
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

IR-based traceability recovery as a plugin - an industrial case study

Borg, Markus

2011

Link to publication

Citation for published version (APA):
Borg, M. (2011). IR-based traceability recovery as a plugin - an industrial case study. 14-17. Paper presented at
Fourth BCS-IRSG Symposium on Future Directions in Information Access (FDIA 2011), Koblenz, Germany.
http://ewic.bcs.org/content/ConWebDoc/41904

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/c743baae-8035-4b9f-8b13-11984931d5bc
http://ewic.bcs.org/content/ConWebDoc/41904

IR-based Traceability Recovery as a Plugin –
An Industrial Case Study

Markus Borg
Department of Computer Science

Lund University
Lund, Sweden

markus.borg@cs.lth.se

Large-scale software development is a complex undertaking and generates an ever-increasing
amount of information. To be able to work efficiently under such circumstances, navigation in all
available data needs support. Maintaining traceability links between software artefacts is one
approach to structure the information space and support this challenge. Several researchers have
proposed traceability recovery by applying IR methods, based on textual similarities between
artefacts. Early studies have shown promising results, but no large-scale in vivo evaluations have
been made. Currently, there is a trend among our industrial partners to collect artefacts in a
specific new software engineering tool. Our goal is to develop an IR-based traceability recovery
plugin to this tool. From this position, in the environment of possible future users, the usefulness
of supported findability in a software engineering context could be explored with an industrial
validity.

software engineering, traceability, information retrieval, findability, IR evaluation

1. INTRODUCTION

In large-scale software development, coordination
between different organizational units is a key
success factor to develop high-quality products on
time and within budget. Software development
results in a myriad of information entities. Apart
from the source code itself, requirements and
design specifications at variousabstraction levels,
test descriptions, test results and defect reports are
examples of produced software artefacts. The term
software artefact refers to any piece of information,
a final or intermediate work product, which is
produced and maintained during software
development (Kruchten, 2004). Software artefacts
are the tangible results of the development
process. They are typically of volatile nature and
subject to version control.

Developing techniques to navigate all this growing
information is crucial. Current state-of-practice is to
structure the information space by manually
maintaining traceability links between software
artefacts. This is widely recognized as an important
factor for efficient development, since it supports
verification, change impact analysis, program
comprehension and software reuse (Antoniol et al.,
1999). Lack of traceability has been identified as
one of the top factors causing delays in software
engineering projects (Dömges and Pohl,

1998).Since a traceability link can be established
between any software artefacts, defining a suitable
trace granularity is an important decision in a
development project (Cleland-Huang et al., 2007).

Software artefacts can consist of source code, UML
models, diagrams, state machines, graphics,
binaryfiles etc. However, text in natural language is
the common form of information representation
during all development phases (Marcus and
Maletic, 2003). Also source code contains natural
language content in identifiers and comments.
Consequently several researchers have proposed
standard IR approaches to semi-automatically trace
software artefacts by presenting candidate links.
The trend in this research has been to hunt recall
and precision values on a rather limited set of small
publicly available datasets, often from student
projects or the open source domain (Huffman
Hayes et al., 2006, Zou et al., 2006, Capobianco et
al., 2009). Recently, case studies have been
conducted using proprietary data from the industry,
but they are still in minority.

The goal of our research is not primarily to study
how IR methods can be improved and configured
to perform better in an industrial setting, but rather
to evaluate the IR-based approach in general and
study how software engineers can benefit from
increased findability through traceability

14The 4th BCS IRSG Symposium on Future Directions in Information Access

IR-based Traceability Recovery as a Plugin – An Industrial Case Study

recovery.To reach that goal, we plan to implement
the functionality as a plugin in an existing tool.

2. RELATED WORK

The most cited definition of traceability has been
given by Gotel and Finkelstein (1994):

“Requirements traceability refers to the ability to
describe and follow the life of a requirement, in
both a forward and backward direction (i.e. from
its origin, through its development and
specification, to its subsequent deployment and
use, and through periods of on-going refinement
and iteration in any of these phases)”

Two main areas where traceability is beneficial are
(1) process compliance and product improvement
and (2) software understanding and reuse
(Spanoudakis and Zisman, 2005). The former is
related to recommendations or requirements on the
development process and include standards such
as IEEE Std. 830-1998 and laws governing safety-
critical systems such as US Sarbones-Oxley Act of
2002 (Cleland-Huang et al., 2007). Traceability in
the context of (2) software understanding and
reuse supports maintenance and reengineering of
legacy systems (Antoniol et al., 2002).

