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On Prize Mechanisms in Linear Quadratic Team Theory

Anders Rantzer

Abstract—A distributed linear quadratic decision
problem is considered, where several different con-
trollers act as a team, but with access to different mea-
surements. Previous contributions have shown how
to state the optimal synthesis as a finite-dimensional
convex optimization problem.
This paper shows that the dynamic behavior can

be optimized by a distributed iterative procedure,
without any need for a globally available model or
centralized coordination. An illustrative model with
three agents is considered.

I. INTRODUCTION

Decision making when the decision makers have ac-

cess to different information concerning the underlying

uncertainties has been studied since the late 1950s

[10], [12]. The subject is sometimes called team theory,
sometimes decentralized or distributed control.

The theory was originally static, but work on dy-

namic aspects was initiated by Witsenhausen [19],
who also pointed out a fundamental difficulty in such

problems. Some special types of team problems were

solved in the 1970’s [17], [7], but the problem area has
recently gain renewed interest. Spatial invariance was

exploited in [2], [3], conditions for closed loop convexity
were derived in [16], [15] and approximate methods
using linear matrix inequalities were given in [9].
In our previous paper [13] a linear quadratic

stochastic optimal control problem was solved for a

state feedback control law with covariance constraints.

Such problems have previously been solved using so-

called S-procedure [11], [20]. The method gives a non-
conservative extension of linear quadratic control the-

ory to distributed control with bounds on the rate of

information propagation. An output feedback version

of the problem was solved in [14] and for both finite
and infinite time horizons in [6].
A common feature of all synthesis methods pre-

sented so far is that the design procedure is central-

ized. Hence, even though the controllers are eventu-

ally supposed to operate separately, they are designed

together based on a full global model of the system.

In this paper, we take a different viewpoint and let

the synthesis procedure be distributed. Each agent has

access only to a local model and tries to optimize his

control action based on a local cost function. The in-

teraction with neighboring agents is handled through

negotiations.
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Fig. 1. The graph illustrates the interconnection structure of a
team problem. The non-zero matrix elements Bjk specify directions
of influence.

Section III introduces the classical idea of “dual

decomposition” to use price dynamics for decentralized

optimization. An example highlights the problem of

slow transients. In section IV the method is applied

to static linear quadratic team problem considered by

Radner [12]. Section V extends the method to stochas-
tic processes. It is shown that the slow transients of

the original example can be removed.

II. A DYNAMIC LINEAR QUADRATIC TEAM PROBLEM

Given a set of stationary stochastic processes

(v1, . . . ,vJ , y1, . . . , yJ) with jointly Gaussian distribu-
tion, consider the problem to find convolution opera-

tors κ1, . . . ,κJ ∈ {2[0,∞) that minimize the variance

E

J
∑

j=1

∣

∣

∣

∣

∣

vj +

J
∑

k=1

Bjk(κk ∗ yk)

∣

∣

∣

∣

∣

2

Q j

The vector vj can be thought of as an external stochas-

tic perturbation active in node j of a graph, while

yj is the information available to the decision maker

(agent) in that node. The term Bjk(κk ∗ yk) specifies
the effect in node j of the decision by agent k. It is

assumed that Bjk = 0 unless ( j, k) is a graph edge.
See Figure 1.

The purpose of the paper is to show that the opti-

mal decision functions can be found by a distributed

negotiation procedure, using the idea of dual decompo-

sition. For large problems, such a decomposition may

be crucial to reduce the computational complexity. In

other cases, the procedure may be motivated by the

lack of globally available models.
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Fig. 2. In the example, we consider a team problem with three
nodes in the graph. The decision variable u1 has effects for the first
and the second agent, while u2 concerns the second and third.

III. DUAL DECOMPOSITION

The idea of dual decomposition has a long history [5],
[8]. We use the following example to explain. Consider
an optimization problem of the form

max
u1,u2

[U1(w1 + u1) + U2(w2 − u1 + u2) + U3(w3 − u2)]

where U1, U2 and U3 are all concave. The structure
of the problem is illustrated in Figure 2 and can be
exploited using Lagrange variables. Under standard
assumptions for strong duality [4], the problem is
rewritten as

min
λ jk
max
u jk

h

U1(w1 + u11) + U2(w2 − u21 + u22) + U3(w3 − u32)

+ λ21(u21 − u11) + λ23(u32 − u22)
i

For fixed λ jk, the inner maximization decomposes into
three separate optimization problems

max
u11

[

U1(w1 + u11) − λ21u11
]

max
u21,u22

[

U2(w2 − u21 + u22) + λ21u21 − λ23u22
]

max
u32

[

U3(w3 − u32) + λ23u32
]

so the computations can be parallelized. The decompo-

sition into three problems has a natural interpretation

in economic terms:

The three functions U1, U2 and U3 can be inter-

preted as the utility functions for three agents given

certain allocations of a commodity. The initial endow-

ments of the commodity are specified as w1, w2 and w3.

