LUND UNIVERSITY

High-Level Grafcet and Batch Control

Johnsson, Charlotta: Arzén, Karl-Erik

1994

Link to publication

Citation for published version (APA):
Johnsson, C., & Arzén, K.-E. (1994). High-Level Grafcet and Batch Control. Paper presented at Automation of
Mixed Process: Dynamic Hybrid Systems (ADPM), Brussels, Belgium.

Total number of authors:
2

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/3e8f03e9-d51d-47d4-8afc-0e53747e9988

Presented at the Symposium ADPM’94: Automation of Mixed Processes: Dynamical
Hybrid Systems, Bryssel, November 1994.

High-Level Grafcet and Batch Control

Charlotta Johnsson and Karl-Erik Arzén

Dept. of Automatic Control
Lund Institute of Technology
Box 118, S-221 00 Lund, Sweden
Email: (lotta,karlerik)@control.lth.se

Abstract: The application of Grafcet to super-
visory control applications with special emphasis
on batch control is described. Grafchart, a Grafcet
based G2 toolbox is presented. An industrial ap-
plication where it is currently used on-line is de-
scribed. High-Level Grafchart is an extension of
Grafchart that is based on High-Level Petri nets
and Object-Oriented Programming. It increases
the parameterization and structuring possibilities
of Grafchart. The SP88 draft batch control stan-
dard is shown to be well suited for representation
by High-Level Grafchart.

1. INTRODUCTION

Grafcet, or Sequential Function Charts (SFC), has
been widely accepted in industry as a represen-
tation format for sequential control logic at the
local PLC level through the standards IEC 848
and IEC 1131-3. There is, however, also a need
for a common representation format for the se-
quential elements at the supervisory control level.
Supervisory applications such as set-point control,
monitoring, fault detection, diagnosis, planning,
batch control management and production opti-
mization receive increasing attention from both
the academic control community and industry.
Reasons for this are increasing demands on perfor-
mance, flexibility, and safety caused by increased
quality awareness, environmental regulations and
customer-driven production.

Sequential elements show up in two different sit-
uations in supervisory control. The first situation
arises due to the fact that the processes in the
process industry are typically of a combined con-
tinuous and sequential nature. All processes run
in different operating modes. In the simplest case
these can consist of start-up, operation, and pro-
duction. In the different modes the process and its
components may function differently. This means,

e.g., that a rule-based supervisory monitoring and
diagnosis system must contain different rules for
the different operating modes of the process. As
the process changes its operating mode the rule-
based system must change its set of active rules.

The second situation concerns the case when the
problem that the supervisory systems should solve
itself can be decomposed into sequential steps. As-
sume that we want to implement an on-line pro-
duction optimization system. The system should
at regular time intervals perform measurement
and production analysis, calculate new optimized
parameter settings, and execute the parameter
changes. Although the process may operate in the
same mode all the time, this problem is still of
sequential nature.

Grafchart is the name of a toolbox developed at
Lund Institute of Technology that combines the
function chart formalism of Grafcet with real-
time knowledge-based systems [2], [5], [3]. It is
implemented in G2, an object-oriented graphi-
cal programming environment primarily aimed
at intelligent supervisory control applications [9].
Grafchart is currently used on-line in an oil refin-
ery application [4].

High-Level Grafchart is an extension of Grafchart
inspired by High-Level Petri Nets [7] and object-
oriented programming (OOP) that is currently
under implementation. The implementation of
Grafchart is object-oriented. Steps, transitions,
etc., and even entire function charts are repre-
sented as objects that are defined in a class hierar-
chy. High-Level Grafchart is based on the possibil-
ity to specialize these object classes and thereby
adding attributes and refining the behaviour of the
object. In this way it is, e.g., possible to parame-
terize steps and macro steps, use function charts
as object methods and let the tokens in a function
chart be information carrying objects that them-
selves may contain function charts as methods.

