity in Equation 3.23 has the character of an excess free
energy. This can be understood by remembering that for a bulk, one
component fluid at constant temperature and chemical potential one has
a pure Grand-Canonical energy given by66 :

Ω = A−Ndipνdip = −PV (3.24)
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where P in this case is the bulk pressure. This perhaps affords a comple-
mentary view on the concept of net pressure. Note that in the primitive
model the integration performed is also like in the rhs of Equation 3.23.
However, in this case one has P bulkosm = 0 (in the salt-free case!).

Both for forces (pressures) and free energies we then look at net effects
referred to a bulk solution (solvent only in this case). What I wish to
stress is that changing the bulk we are at equilibrium with also affects
the behaviour between the slit, which has obvious analogies with the
traditional concept of osmosis and lends meaning to the osm superscript
used throughout1 .





Chapter 4

Monte Carlo simulations

In a real system atoms and molecules are moving around and occupy
different positions as a function of time. An experimental measurement
of a property of that system is an average over a (possibly very small)
time interval of its fluctuating, instantaneous values. The direct study
of the time evolution of a system in a computer with the calculation of
relevant properties belongs to the realm of Molecular Dynamics simula-
tions, which were not used in this thesis work and will not be covered
here. In this chapter a small overview of the relevant Monte Carlo meth-
ods and of how they are used to calculate the (average) properties of the
slit systems I am interested in is given, with particular emphasis on the
pressure between the charged plates. Monte Carlo (as well as Molecular
Dynamics) are nowadays well-established simulation techniques, and the
reader is referred to standard textbooks for extensive details67,100,101 .

In a Monte Carlo simulation one replaces the computation of time
averages by ensemble averages, which is allowed due to the so-called
ergodic hypothesis. Instead of studying the time evolution of a single
system, one uses a collection of replicas of the system, which is called
an ensemble28 . These replicas are in the same thermodynamic state,
specified, e.g., by a constant number of particles, volume and tempera-
ture, but differ microscopically (the particles occupy different positions
and we have different configurations of the system). In a Monte Carlo
simulation these different replicas or configurations are generated succes-
sively according to a given recipe, and one can then calculate ensemble
averages of the properties one is interested in.
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4.1 Canonical ensemble

The primitive model simulations are performed at constant (N,V, T )
(see also subsection 3.1.3), and under these conditions the replicas of the
system which are generated are known as a Canonical ensemble. The
(thermal/statistical mechanical) average of an observable Π (e.g., the
pressure P ) is given by:

< Π >=

∫
Π(rN ) exp

[
−U(rN )
kBT

]
drN∫

exp
[
−U(rN )
kBT

]
drN

(4.1)

where the integration is performed over the coordinates of the particles
and U is the potential energy for a given configuration of the system.
The elements which go into the potential energy function in the prim-
itive model case were given in subsection 3.1.1. The denominator in
Equation 4.1 is a particularly important quantity in Statistical Mechan-
ics known as the configurational integral, Z. The relevance is obvious
from its relation to the thermodynamic potential of the system:

Aex = −kBT lnZ (4.2)

Aex is the excess part of the free energy, and includes the contributions
due to the interactions in the system (i.e., besides the ideal gas term ap-
pearing even for U = 0). The quantity (exp

[
−U(rN )/(kBT )

]
)/Z corre-

sponds to the probability of the system being in a configuration specified
by rN . Of course, in the computer the representation of coordinate space
is discrete, not continuous, and the integrals in Equation 4.1 would be
replaced by sums over configurations.