The quantity of traded commodity between the first

and the second agent is u1, while u2 quantifies the

trade between the second and third agent. When all

agents try to maximize their utility, they will arrive

at different opinions about the desirable values of u j
unless the trade is done at appropriate prices λ jk. At
the saddle point, the prices will create a consensus

among all agents about the desirable values of u j .

It turns out that the prices λ jk and traded quantities
can be updated in a distributed manner using the

gradient method, which can be interpreted as a process

of negotiation. This is known as the saddle point

algorithm or Usawa’s algorithm [1]. The idea is very
simple: A gradient search for the saddle point

min
λ
max
x
U (λ , x)

has the dynamics

λ̇ = −(�U/�λ) ẋ = (�U/�x)
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Fig. 3. The utilitiy functions for the three agents in Example 1.
When all agents have a quantity of 1, there is no incentive for trade.

and the Lyapunov function V = pẋp2 + pλ̇ p2 is globally
decaying because

V̇ = ẋT ẍ + λ̇T λ̈

= ẋT [(�2U/�x2)ẋ + (�2U/�x�λ)λ̇]

− λ̇T [(�2U/�x�λ)ẋ+ (�2U/λ2)λ̇]

= ẋT (�2U/�x2)ẋ − λ̇T (�2U/λ2)λ̇ ≤ 0

When U is strictly convex-concave, the last expression

is strictly negative for all non-zero (λ̇ , ẋ). In our ap-
plications the λ-dependence is linear and not strictly
convex, but a similar argument works.

Example 1 Consider three agents with utilities with

U1(x1) = 24− 6(x1 − 2)
2

U2(x2) = 27− 3(x2 − 3)
2

U3(x2) = 32− 2(x3 − 4)
2

plotted in Figure 3. The endowments w1 = w2 = w3 =
1 then give

U1(w1 + u1) + U2(w2 − u1 + u2) + U3(w3 − u2)

= 47− 6pu1p
2 − 3pu2 − u1p

2 − 2pu2p
2

so there is equilibrium with no trade: u1 = u2 = 0.
We will now study the effect of a perturbation to the

first agent, by putting w1 = 1 + v. This gives the
optimization problem

min
u1,u2

(

6pv+ u1p
2 + 3pu2 − u1p

2 + 2pu2p
2
)

= max
λ j
min
u jk

(

6pv+ u11p
2 + 3pu22 − u21p

2 + 2pu32p
2

+ λ1(u11 − u21) + λ2(u22 − u32)
)

= max
λ j
min
u jk

(

6pv+ u11p
2 + λ1u11

+ 3pu22 − u21p
2 + λ2u22 − λ1u21

+ 2pu32p
2 − λ2u32

)

For v = 0, the optimal prices are λ1 = λ2 = 12.
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Fig. 4. The dynamics of the three utility functions when the first
agent is subject to the transient perturbation v(t) = e−t. The utility
of the first agent quickly recovers, but there is a long oscillative
transient for the second and third agent.

A gradient search for the saddle point can be written
2
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As described before, the dynamics are bound to be

stable. However, they easily become very oscillative.

See Figure 4 for a simulation. In spite of the model

simplicity, the dynamics have much in common with

the classical “beer game” [18]. 2

The example will be reconsidered later to demon-

strate how a linear quadratic control problem can be

solved to get rid of the transient oscillations.

IV. THE STATIC LINEAR QUADRATIC TEAM PROBLEM

To study decision making when the agents coop-

erate, but have access to different information con-

cerning the underlying uncertainties, a static linear

quadratic team problem was introduced by Radner

[12]:
Given stochastic variables (v1, . . . ,vJ , y1, . . . , yJ) with

a joint Gaussian distribution, determine “decision

functions” α j(yj) to minimize a given quadratic func-
tion of (v1, . . . ,vJ ,α 1(y1), . . . ,α J(yJ)). Radner proved
that the optimal decision functions are linear

α j(yj) = K j yj j = 1, . . . , J

and K j are uniquely determined by a set of linear

equations.