Initial
step =™
‘ Alternative paths
Transition
- J:, Parallel paths
Token ‘ ‘ ‘
N
[
Lo
[[
‘ T
Step —

Figure 1. Grafchart graphical syntax

This increases the structuring facilities and makes
it possible to reuse large parts of an application.

Sequential control is very important in batch
control. Batch control is currently the subject
of large interest. The ISA draft standard SP88,
currently under development, is one attempt to
define the terminology, models and functionality
of batch control systems. SP88 already mentions
Grafcet but only at the very lowest level for
representing the phases in a recipe.

“High-Level Grafcet for supervisory sequential
control” is the name of a project with the aim
to develop High-Level Grafchart and to apply it
to general supervisory control applications with
special focus on batch control.

In Section 2 Grafchart is described and compared
to standard Grafcet. The industrial oil refinery
application is described in Section 3. High-Level
Grafchart is described in Section 4. The mapping
between SP88 and High-Level Grafchart is finally
given in Section 5.

2. GRAFCHART

Grafchart uses the graphical function chart syntax
from Grafcet [6]. It supports steps, transitions, al-
ternative branches and parallel branches accord-
ing to Fig. 1. An entire function chart is repre-
sented as a Grafcet process object. Grafchart
charts can be closed or non-closed according to
Fig. 2

The main difference between Grafcet and
Grafchart concerns the representation of step

Closed chart Non-closed chart
Figure 2. Closed and non-closed charts

actions. Grafcet actions operate upon boolean
variables. Different action types exist, e.g., level
actions, impulse (stored) actions, conditional ac-
tions, time-limited actions and time-delayed ac-
tions. In Grafchart step actions are represented as
G2 rules that are associated with the step. The
rules can be conditional or unconditional. They
can be defined to only be fired once when the step
becomes active. This gives a behaviour similar to
impulse actions. By associating a scan interval
with a rule the rule will be fired at a frequency
determined by this scan interval as long as the
step is active. It is also possible for a rule to be
invoked through forward or backward chaining.

The full G2 rule syntax can be used in Grafchart.
However, in order to further simplify for the
user the somewhat annoying syntax of G2 ex-
pressions has been replaced by a Pascal-like dot-
notation. That means that instead of referring to
an object attribute using the standard G2 syn-
tax the attributel of objectl the shorter
objectl.attributel is used. The actions that
can be performed include all of G2’s built in rule
actions. For example, it is possible to assign values
to variables (the conclude action), to start proce-
dures, to create and delete objects, hide and show
information, perform animation actions, etc.

The implementation of the toolbox is based on
the G2 concept of activatable subworkspaces. A
workspace is a virtual, rectangular window upon
which various G2 items such as rules, procedures,
objects, displays, and interaction buttons can be
placed. A workspace can also be attached to an
object. In this case the workspace is called a sub-
workspace of that object. When a subworkspace is
deactivated all the items on the workspace are in-
active and “invisible” to the G2 inference engine.
This means, e.g., that rules placed on a deacti-
vated subworkspace cannot be invoked.

Both steps and transitions are represented as G2
objects that have activatable subworkspaces. The
rules that should be active when a step is active
are placed on the subworkspace of the step. The
subworkspace is only active when the step is ac-
tive, i.e., the rules are only executed when the step
is active. Each transition contains an attribute
named ”condition”. Here, the user enters the log-
ical condition for when the transition should fire
expressed as a text string. This string may con-
tain the previously mentioned dot-notation. Dur-
ing initialization the condition attribute is used to

G2 rules
Step subworkspace /

Initiall
conclude that v1 is ope

If status is OK
then
start diagnosis()

Transition subworkspace

Transition
Attribute Table

oo v |

/ When true then
start
fire-transition-of(
this workspace)

A y

Automatically
generated G2
rule

e o

Figure 3. Steps and transitions with their
subworkspaces

Macro step subworkspace

g Enter
Macro step step

Exit
step

Figure 4. A macro step

automatically generate the rule that executes the
transition firing. This rule is located on the sub-
workspace of the transition. In this way the rule
will only be tested when the transition is active,
i.e., when the step preceding the transition is ac-
tive. The situation is shown in Fig. 3.