It is not feasible to calculate the integrals in Equation 4.1 (and hence
Π and even Aex) directly, i.e., by chosing configurations from a uni-
form (random) distribution over all coordinate space and adding their
contributions. The Bolztmann factor exp [−U/(kBT )] favours lower en-
ergies, and many of the configurations which we would generate with this
simple-minded recipe would contribute with essentially zero to the inte-
gral (e.g., the energy becomes very high when Lennard-Jones particles
start to overlap). The trick in the Monte Carlo method lies in an efficient
sampling of coordinate space, concentrating on the regions which have
large contributions to the integrals. One generates random configura-
tions of the system with a probability proportional to their Boltzmann
factor. In other words, in the end our generated configurations will follow
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a Boltzmann distribution, and lower energy states will have been gen-
erated more often. When this is done < Π > can be simply calculated
from a direct average of the values for the M configurations generated
with the proper recipe:

< Π >=
∑M

i=1 Πi

M
(4.3)

Let’s assume the inital configuration of our slit system is exactly like in
Figure 2.1. To create our Boltzmann distributed configurations starting
from it one does the following:

• Select a particle at random;

• Displace the particle by a random distance in three dimensional
space (this will be a new configuration of the system);

• Calculate the energy difference between the new configuration and
the old configuration (the displaced particle sitting where it was
before), ∆U = Unew − Uold;

• Accept the particle displacement (the new configuration) with a
probability min (1, exp [−∆U/(kBT )]);

• Start from the beginning

The short-hand notation min (1, exp [−∆U/(kBT )]) means the following:
if Unew < Uold (i.e., the energy decreases and exp [−∆U/(kBT )] > 1),
accept the displacement (the new configuration). Otherwise, generate a
random number ξ between 0 and 1. If exp [−∆U/(kBT )] > ξ the new
configuration is accepted. Otherwise, it is rejected and one goes back to
(or ”keeps”) the old one. Enough configurations are generated that the
average in Equation 4.3 can be calculated with the desired accuracy. In
our slit case, for the different configurations of the system one calculates
forces like in Equation 3.9, which are used in Equation 4.3 (and divided by
the area) to obtain the final (average) pressures (Equation 3.7). Note that
these particle movements or displacements, which generate the different
configurations, are what makes our ions ”move around” in the system,
although the different positions are not linked in time. The Monte Carlo
method is purely stochastic.
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4.2 Grand-Canonical ensemble

In the molecular solvent studies we now have ions and dipoles in the slit,
and both will be subject to the type of displacement moves described in
the previous section. A small detail is that for the solvent the particle
translations will be coupled to a rotation of the dipole moment vector
about one of the molecular axes. The number of ions, the temperature
and the volume of the system are constant, but the number of dipoles
will fluctuate around an average value. As discussed in subsection 3.2.3,
what is kept constant for the solvent is its chemical potential νdip, and one
simulates the equilibrium with a reservoir of bulk fluid. To accomplish
this we need two other types of Monte Carlo moves: dipole insertions and
dipole deletions. The attempt to insert a solvent particle at a random
position in the slit is accepted if

exp [νdip/(kBT )]V
(Ndip + 1) Λ3

exp [−∆U/(kBT )] > ξ (4.4)

where for ∆U one has Unew as the potential energy of the configuration
with the new dipole, and Uold the energy for the configuration without
it. These energies now include ion-dipole and dipole-dipole interactions
(subsection 3.2.1). The deletion of a randomly chosen dipole is accepted
if

Ndip Λ3

exp [νdip/(kBT )]V
exp [−∆U/(kBT )] > ξ (4.5)

Λ is known as the thermal de Broglie wavelength. ξ is again a random
number between 0 and 1. The acceptance rule for these moves involves,
besides differences in potential energy, the chemical potential of the sol-
vent, which determines how many dipoles one has in the slit, as a function
of plate-plate separation. The equation corresponding to 4.1 for the cur-
rent case is slightly more elaborate67,100 . One now has a sum of integrals
like the ones in Equation 4.1, since besides the integration over configura-
tion space, for a given number of dipoles in the system, one must consider
that Ndip can in principle assume any value. However, one can be sure
that configurations generated from particle displacements accepted with
the rule in the previous section and particle insertions/deletions subject
to Equations 4.4 and 4.5 will follow the appropriate probability distribu-
tion. We can again use a simple average like in Equation 4.3 to calculate
< Π > at a certain (νdip, Nions, V, T ).
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4.3 Handling long-range electrostatic interactions