Consider minimization of the objective function

E

J
∑

j=1

∣

∣

∣

∣

∣

vj +

J
∑

k=1

BjkKkyk

∣

∣

∣

∣

∣

2

Q j

The term with index j quantifies the cost for agent j

due to deviations from the desired operating point. The

vector vj specifies an external stochastic perturbation,

while BjkKkyk is the effect of the decision by agent k.

It is assumed that each agent is located in a node of

a graph and Bjk = 0 unless ( j, k) is a graph edge.
The agent in node j tries to minimize his cost by

proper choice of K j . However, the choice of K j is also

influencing the cost in neighboring nodes of the graph.

Hence we need a price mechanism for the agents to

compensate each other and reach consensus about the

decision functions to use. For this purpose, we state

the following theorem.

Theorem 1: For a graph with nodes j ∈ {1, 2, . . . , J}
and a set of edges E, suppose Bjk = 0 for ( j, k) ,∈ E.
Let the stochastic variables v1 ∈ R

n1 , . . . ,vJ ∈ R
nJ ,

and y1 ∈ R
p1 , . . . , yJ ∈ R

pJ have a joint Gaussian

distribution. Then

min
K1,...,KJ

E

J
∑

j=1

∣

∣

∣

∣

∣

vj +
J
∑

k=1

Bjk(Kkyk)

∣

∣

∣

∣

∣

2

Q j

= max
(λ jk)
min
(K jk)
E

J
∑

j=1

( ∣

∣

∣

∣

∣

vj +
∑

k

Bjk(K jkyk)

∣

∣

∣

∣

∣

2

Q j

+
∑

k

[

λ∗
k jK j j yj − λ∗

jkK jkyk
]

)

In the right hand expression, the maximization is done

over (λ jk) with λ jk = 0 for ( j, k) ,∈ E, and for each j
the minimization is done over K jk with ( j, k) ∈ E. At
optimality K j j = K jk for all ( j, k) ∈ E.

Proof. The statement is a standard application of

strong duality in finite-dimensional convex quadratic

optimization. 2

Theorem 1 can be used as a foundation for dis-

tributed synthesis procedures for team decision mak-

ing. Notice that each agent i only needs to worry about

minimizing his own cost after clearing prices with his

neighbors.

The gradient method can be used as before as a

distributed procedure to find the optimal prices λ jk.
Alternatively, the prices can be found through a se-

quence of negotiations: For one edge of the graph at a

time, two neighbors (agent j and agent k) negotiate to
update their price vector λ jk and decision vectors K jk,
K j j by solving the local min-max-problem only with

respect to these variables. For this negotiation, it is not

necessary to have full information about the Gaussian

distribution of (v1, . . . ,vJ , y1, . . . , yJ). It is sufficient to
know the cross-covariances of the variables vj , yj , vk,

yk with respect to each other and with the neighboring

price vectors. The negotiation is repeated over and

over again for different nodes in the graph. At every

iteration the saddle-point value will be non-decreasing

and bounded from above by the global maximum.

Hence the values will converge and the global saddle-

point is obtained in the limit.
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Fig. 5. Discrete time gradient dynamics in the three utility
functions when the first agent is subject to a stochastic perturbation
with spectral density pei0.1ω −0.9p−2/(2π ). Prices and trade volumes
are updated at every time step.

Example 2 We will now reconsider the three-agent

example in a stochastic team decision setting. To sim-

plify the introduction of stochastics, it is convenient to

consider a discrete time version of the gradient search

for a saddle-point. Let

ẋ = Ax + Bv

be the given continuous gradient dynamics discussed

before. Then the discrete time model

x(t+ h) = [I + Ah]x(t) + Bhv(t)

has similar stable dynamics for small h. The equation

describes what happens when prices and trade vol-

umes are updated every time step of length h. A sim-

ulation where v is a stationary zero mean stochastic

process

v(t+ h) = av(t) + d(t)

where d is white noise with unit variance and h = 0.1
is shown in Figure 5. A characteristic feature of the

gradient dynamics is the time delay in information

propagation from one node to another. In particular,

v(t) has no effect on u22(τ ) until τ = t + 2h. This
motivates a comparison with the following stochastic

team problem.