2.1 Macro steps and procedure steps

Macro steps are used to represent steps that have
an internal structure of (sub)steps, transitions and
macro steps. The internal structure is placed on
the subworkspace of the macro step, see Fig. 4.
Special enter-step and exit-step objects are used
to indicate the first and the last substep of a
macro step. A macro step must have exactly
one enter-step and at least one exit-step. When
the transition preceding a macro step becomes
true the enter-step upon the subworkspace of
the macro step and the transitions following that
enter-step are activated. The transitions following
a macro step will not become active until the
execution of the macro step has reached an exit-
step.

Sequences that are executed in more than one
place in a function chart are represented as
Grafchart procedures. The common sequence is
represented as a function chart on the sub-
workspace of a Grafchart procedure object. Proce-

Procedure call to
step proc-1 Subworkspace
Enter
Grafchart/ step
procedure
Procedure Call to
step proc-1 S
Proc-1"
N Exit
step

Figure 5. Procedure step and Grafchart pro-

:

Figure 6. Exception transitions connected to
a macro step.

cedure

Active
exception
transitions

dures have enter-steps and exit-steps in the same
way as macro-steps. The call to a procedure is
represented by a procedure step. The situation is
shown in Fig. 5.

Grafchart procedures should be used to represent
standard sequences that are called at several
places in a function chart. In plain Grafchart,
procedures are not reentrant, i.e., they can only be
called from one procedure step at the same time. It
is the user’s responsibility to ensure that not more
than one procedure step calls the same procedure
at the same time.

2.2 Ezception transitions

Exception transitions are an abbreviation of the
formal Grafcet model that is used in the situation
when it is desired that the same transition should
apply to multiple steps. An exception transition
is a special type of transition that only may be
connected to macro steps, procedure steps, and
Grafchart procedures. An ordinary transition con-
nected after a macro step or procedure step will
not become active until the execution has reached
an exit step. An exception transition is active all
the time that the macro step or procedure step
is active. If the exception transition becomes true
while the corresponding macro step is executing
the execution will be aborted and the step follow-
ing the exception transition becomes active. This
also applies recursively, i.e., if the macro step con-
tains other macro steps or procedure steps that
are currently active, these will also be aborted.
An example of exception transitions is shown in
Fig. 6

An exception transition connected to a procedure
call gives an exception exit from that specific

Branch A JF' Branch B

| |
T T
e

J_—l Aready
\

L

Figure 7. Do in parallel.

Branch A L Branch B

Bready ready

Aready or Bready

L.

Figure 8. Do in parallel until one completes.

call to the associated Grafchart procedure. An
exception transition connected to a Grafchart
procedure gives an exception exit that is common
to all calls to that procedure.

Exception transition can also be used in the case
where we want parallel execution of a number
of branches until the first of them completes.
This is inconvenient to express with Grafcet’s
parallel constructs. Consider the example in Fig.
7. Here we have two parallel branches 4 and
B. The transition following the synchronization
of the parallel branches will not become enabled
until both branches have completed. If we want
to express that we want to continue as soon as
one of the branches has completed using Grafcet
we get a quite complex function chart according
to Fig. 8 By encapsulating the parallel construct
in a macro step and using an exception transition
a much cleaner solution is obtained, see Fig. 9. In
order to avoid the additional hierarchical level that
the macro step imposes one could alternatively
consider the simplified graphical syntax of Fig. 10.
This is currently not allowed in Grafchart.

Exception_»

\
Aready OR Bready
Transition \

Figure 9. Do in parallel until one completes
with exception transitions.

Branch B

| |
T
!