We are interested in obtaining mean thermodynamic (macroscopic) prop-
erties of a slit system. However, in a computer we can only deal with a
certain number of particles. The finite number of particles one decides to
handle explicitly, occupying a certain volume, constitutes what is known
as a simulation box. One would introduce sizeable (and undesireable)
surface effects by just putting walls to confine the system in the direc-
tions we actually want it to be infinite (x, y in our slit case). Instead, one
uses periodic boundary conditions. Suppose our simulation box is exactly
of the size displayed in Figure 2.1 (i.e., a square in the x, y directions with
the walls at a certain distance sep). When a particle displacement takes
the molecule outside of the box in the direction parallel to the plates, it
just reenters the simulation volume on the other side. This concept is
extensively explained in standard textbooks67,100,101 . One can see that
this construction is equivalent to having the simulation box surrounded
by replicas of itself. If one attempted move takes the particle to one
replica ”above” it, another particle will enter the box on the other side,
coming from the replica ”below” it. There is still one important decision
to be taken: how do we treat the interactions which correspond to what
is outside our box. After all, there is no guarantee that the properties
of the true, infinite system are the same as those for a finite number
of particles, even without surface effects. This is not a major issue for
intermolecular potentials with a fast distance decay, as is the case of
the Lennard-Jones interaction (Equation 3.4). However, it definitely de-
serves close attention for charge-charge, charge-dipole and dipole-dipole
interactions, decaying as r−1, r−2 and r−3 (Equations 3.1, 3.16 and 3.17,
respectively). In these cases the energy contributions from what is out-
side the box will most likely be sufficiently large to be able to contribute
appreciably to the overall behaviour.

Methods to treat long-range electrostatic interactions are a field on
their own. See, e.g.,102 for a recent review. Very popular among them
are the so-called Ewald methods67,100,101 . In this case the simulation
box is surrounded by infinite replicas of itself. The energy of the system
is written as a sum of the interactions in the box plus all the interactions
of the particles in the box with their infinite replicas outside. Special
mathematical techniques are used to handle these infinite sums. Even
though widely used, they are not completely free from criticism. One
consequence of the method is that correlations of particles in the box
with the outside are enhanced due to the interactions with the infinite
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replicas103 . The underlying physical problem in this thesis work is suffi-
ciently complex that one is well-off without having to struggle with such
technical issues and with finding which method is the ”best” for the task.
The approach here has been to take a simple (but reliable!) method of
treating long-range interactions, which in the past had been sucessfully
used in the same kind of systems.

In the so-called charged sheets method37,46 , the outside of the sim-
ulation box is treated in a mean-field fashion. The ions inside the box
interact with the potential from the average charge distribution outside
the box. This is done self-consistently and for the charge distribution out-
side the box one uses the mean ion distribution sampled in the box during
the course of the simulation. This charge distribution is discretized into
a number of infinite plates or sheets, parallel to the charged walls of
the system, each of them carrying the appropriate surface charge density
σi. In each of the infinite charged sheets one must obviously make a
square hole (subtract the potential from a square of smeared-out surface
charge σi, see Paper II). This corresponds to the simulation box, where
the interactions are treated explicitly (Equation 3.1). Each ion interacts
with all of these perforated charged sheets. An illustration is given in
Figure 4.1. Note that the interactions in the box are handled with the
so-called minimum-image convention67,100 , which means that each ion is
always in front of the center of one such square of charge, and in the box
interacts explicitly with the nearest periodic image of all other ions.

The point to stress in this method is that the solution for what is
outside the box is a sensible and understandable physical limit. If we
progressively increase the box size, at some point approximating the
remainder of the system by its mean effect on the simulation volume,
rather than by a sum of individual correlations, should be correct. One
can then simply increase the box size until one gets converged results, and
be confident that after this the external effects can already be adequately
approximated in such a way. It is important to note that the box sizes
needed in this thesis work to get converged results still correspond to
quite manageable systems, i.e., the external mean-field rapidly becomes
a good approximation. Details of the extension of this method to the
molecular solvent cases can be seen in reference86 and in Paper II. In
this case, besides the charged sheets, one also has sheets representing
the mean polarization profile for the dipoles, which are used to account
for the interactions of ions and dipoles inside the box with the dipoles
outside.