Fiutem and Antoniol (1998) did early work on
recovering traceability links between design and
source code. They used basic string comparisons
and edit distances to suggest links between design
documentation and source code. In the following
years, Antoniol et al. (2002) continued by using the
Vector Space Model (VSM) and probabilistic
models to recover traceability links between source
code and textual documentation in natural
language. Marcus and Maletic (2003) introduced
Latent Semantic Indexing (LSI) to recover
traceability, also between code and documentation.
They also showed that LSI can achieve good
results without the need for stemming.

Huffman Hayes et al. have applied both VSM and
LSI in traceability recovery and have also studied
less technical aspects such as how software
engineers participate in the tracing loop (Huffman
Hayes and Dekhtyar, 2005). Also DeLucia et al.
(2009) have assessed the usefulness of supporting
traceability recovery in software engineering, in a
controlled experiment with students.

The risk of spending too much effort on improving
techniques for document retrieval without
considering the actual needs of the users has been
knownfor decades (Lancaster,1968). Directing
effort on increasing the size of datasets instead of
spending time on optimizing algorithms on small
corpora is important, since methods might

converge (Banko and Brill,2001). Recently, Oliveto
et al. (2010) presented a case study on traceability
recovery where VSM, LSI and the Jensen-Shannon
method were compared and the results were
almost equivalent.
3. EXPLORING STATE-OF-PRACTICE AND
STATE-OF-ART

A large in-depth exploratory interview study was
initiated in 2009 to investigate software engineers'
views on alignment between requirements and test
activities. We have conducted 30 interviews in 6
different companies with interviewees representing
different roles in the development process. The
overall goal of the study was to better understand
the context to focus our future research. Our study
identified poor tool support, information distributed
in separate systems with poor interoperability and
lack of traceability as contributing factors of
misalignment (Sabaliauskaite et al.,2010).

To investigate the state-of-art of IR-based
traceability recovery, we are working on a
systematic mapping study (Kitchenham, 2004).
Preliminary results from the meta-analysisshow a
need for in vivo evaluations of the approach; most
previous evaluations involving human subjects
have been conducted in university settings with
student subjects. The final step of the study will
map empirical results according to IR techniques,
validity of datasets and types of traceability links
established.

Another parallel activity, a master thesis project,
found the public availability of the research
prototypes to be low. The thesis evaluated IR-
based tools for traceability recovery using
requirements and test case descriptions collected
from safety critical development in the domain of
power and automation (Brodén, 2011).

4. DEVELOP PLUGIN IN STATE-OF-PRACTICE
TOOL

Some of our industrial partners are working on
introducing HP Quality Center (QC) as a new
software engineering tool. A direct outcome of this
transition will be that requirements, test cases and
defect reports will be accessible in the same tool.
This means the issue of poor tool interoperability
highlighted by practitioners in our case study will no
longer be a major obstacle. Another major
advantage of this tool change in industry is that QC
has good support for plugin development, thus it
can be used as a test bed for our approach. This
would enable us to implement an IR-based
traceability tool within the system, right in the
centre of the information hub.

15The 4th BCS IRSG Symposium on Future Directions in Information Access

IR-based Traceability Recovery as a Plugin – An Industrial Case Study

5. EVALUATE APPROACH IN INDUSTRIAL
CASE STUDY

The aim of this study will be to evaluate how well
the IR-based approach to traceability recovery
works in a real industrial setting. With the plugin in
place, we will be able to study the performance of
IR-based approaches for traceability recovery with
an industrial validity. It will also enable us to study
software engineers and their artefacts without
introducing any additional external tools. The focus
will be less on recall and precision, since the real
question is to what extent the approach actually
supports engineers. Instead aspects such as how
much you benefit from improved findability of
traceability information, how it affects the way
engineers work, how much time can be saved etc.
should be addressed.

A suitable method for the empirical evaluation is a
case study (Runeson and Höst,2009). In vivo
studies are hard to conduct as experiments, since
the level of control usually is too low. Collected
data will include tool usage statistics
complemented by answers from interviews and a
questionnaire distributed among involved
practitioners. The plugin solution would also
simplify expanding the study to multiple companies.