Branch A ‘

Aready

|

IJ'\F‘I Aready OR Bready

Figure 10. Alternative syntax

3. AN INDUSTRIAL APPLICATION

Grafchart has been wused to implement a
knowledge-based system that generates on-line
advice for operators regarding the distribution
of hydrogen resources at the Star Enterprise
Delaware City Refinery [10]. The system uses KBS
techniques coupled with numerical optimization.
The application is an example of the second sit-
uation where sequential processes are important.
The specific problem that is solved is to meet
the needs of the hydrogen consuming units in the
refinery while minimizing the hydrogen that is
wasted. A catalytic reformer unit and a continu-
ous catalytic reformer unit produce hydrogen as
by-products. A hydrocracker unit consumes high
purity hydrogen and vents low purity hydrogen.
Hydrogen from these units is used to satisfy the
needs of the hydrogen consuming hydrotreaters,
sulphur recovery, methanol, and naphtalene units.
Any additional hydrogen needs must be met by a
hydrogen production unit.

The solution to the problem consists of three
sequential steps [10, 11].

e Attempt to recover any suction venting asso-
ciated with the compressors.

e Determine the best operating policy based on
the current operating state.

e Generate advice for the operators on adjust-

OR:

Hydrogen Balance

Hydrogen Balance
System down

System up

7
. Compressor-vent-recovery
b d

[
. Best-operating-policy
b d

Figure 11. Hydrogen application Grafchart

ments necessary to enforce the optimal oper-
ating philosophy.

Each of these steps can be broken down into
substeps. The first and the third steps are solved
by heuristic rules. The second step employs linear
programming to solve a numerical optimization
problem formulated by the KBS. In the case a
numerical solution cannot be achieved heuristic
rules are used as a backup.

The sequential steps of the problem are repre-
sented as Grafchart macro steps according to Fig.
11. The entire system contains more than 18
macro steps and over 80 ordinary steps. The sys-
tem contains numberous alternative and parallel
constructs. The reasoning path is traced by chang-
ing the colour of a step that has been active. The
trace colours are reset each time a new cycle of
the main Grafchart in Fig. 11 is started. The main
reasoning cycle is executed once every 2 minutes.
The program formulates suggested flow rates at
two splits in the hydrogen network and also rec-
ommends compressor settings (or loadings) for all
of the compressors in the network.

The application is currently running on a Sun
Sparcstation that is linked to a Foxboro IA process
control system. The experiences of the system [10]
are that

“the use of the Grafcet toolboz is very
helpful from both a development and op-
erational standpoint. The various func-
tions within the knowledge base are built
in a straightforward fashion by associat-
ing rules, formulas, and procedures with
Grafcet objects. This makes revision and
maintenance of the system possible. Ad-
ditionally, review of the reasoning path
through the network is a clear indication
of how the KBS arrived at its advice.”

4. HIGH-LEVEL GRAFCHART

The development of High-Level (H-L) Grafchart
is inspired by High-Level Petri nets and object-

tank tank-12
limit 10

| 7 Initially
|| startfill-tank(sup.tank?)
| @
<—| Condition:

‘ N "sup.tank”.level > sup.limit"

Figure 12. Parameterization

oriented programming. It was decided to use the
Grafcet syntax in favor of a general Petri Net
syntax. The reason for this is the wide industrial
acceptance that Grafcet already has gained. High-
Level Grafchart builds upon the object-oriented
implementation of Grafchart by, mainly, allowing
specialization of Grafchart element object classes.
H-L Grafchart is also inspired by previous work in
the area such as [1] and [8].

4.1 Parameterization

Ordinary Grafchart has no means for parameter-
ization of steps, transitions or macro steps. The
rules within a step are specific, i.e., they contains
references to global variables and objects. This
makes it difficult to reuse steps from one appli-
cation to another. In High-Level Grafchart this is
resolved by utilizing the fact that step, transitions
and macro steps are objects defined in class defini-
tions. The user can specialize these classes to sub-
classes in which additional attributes have been
added. These attributes act as parameters which
can be referenced from rules within the step us-
ing simple dot notation. By instantiating the step
subclasses with different values of the parameters
the step can be reused.