The charged sheets method is also interesting in that it affords a di-
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Figure 4.1: A schematic illustration of the charged sheets method.

rect ”mathematical” interpretation of the ion-ion correlation effect. This
is extensively discussed in reference46 . For the Pel term in Equation 3.7
we need to calculate the forces each ion in one half-space feels from the
ions and the charged wall on the other half-space. In the context of the
charged sheets method this is written as the sum of four terms: ion-
infinite charged wall, ion-explicit ions, ion-infinite charged sheets (with-
out the holes) and minus ion-charged squares (to create the holes needed
since the forces in the box are considered explicitly through the second
term). Due to the properties of the field from an infinite charged surface,
Equation 3.8, and to electroneutrality, the first and third terms cancel.
The force on one ion is then the sum of the forces from all the ions in
the opposite half-space minus the forces from all the charged squares.
The latter represent the mean ion distribution, and one then clearly sees
that the correlation effect stems from the deviation of the direct ion-ion
repulsions from the repulsion afforded by the mean distribution. The
former will be smaller than the latter, and one gets an attraction.
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4.3.1 The choice of interaction parameters

From Papers II-IV the reader might wonder why I worked with param-
eters which do not correspond to real ions in real water, so to say. In
this case monovalent counterions would have q = 1e, divalent q = 2e and
for water εr ' 80. One can see from Equation 1.1 that by reducing the
charges by 10, and the dielectric constant by 100, the charge-charge in-
teraction at a certain distance will have the same value as in the original
system. Something more general can be said looking at the dimension-
less parameters which characterize the system in the primitive model37 .
This means that, in a reduced parameter space, the original and the
”scaled-down” system are exactly the same. However, in the molecular
solvent simulations the interactions are no longer scaled by εr, and had
one worked directly with q = 1e and q = 2e and they would be 80 times
stronger than in the PM. Following the approach to introduce difficulties
in the studies step-wise, I therefore started with q = 0.1e and q = 0.2e as
monovalent and divalent counterions. In this way the treatment of long-
range effects is not a major issue when making a comparison between PM
and MS force curves sharing a common primitive model description. This
obviously also has similar effect on the other long-ranged interactions in
the system. Note that in Paper IV the interaction parameters have been
increased with respect to the studies in Papers II and III. The take-home
message is that this is a measure taken for purely technical convenience,
which does not diminish the value of the PM/MS comparisons performed
in the studies of this thesis work. The goal is to progressively move to-
wards more ”realistic” parameters. Note also that the increase in the
interaction parameters might raise other issues, as is suggested in Paper
IV. In particular, for sufficiently high q, the modelling of the walls with
discrete rather than smeared-out charges can probably have an impact
on the force curves in the molecular solvent simulations. This is one clear
example where the introduction of more complexity in a controlled fash-
ion contributes to our general understanding of the system and allows
one to tackle the difficulties one by one.
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Conclusions

My PhD studies started with a smaller project which once more showed
the relevance of the question I was to focus on in the five years which
followed. In the Poisson-Boltzmann modelling of the salt screening effect
in the DNA-CTA complexes the dielectric description of water worked
under quite demanding conditions. The reduction in the DNA-CTA at-
traction and the increased swelling at progressively higher salt content
was quantitatively reproduced in a parameter-free way. Enthalpy data
showed an interesting similarity between the dissolution of salt in the
complexes, with a limited amount of water, and in the bulk. In the
theoretical treatment approximations were made (e.g., the neglect of ion
size). However, similar information on how well-behaved the dielectric
continuum model can be continues to pile up for a wide range of systems
and conditions. It then starts to be difficult to argue that one merely ob-
served a fortuitous error cancellation, and it is perhaps more appropriate
to instead ask why.

