A generalization of the predictable degree property to rational convolutional encoding matrices

Johannesson, Rolf; Wan, Zhe-Xian

Published in: [Host publication title missing]

DOI: 10.1109/ISIT.1994.394954

Published: 1994-01-01

Citation for published version (APA): Johannesson, R., & Wan, Z-X. (1994). A generalization of the predictable degree property to rational convolutional encoding matrices. In [Host publication title missing] (pp. 17). DOI: 10.1109/ISIT.1994.394954
A Generalization of the Predictable Degree Property to Rational Convolutional Encoding Matrices

Rolf Johannesson, Zhe-xian Wan
Dept. of Information Theory, Lund University, P.O. Box 118, S-221 00 LUND, Sweden.

Abstract — The predictable degree property was introduced by Forney [1] for polynomial convolutional encoding matrices. In this paper two generalizations to rational convolutional encoding matrices are discussed.

I. INTRODUCTION

The predictable degree property, introduced by Forney [1], is a useful analytic tool when we study the structural properties of convolutional encoding matrices.

Let G(D) be a rate R = k/c binary polynomial encoding matrix with v_i as the constraint length of the i-th row. For any polynomial input g(D) the output y(D) = g(D)G(D) is also polynomial. We have

\[\text{deg} \, y(D) = \text{deg} \, g(D) \cdot \text{deg} \, G(D) = \text{deg} \sum_{i=1}^{m} w_i(D) g_i(D) \]

\[\leq \max_{1 \leq i \leq c} \{ \text{deg} \, w_i(D) + v_i \}, \quad (1) \]

Definition 1 A polynomial encoding matrix G(D) is said to have the predictable degree property if for all polynomial inputs g(D) we have equality in (1).

Let [G(D)]tᵢ be the (0, 1)-matrix with 1 in the position (i, j) where \(\text{deg} \, g_j(D) = v_i \) and 0, otherwise. Then we have

Theorem 1 Let G(D) be a polynomial encoding matrix. Then G(D) has the predictable degree property if and only if [G(D)]tᵢ are of full rank.

Since a basic encoding matrix is minimal-basic if and only if [G(D)]tᵢ is of full rank ([1] [4]) we have the following theorem which is due to Forney [1]:

Theorem 2 Let G(D) be a basic encoding matrix. Then G(D) has the predictable degree property if and only if it is minimal-basic.

In [6] we gave an example of a basic encoding matrix that is minimal but not minimal-basic. That minimal encoding matrix does not have the predictable degree property.

II. THE PREDICTABLE DEGREE PROPERTY FOR RATIONAL ENCODING MATRICES

Let \(g(D) = (g_1(D), \ldots, g_l(D)) \), where \(g_i(D), \ldots, g_l(D) \in \mathbb{F}_2[D] \). Denote by \(\mathcal{P}^* = \{ p(D) \in \mathbb{F}_2[D] \mid p(D) \text{ is irreducible} \} \cup \{ D^{-1} \} \).

For any \(p \in \mathcal{P}^* \) we define

\[e_p(g(D)) = \min \{ e_p(g_1(D)), \ldots, e_p(g_l(D)) \}, \quad (3) \]

where \(e_p(g_i(D)) \) is an exponential valuation of \(g_i(D) \) [3].

For any rational input \(g(D) \) the output \(y(D) = g(D)G(D) \) is also rational. We have

\[e_p(g(D)) = e_p \left(\sum_{i=1}^{m} w_i(D) g_i(D) \right) \geq \max_{1 \leq i \leq c} \{ e_p(w_i(D)) + e_p(g_i(D)) \}. \quad (4) \]

Definition 2 A rational encoding matrix \(G(D) \) is said to have the predictable degree property if for \(p = D^{-1} \) and all rational inputs \(g(D) \) we have equality in (4).

Let G(D) be a rational encoding matrix. As a counterpart to \([G(D)]_t\), for polynomial encoding matrices, for any \(p \in \mathcal{P}^* \) we introduce the \(b \times c \) matrix \([G(D)]_t(p)\) to be a matrix whose element in the position \((i, j)\) is equal to the coefficient of the lowest term of \(g_j(D) \), written as a Laurent series of \(p \), if \(e_p(g_j(D)) = e_p(g(D)) \) and equal to 0, otherwise.

Then we can prove

Theorem 3 Let G(D) be a rational encoding matrix. Then G(D) has the predictable degree property if and only if \([G(D)]_t(D^{-1})\) has full rank.

III. THE PREDICTABLE EXPONENTIAL VALUATION PROPERTY

Definition 3 A rational encoding matrix G(D) is said to have the predictable exponential valuation property if we have equality in (4) for all \(p \in \mathcal{P}^* \).

Theorem 4 Let G(D) be a rational encoding matrix. Then G(D) has the predictable exponential valuation property if and only if \([G(D)]_t(p) \mod p \text{ has full rank for all } p \in \mathcal{P}^* \).

A rational encoding matrix is said to be canonical if it can be realized with a minimal number of delay elements in controller canonical form [5].

Theorem 5 Let G(D) be a rational encoding matrix and assume that \(e_p(g(D)) \leq 0, 1 \leq i \leq b, \forall p \in \mathcal{P}^* \). Then G(D) has the predictable exponential valuation property if and only if G(D) is canonical.

The predictable exponential valuation property is not equivalent to being canonical.

REFERENCES

1This work was supported in part by the Swedish Research Council for Engineering Sciences under Grant 91-91.