Consider the example shown in Fig. 12. The
class named fill-tank is a specialization of a
macro step with two new attributes: tank and
limit. F11 is an instance of fill-tank. A fill-
tank macro step contains the logic for the control
and monitoring of the filling of a tank. The tank
attribute contains the name of the tank that
should be filled, i.e., the value of this attribute acts
as a name reference. The 1imit attribute contains
the limit up to which the tank should be filled. The
macro step contains an enter-step that contains a
rule that initiates the filling. This rule refers to the
value of the tank attribute using the sup.tank
notation (sup is short for superior). It refers to
the tank referenced by the tank attribute using
the Pascal-style notation sup.tank”. Similarly the
transition condition upon the workspace refers
to the level of the tank referenced by the tank
attribute and to the value of the limit attribute.

tank tank-12
operation fill-heat
limit 5
-
— -
-

- -
superior— | operation
2

LIBRARY:

Fill Fill-heat Fill-heat-agitate

Figure 13. Procedure parameterization

The sup.attribute notation is translated and
replaced by a corresponding G2 expression during
initialization.

4.2 Procedure Parameterization

With procedure parameterization it is possible to
have entire steps or macro steps as parameters
to, e.g., another macro step or an entire Grafcet
chart. Procedure parameterization can currently
be achieved in two ways: using procedure template
objects or using procedure steps.

In the first case the solution looks as follows.
In the macro step the step is represented by a
template step object that contains a reference to
an attribute of the Grafcet process object. During
initialization or execution of the network, the
template step object is replaced by an instance
of the class denoted by the attribute value, i.e., by
some step or macro step class.

Consider the small example shown in Fig. 13.
FL2 is an instance of a macro step subclass with
three attributes. It contains a special macro step
template object that contains one pre-defined at-
tribute named superior-attribute. The value of
this attribute is operation, the name of one of the
attributes of FL2. During initialization, the macro
step template will be substituted by a copy of the
macro step referenced by the operation attribute.
In this case the value of operationis fill-heat.
Assume that there exists a library that contains
three different macro steps: fill, fill-heat,
and fill-heat-agitate which contains different
operations that may be performed on a tank. The
three macro steps can have totally different in-
ternal structure. With the procedure parameteri-
zation described, FL2 can be parameterized both
with respect to which tank object it should oper-
ate on, what the level limit should be, and which
operation that should be performed on the tank.

Procedure parameterization is similar to the pos-
sibility to have procedures as arguments to proce-

G2 object

Attributes:

Method 1 Method 2

L
3| -

Figure 14. Grafchart methods

dures in ordinary programming languages. Tem-
plates are available for steps, transitions, and
macro steps.

The second alternative to procedure parameteri-
zation is based on procedure steps. In this case
the attribute that determines which Grafcet pro-
cedure that should be executed when the proce-
dure step becomes active is given by a parame-
ter. The drawback with this approach is that the
Grafcet procedure is not reentrant.

4.3 Function charts as methods

It is possible to have function charts that are
methods of general G2 objects according to Fig.
14. Tt is possible to call the methods by calling
an appropriate function with the object and the
method name as arguments. Within the methods
it is possible to reference the object attributes
using the self.attribute notation.

4.4 Coloured tokens

In Grafcet a token is merely a boolean indica-
tor telling whether a step is active or not. In
High-Level Petri nets, however, a token can be
viewed as an object that carries information. Since
a Grafchart token is implemented as a G2 object
that may contain attributes, i.e. carry informa-
tion, this functionality is very natural also for H-L
Grafchart. The tokens in H-L Grafchart can now
be viewed as objects that move around in the func-
tion chart.

Coloured tokens can be used in many ways. In the
simplest case the tokens in a chart are all of the
same class. The step actions and transition con-
ditions can refer to the token attributes using the
inv.attribute notation. If all step actions and
transition conditions only refer to token attributes
we get a behaviour that is equivalent to a graphi-
cal re-entrant procedure language. Each token rep-
resents an invocation of the graphical procedure.
It carries the equivalent to the local variables and
procedure arguments of a procedure in an ordinary
procedural language. The tokens move around in
the function chart totally independently of each
other.