Let

u1(t) = K10v(t) + K11v(t− 2h)

u2(t) = K21v(t− 2h)

Then

min
u1,u2
E
(

6pv+ u1p
2 + 3pu2 − u1p

2 + 2pu2p
2
)

= min
K10,K11,K21

E
(

6p1+ K10 + aK11p
2

+ 3paK21 − K10 − aK11p
2 + 2paK21p

2
)

0 5 10 15 20
0

5

10

15

20

Fig. 6. Discrete time dynamics optimized for disturbance
rejection in the three utility functions when the first agent is
subject to a perturbation with spectral density pei0.1ω −0.9p−2/(2π ).
Prices and trade volumes are updated at every time step.

with minimum attained for





K10/3
K11/3
K21



 = −





1 a −a
a 1 −1
−a −1 5





−1 



2

2a

0





A negotiation procedure between the agents based on

this model for the disturbance v will converge to the

optimal decision rule. The simulation in Figure 6 is

strikingly different from Figure 5 and no oscillations

remain.

Notice also that the case a = 0 would give K11 =
K21 = 0 at optimality. In this case v would be white
noise and every attempt to compensate based on de-

layed information would be bound to fail. 2

V. THE DYNAMIC PROBLEM AGAIN

The dynamic team problem is entirely analogous to

the static one. Let B = (Bik) and Q j be given as before.
However, now (v1, . . . ,vJ , y1, . . . , yJ) are assumed to be
stationary stochastic processes with jointly Gaussian

distribution. The objective is to find convolution oper-

ators κ1, . . . ,κJ ∈ {2[0,∞) that minimize the variance

E

J
∑

j=1

∣

∣

∣

∣

∣

vj +

J
∑

k=1

Bjk(κk ∗ yk)

∣

∣

∣

∣

∣

2

Q j

Let φk j(ω ) be the cross spectral density of (vk, yk) and
(vj , yj). Let Ijk be the identity matrix when j = k
and zero otherwise. Then, in frequency domain, the
problem is to find K1, . . . , KJ ∈ H2 minimizing

X

j,k,l

Z π

−π

tr
`

Q j
ˆ

Ijk BjkKk(e
iω )

˜

φ kj(ω )
ˆ

Ijl BjkKl(e
iω )

˜∗´

dω

This motivates an infinite-dimensional counterpart to

Theorem 1.
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Theorem 2: For a graph with nodes j ∈ {1, 2, . . . , J}
and a set of edges E, suppose Bjk = 0 for ( j, k) ,∈ E.
Let φ(ω ) = (φ jk(ω )) > 0 be bounded measurable on
[−π ,π ]. Then

min
K

X

j,k,l

Z π

−π

tr
`

Q j
ˆ

Ijk BjkKk(e
iω )

˜

φ kj(ω )
ˆ

Ijl BjkKl(e
iω )

˜∗´

dω

= max
Λ
min
K

X

j,k,l

Z π

−π

(

tr
`

Q j [Ijk BjkK jk]φ kj(ω ) [Ijl BjkK jl ]
∗
´

+ tr[Λ jk(e
iω )∗K jk(e

iω )] − tr[Λkj(e
iω )∗K j j(e

iω )]

)

dω

where the minimization in the left hand expression

is done over K1, . . . , KJ ∈ H2. In the right hand

expression, the maximization is done over Λ = (Λ jk)
with Λ jk ∈ H2 and Λ jk = 0 for ( j, k) ,∈ E, and for
each j the minimization is done over K jk ∈ H2 with
( j, k) ∈ E. At optimality K j = K j1 = ⋅ ⋅ ⋅ = K jJ .

Proof. The result is an application of the Hahn-Banach

theorem. 2

This shows that also dynamic team decision prob-

lems can be solved by a distributed negotiation pro-

cedure. For one edge of the graph at a time, two

neighbors (agent j and agent k) negotiate to update
their price dynamics Λ jk(e

iω ), and decision functions
K j j(e

iω ) and K jk(e
iω ). With all other variables fixed,

they only solve the max-min problem involving these

three transfer functions. According to standard lin-

ear quadratic theory, such max-min problems can be

solved in terms of two Riccati equations. Again, it is

not necessary to have global information about the

stochastic processes anywhere. Only the local spectral

densities are relevant. The negotiation is repeated over

and over again for different edges in the graph, giving

the global saddle-point in the limit.
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