The systematic studies of double layer forces in Papers II-IV clearly
demonstrated that the dielectric screening afforded by a dipolar solvent
is reasonably well described by the primitive model with an implicit
bulk εr. This is valid even when it comes to deviations from a mean-
field treatment, like the ion-ion correlation attraction. The forces in
a molecular solvent have an oscillatory component, as expected even
before starting these studies, and which is attributable to packing effects.
There is an interplay between ion and solvent packing, and electrostatic
interactions influence the oscillations. However, this does not erase the
qualitative agreement the dielectric continuum description displays with
the MS. In Paper IV the reduction of the solvent size approaching the
continuum limit shows decreased oscillations with a period reflecting the
solvent size. More importantly, for sufficiently small solvent diameter
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one is left with monotonic curves which resemble the PM.
The analysis of free energy curves proves instrumental in these stud-

ies. The oscillations are smoothened and the comparison with the prim-
itive model is made easier. The different components of the pressure
between the charged walls are also a valuable asset in the interpreta-
tion. For the systems of Papers II and III its use was mainly two-fold:
identifying common causes for the ion-ion correlation attraction between
the PM and the MS; distinguishing effects which are introduced on the
MS level, like solvent packing and depletion, from the underlying PM
picture.

An important conclusion is that the step-wise approach to the intro-
duction of complexity turned out fruitful and justified. The increase in
the electrostatic coupling in Paper IV raised the issue of discrete surface
charges, which might have an impact on the MS studies for the given
parameters. I note that a hint for the need to introduce discrete sur-
face charges came from recognizing the importance of the electrostatic
pressure component for the short-range minimum which appears in the
pressure curves. The results obtained in this thesis are from my perspec-
tive important and encouraging, but there is still a lot to be done on this
problem. This is only a realistic statement and not a declaration of un-
derachievement. Continued thorough and systematic studies are needed,
able to separate between model flaws and true physical effects. After
mastering the finesses of discrete surface charges it would be interesting
to proceed to a more realistic water model. I hope to have contributed
to paving the way for these further studies.

Finally, a further nice feature of a slit system is that the determination
of the dielectric constant of our molecular solvent can be performed in a
quite straightforward (and experimentally related) way by applying an
external electric field (Paper V). This is for sure important if one wants
to continue making meaningful comparisons between PM and MS results.

I hope that this has constituted a nice appetizer and that you now
enjoy the papers!



Popular science summary in
english

Charged objects are all around you, even if you do not always stop to
think of it. From the shampoo you use, to the food you eat. In some of
the most important molecules in your body (lipids, proteins, DNA) and
even in the cement which builds your house. They are central to fields
so popular nowadays as nanotechnology, drug delivery and biophysics.
Water is also everywhere. You obviously wash your hair with it, you
have probably seen construction workers mixing cement with water and
you should know that it makes up for sixty percent of your body. It
should be no surprise that the charges I mentioned exist most of the
times in an aqueous environmet. Checklist: charges in water.

(Modern) Physical Chemistry is far more than a ”cook and look” (or
”mix and look”) science. It is devoted to the study of the causes (or
mechanisms) for a great deal of important phenomena. Understanding
these gives you the power to control the behaviour of many systems,
ranging from taylor made materials to the hope for a cure to Alzheimer’s
disease, where the interactions between charged proteins play a primary
role. In the quest for understanding, experiments go hand in hand with
theoretical studies and computer simulations, and both are a valuable
aid to each other. Updated checklist: understanding; charges in water.

Take cement as an example. When you mix it with water a great
deal of microscopic charged particles are formed. You can imagine them
as small platelets. For each of these platelets there is a bunch of much
smaller mobile charges of opposite sign which make sure the whole thing
is electroneutral: its counterions. A platelet with the associated coun-
terions forms what is known as an electric double layer, and the forces
between these double layers will dictate if your house will stand or fall
down! Cement was only one example, and double layer forces are among
the most important properties in many of the systems mentioned before.
The level of control and understanding desired cannot do without know-
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ing them. New checklist: Double layer; forces; understanding; charges in
water.