Before firing T1 After firing T1

Invocation object Invocation object

Figure 15. Parallel branches and invocation
objects.

%:
N
:F

Figure 16. Tokens with Grafchart methods.

In the implementation it is not the tokens them-
selves that constitute the invocation objects. In-
stead the tokens act as pointers to the actual in-
vocation objects. This is utilized when handling
parallel branches. When the execution splits up
into parallel branches, the tokens of the different
branches all point to the same invocation object
according to Fig. 15.

By allowing step actions and transition conditions
to not only be strictly local to the invocation ob-
ject but also refer to global variables and objects it
is possible to, e.g., model systems consisting of ob-
jects that have a preserved internal ordering such
as elements in a FIFO queue or parts on a mov-
ing conveyor belt. This has been used to model a
LEGO car factory producing LEGO cars [4].

An extension that is currently under implementa-
tion is to allow token objects of different classes in
the same chart. In this case it is necessary to have
transition conditions, i.e. guards, that refer to the
existence of token objects of different classes in the
steps enabling the transition. The syntax for this
has not been settled yet. It is an open question if
arc expressions are needed or if everything can be
solved by the guard expressions alone. Avoiding
arc expressions would be more in-line with ordi-
nary Grafcet.

Since tokens are objects and objects may contain
Grafchart methods it is also possible for tokens to
have Grafchart attributes. The structure achieved
by this is shown in Fig. 16.

Process

Cell
Must contain
Unit
May contain
Equipment
Module
May
contain
May contain
Control
Module N
May
contain

Figure 17. SP88 physical model.

5. SP88 AND H-L GRAFCHART

The forthcoming ISA batch control standards
aims at standardizing the terminology, models and
functionality of batch control systems. The lower
levels of the physical model of SP88 are shown in
Fig. 17. The Entity-Relationship notation should
be interpreted in the following way. A process cell
must contain one or more units. Each unit is only
contained in one process cell. An equipment mod-
ule may contain one or more equipment modules
or control modules. A process cell contains all
the units, equipment modules and control mod-
ules needed to produce a batch. A unit carries out
one or more major processing activities such as re-
act, crystallize, etc. An equipment module carries
out a finite number of specific minor processing
activities such as dosing and weighing. Finally, a
control module could, e.g., be a regulating device.
This model describes a structural decomposition
of the process into hierarchical levels. It can natu-
rally be represented using G2’s possibility to have
objects with attributes whose values themselves
are objects.

The procedural control model is also defined
hierarchically as seen in Fig. 18. This model can
naturally be described by a hierarchical Grafchart
where the entire function chart corresponds to
the procedure, macro or procedure steps are used
to represent unit procedures and operations and
steps are used to represent phases. SP88, however,
only mentions Grafcet at the phase level.

The recipe types of SP88 are shown in Fig. 19.
Here, we will only consider the master and control
recipes. The master recipe is targeted to a process

Procedure

consists of an
ordered set of

Unit procedure

consists of an
ordered set of

Operation

consists of an
ordered set of

Phase

Figure 18. SP88 procedural model.

. includes Product-specific
General recipe T pr ing
information
may be
transformed into
includes Site-specific
, . | pe
Site recipe } information
may be
transformed into
. includes Process Cell-Specific
Master recipe information
is the basis for
includes | Batch ID, size, in-proces:
Control recipe } operator- and/or system-|
generated information

Figure 19. SP88 recipe model.

cell. The control recipe starts a copy of a mas-
ter recipe that then is modified with scheduling
and operational information. The recipes contain
header information, formula information about
the process inputs, parameters and process out-
puts, information about the equipment require-
ments of the recipe, and finally the recipe pro-
cedure. A recipe can naturally be represented as
an object that contains the recipe procedure rep-
resented as a Grafchart method. The recipe pro-
cedure is structured according to the procedural
model. A recipe phase may contain a reference
to an equipment phase. This is a representation
of the actions that should be taken in the phase
that is stored together with the equipment object,
i.e., as a Grafchart method of the equipment ob-
ject. The recipe phase can be made to execute
the equipment phase in several ways in Grafchart.
Similar references may be found between recipe
operations and equipment operations and between
recipe unit procedures and equipment unit proce-
dures.