ACKNOWLEDGEMENTS

This work was funded by the Industrial Excellence
CenterEASE - Embedded Applications Software
EngineeringF

1
F.

6. REFERENCES

Antoniol G., Canfora G., De Lucia A. and Merlo E.
(1999) Recovering code to documentation links in
OO systems. 6th Working Conference on Reverse
Engineering.
Antoniol G., Canfora G., De Lucia A., Casazza
G.and Merlo E. (2002) Recovering traceability links
between code and documentation.IEEE
Transaction on Software Engineering. 28(10), 970-
983.
Banko M. and Brill E. (2001) Scaling to very very
large corpora for natural language
disambiguation.39th Annual Meeting on
Association for Computational Linguistics.
Brodén L. (2011) Requirements Traceability
Recovery – A Study of Available Tools. Master’s
Thesis,Dept. Computer Science, Lund University,
http://sam.cs.lth.se/ExjobGetFile?id=377
Capobianco G., De Lucia A., Oliveto R., Panichella
A. and Panichella S. (2009) On the Role of the
Nouns in IR-based Traceability Recovery. 17th
International Conference on Progam
Understanding.

1 http://ease.cs.lth.se

Cleland-Huang J., Settimi R., Romanova E.,
Berenbach B. and Clark S. (2007) Best Practices
for Automated Traceability. Computer, 40(6), 27-
35.
De Lucia A., Oliveto R. and Tortora G. (2009),
Assessing IR based traceability recovery tools
through controlled experiments, Empirical Software
Engineering, 14(1), 57-92.
Dömges R. and Pohl K. (1998) Adapting
traceability environments to project-specific needs,
Communications of the ACM, 41(12), 52-62.
Fiutem R. and Antoniol G. (1998) Identifying
design-code inconsistencies in object-oriented
software: a case study. Conference on Software
Maintenance.
Gotel O. and Finkelstein A. (1994) An Analysis of
the Requirements Traceability Problem. 1st
International Conference on Requirements
Engineering.
Huffman Hayes J. and Dekhtyar A. (2005) Humans
in the traceability loop: can't live with 'em, can't live
without 'em. 3rd International Workshop on
Traceability in Emerging Forms in Software
Engineering.
Huffman Hayes J., Dekhtyar A. and Sundaram
S.(2006) Advancing candidate link generation for
requirements tracing: the study of methods.
IEEETransaction on Software Engineering, 32(1),
4-19.
Kitchenham B. (2004) Procedures for performing
systematic reviews. Technical report, Keele
University and NICTA.
Kruchten P. (2004) The Rational Unified Process:
An Introduction. Third edition. Pearson Education,
Boston, MA, USA.
Lancaster F. and Climenson W. (1968) Evaluating
the economic efficiency of a document retrieval
system. Journal of Documentation, 24(1), 16-40.
Marcus A. and Maletic J. (2003) Recovering
documentation-to-source-code traceability links
using latent semantic indexing, 25th International
Conference on Software Engineering.
Oliveto R., Gethers M., Poshyvanyk D. and De
Lucia A. (2010) On the equivalence of information
retrieval methods for automated traceability link
recovery,18th International Conference on Program
Comprehension.
Runeson P. and Höst M. (2009) Guidelines for
conducting and reporting case study research in
software engineering, Empirical Software
Engineering, 14(2),131-164.
Sabaliauskaite G., Loconsole A., Engström E.,
Unterkalmsteiner M., Regnell B., Runeson P.,
Gorschek T. and Feldt R. (2010) Challenges in
aligning requirements engineering and verification
in a large-scale industrial context.Requirements
Engineering: Foundation for Software Quality
Spanoudakis G. and Zisman A. (2005), Software
Traceability: a Roadmap.Handbook of Software
Engineering and Knowledge Engineering, Volume

16The 4th BCS IRSG Symposium on Future Directions in Information Access

IR-based Traceability Recovery as a Plugin – An Industrial Case Study

3:Recent Advancements, World Scientific
Publishing Co.
Zou X., Settimi R. and Cleland-Huang J. (2006)
Phrasing in dynamic requirements trace retrieval.
30th Annual International Computer Software and
Applications Conference.

17The 4th BCS IRSG Symposium on Future Directions in Information Access