A system like cement is from a microscopic or molecular point of
view very complex, and to do computer simulations we need to use mod-
els. These should include the level of detail needed to understand the
phenomena we want to study, but cannot be so complex that they be-
come untractable on a computer. Since water is an abundant component
in this and many other systems, a common simplification is to describe
it as a single number! This number, known as its dielectric constant,
scales the charge-charge interactions. This saves a lot of computer hours
and allows one to study important and very complex phenomena. Since
one sacrificed the molecular detail in this model, known as the dielectric
continuum model, it should only work for distances between the charges
where water can be seen as a number, rather than a set of molecules.
However, there is a lot of evidence that this model is working for very
short charge-charge distances, when we would not expect it to.

This thesis deals with simulation studies of charges in dielectric me-
dia (of which water is a particularly important example). Coming back
to our checklist, the strategy was to perform simulations for the forces
between electrical double layers (take the cement platelets as an exam-
ple) with increasingly more complex models for the solvent. The goal
was to understand the peculiar behaviour of the dielectric continuum
model at short range. It was found that a more elaborate solvent model,
which describes the molecules explicitly, gives double layer forces with
which the dielectric continuum model qualitatively agrees. But, as ex-
pected, the more elaborate model has features which the simpler contin-
uum model cannot reproduce, mostly connected to molecular size. The
agreement between the models happens even for a particularly interesting
phenomenon: two platelets of the same charge can attract, rather than
repel, which is known as ion-ion correlation attraction. This is certainly
not what you learned in school with ”likes repel and alikes attract”, but
it may well be what makes your house stand!



Populärvetenskaplig
sammanfattning p̊a svenska

Laddade objekt finns överallt omkring oss, även om du inte alltid tänker
p̊a det. Fr̊an schampot du använder till maten du äter. I n̊agra av de
viktigaste molekylerna i kroppen (lipider, proteiner, DNA) och även i ce-
menten som bygger upp ditt hus. De är centrala inom s̊a aktuella ämnen
som nanoteknologi, läkemedelsupptag i kroppen och biofysik. Vatten
finns ocks̊a överallt. Du tvättar naturligtvis ditt h̊ar med det, du kanske
har sett byggnadsarbetare blanda cement med vatten och du borde veta
att din kropp till 60 procent best̊ar av vatten. Det borde inte vara n̊agon
överraskning att laddningarna jag pratade om oftast förekommer i en
vattenmiljö. Checklista: laddningar i vatten.

Modern Fysikalisk Kemi är mycket mer än en ”blanda och titta”
vetenskap. Dess m̊al är att studera källorna till (eller mekanismerna
bakom) flera viktiga fenomen. Att först̊a dem ger en förm̊aga att kon-
trollera beteendet hos m̊anga system, fr̊an skräddarsydda material till
möjliga botemedel för Alzheimers sjukdom, där växelverkan mellan lad-
dade proteiner spelar en stor roll. I strävandet efter att uppn̊a denna
först̊aelse, g̊ar experiment hand i hand med teoretiska studier och dator-
simuleringar, och de olika metoderna kompletterar varandra. Uppdat-
erad checklista: först̊aelse; laddningar i vatten.

Tag cement som ett exempel. När man blandar det med vatten bildas
ett stort antal mikroskopiska laddade partiklar. Du kan föreställa dig
dem som sm̊a flak. För vart och ett av dessa flak finns m̊anga mindre,
rörliga och olikladdade partiklar (motjoner) som ser till att hela systemet
är elektriskt neutralt. En flak tillsammans med sina motjoner utgör ett
s̊a kallat elektriskt dubbelskikt, och det kan vara krafterna mellan dessa
dubbelskikt som avgör om ditt hus st̊ar kvar eller faller ihop! Cement är
bara ett exempel, och krafter mellan elektriska dubbelskikt är bland de
viktigaste egenskaperna hos m̊anga av de system jag pratade om tidigare.
Att känna till dessa krafter är nödvändigt för att kunna kontrollera och
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först̊a dem. Ny checklista: Dubbelskikt; krafter; först̊aelse; laddningar i
vatten.