The possibility to use multiple tokens in a function

|| @

- G] @
B [
LN AN

Figure 20. Batch plant configuration

chart can be used in several ways. It is for exam-
ple possible to have a batch train represented as a
function chart and to let the tokens represent the
batches currently under production in the train.
It is also possible to let the control recipes be rep-
resented by Grafchart tokens. These tokens con-
tain the recipe procedure as a Grafchart method.
They move between different steps that may rep-
resent resource batch preparation, allocation, ar-
bitration, batch processing (here the batch recipe
is executed) and inventory management.

The “High-Level Grafcet for supervisory sequen-
tial control” project has the goal to implement
a batch control system based on High-Level
Grafchart. The system is under implementation.
The system runs against a real-time simulation of
a multi-product, network structured batch process
implemented in G2. It consists of storages, mixers
and buffers, reactors, and storages according to
Fig. 20. It can be operated both in batch, semi-
batch and continuous mode. On top of the simula-
tion model the regulatory control system and the
batch control management will be implemented.

6. CONCLUSIONS

Combining the function chart formalism of
Grafcet with the real-time expert system envi-
ronment G2 has proved very successful also in in-
dustrial practice. The increased parameterization
and structuring facilities of High-Level Grafchart
further extends the application areas and increases
the possibilities for reuse of generic solutions.

Batch control is a supervisory control application
where sequence control is very important. The
forthcoming SP88 standard is well suited for a
Grafchart based representation.

6.1

This

Acknowledgements
work was supported by the NUTEK

REGINA project “High-Level Grafcet for super-
visory sequential control”. The authors want to
thank Bernt Nilsson for many valuable discussions
about batch control and modelling of chemical
processes.

[1]

REFERENCES

S. AGcaoua. Spécification et commande des
systémes & événements discrets, le grafcet

coloré. PhD thesis, Grenoble University
(INPG), 1987.

K.-E. ARzEN. “Sequential function charts
for knowledge-based, real-time applications.”
In Proc. Third IFAC Workshop on Al in
Real-Time Control, Rohnert Park, California,
1991.

K.-E. ARZEN. “Grafcet for intelligent real-
time systems.” In Preprints IFAC 12th World
Congress, Sydney, Australia, 1993.

K.-E. ARzEN. “Grafcet for intelligent su-
pervisory control applications.” Automatica,
1994. Accepted for publication.

K.-E. ARzEN. “Parameterized high-level
Grafcet for structuring real-time KBS appli-
cations.” In Preprints of the 2nd IFAC Work-
shop on Computer Software Structures Inte-
grating AI/KBS in Process Control Systems,
Lund, Sweden, 1994.

R. Davip and H. Arra. Petri Nets and
Grafcet: Tools for modelling discrete events

systems. Prentice-Hall International (UK)
Ltd, 1992.

K. JENSEN and G. ROZENBERG. High-level
Petri Nets. Springer Verlag, 1991.

C. Lakos and C. KEeN. “LOOPN++: A
new language for object-oriented petri nets.”
Technical Report, Department of Computer
Science, University of Tasmania, Australia,

1994.

R. Moore, H. RoseNoF, and G. STAN-
LEY. “Process control using a real time ex-
pert system.” In Preprints 11th IFAC World
Congress, Tallinn, Estonia, 1990.

T. PETTI and P. DHURJATI. “A coupled
knowledge based system using fuzzy opti-
mization for advisory control.” AIChE Jour-
nal, 38:9, pp. 1369-1378, 1992.

T. F. PeTT1. Using Mathematical Models
in Knowledge-Based Control Systems. PhD
thesis, University of Delaware, 1992.