Ett system som cement är fr̊an en mikroskopisk eller molekylär syn-
punkt mycket komplext, och för att köra datorsimuleringar behöver vi
använda modeller. I dessa bör ing̊a tillräckligt med detaljer för att vi ska
kunna först̊a de fenomen vi vill studera, men de f̊ar inte vara s̊a kom-
plexa att de blir ohanterliga i en dator. Eftersom det finns mycket vatten
i detta och i m̊anga andra system, är en vanlig förenkling att beskriva
vattnet som ett enda tal! Detta tal, den s̊a kallade dielektricitetskon-
stanten, skalar om växelverkan mellan laddningarna. Denna förenkling
sparar många datortimmar och gör det möjligt att studera viktiga och
mycket komplexa fenomen. Eftersom man offrar de molekylära detal-
jerna i denna modell, den s̊a kallade dielektriska kontinuum-modellen,
borde den bara fungera för avst̊and mellan laddningarna som är s̊a stora
att vattnet emellan dem kan beskrivas som en siffra, istället för som ett
antal molekyler. Trots detta finns en hel del bevis för att denna modell
fungerar för mycket korta avst̊and mellan laddningarna, där man inte
förväntar sig att den skulle fungera.

Denna avhandling handlar om simuleringsstudier av laddningar i
dielektriska medier (av vilka vatten är ett särskilt viktigt exempel). Om
vi återvänder till v̊ar checklista, s̊a har strategin varit att köra simu-
leringarna för krafter mellan elektriska dubbelskikt (exempelvis cement-
flak) med mer och mer komplexa lösningsmedelsmodeller. Syftet var att
först̊a den dielektriska kontinuummodellens märkliga beteende vid korta
avst̊and. Det upptäcktes att en mer detaljerad lösningsmedelsmodell,
som beskriver molekyler explicit, ger dubbelskiktskrafter med vilka den
dielektriska kontinuummodellen är i kvalitativ överensstämmelse. Men,
som förväntat, uppvisar systemet med den mer detaljerade modellen
beteenden som den enklare dielektriska kontinuummoddellen inte kan
beskriva, vilket huvudsakligen har att göra med molekylernas storlek.
Överensstämmelsen mellan modellerna uppst̊ar även för ett särskilt in-
tressant fenomen: att tv̊a flak med lika laddning kan attrahera varandra,
istället för att repellera. Detta fenomen kallas för jon-jon korrelation-
sattraktion. Det är säkert inte vad du skulle förvänta dig, men det kan
mycket väl vara det som gör att ditt hus st̊ar kvar!
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[54] R. Kjellander, S. Marčelja, R. M. Pashley, and J. P. Quirk, J.
Chem. Phys. 92, 4399 (1990).

[55] V. A. Bloomfield, Curr. Opin. Struct. Biol. 6, 334 (1996).

[56] K. Yoshikawa, M. Takahashi, V. V. Vasilevskaya, and A. R.
Khokhlov, Phys. Rev. Lett. 76, 3029 (1996).

[57] M. Takahashi, K. Yoshikawa, V. V. Vasilevskaya, and A. R.
Khokhlov, J. Phys. Chem. B 101, 9396 (1997).

[58] S. M. Mel’nikov, M. O. Khan, B. Lindman, and B. Jönsson, J. Am.
Chem. Soc. 121, 1130 (1999).

[59] M. O. Khan, S. M. Mel’nikov, and B. Jönsson, Macromolecules 32,
8836 (1999).

[60] A. Naji, S. Jungblut, A. G. Moreira, and R. R. Netz, Physica A
352, 131 (2005).



BIBLIOGRAPHY 57

[61] A. P. Lyubartsev and L. Nordenskiöld, J. Phys. Chem. 99, 10373
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