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Abstract

The direct problem of time dependent electromagnetic scattering in the dis-
persive sphere is solved by a wave splitting technique. The electric field is
expanded in a series involving vector spherical harmonics, leading to a sys-
tem of wave equations for each term. These systems are reduced to scalar
wave equations for each term, which are solved via reflection operators. Some
preliminary numerical results are presented.

1 Introduction

A dispersive material is characterized in the frequency domain by the frequency
dependent permittivity ε(ω), and in the time domain by the susceptibility kernel
g(t). The two functions are related by the Fourier transform

ε(ω) − ε0
ε0

=

∫ ∞

0

g(t)eiωt dt. (1.1)

The fact that the lower integration limit is zero is a statement of the causal nature of
g. Whichever form is used, the physical behavior of electromagnetic wave propaga-
tion through such material is easy to describe. Since the group and phase velocities
are frequency dependent, a transient pulse, comprised of a band of frequencies, will
change shape as it travels through the material.

The relation between ε and g also manifests itself in the relation between the
electric field E and the displacement field D, which for a homogeneous medium is

D(r, t) = ε0

(
E(r, t) +

∫ t

−∞
g(t− t′)E(r, t′) dt′

)
. (1.2)

The convolution integral in (1.2) is often written g ∗ E.
The problem considered in this paper is scattering of a transient wave from a

homogeneous dispersive sphere in the time domain. A known incident electric field
penetrates the sphere, whose susceptibility kernel g(t) is known. It is desired to
calculate the electric field outside the sphere at any given time. This problem is of
interest in itself, but is also an important step in the solution of the more interesting
inverse problem. There, the material parameters of the sphere are unknown, and
it is desired to calculate them using measurements of the electric field scattered by
the sphere. This inverse problem will be considered in future work.

A wave splitting technique is used to solve this problem. In this approach, the
wave field is split into two parts moving in ‘opposite’ directions. In a spherically
symmetric geometry the electric field is split into incoming and outgoing spherical
waves. Wave splitting was developed originally for problems of one spatial dimension
[4], [6], [3], and has been quite successful there. However, only recently has any
progress been made in extending the technique to three dimensional problems, due
to technical difficulties, including, for example, the determination of the form of
the reflection operator. Also, in one spatial dimension, there are only two allowable
directions, left and right, so the wave splitting geometry is predetermined (although
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there are infinitely many possible splittings). However, in three dimensions, there is
a continuum of directions in which electromagnetic waves can travel, so it is difficult
to choose a splitting geometry that will effectively handle an arbitrary scattering
problem. Much of the progress made has been done by considering symmetric
media in various simple geometries – cylinders, spheres, and general stratified media
[12], [13], [11], [10], [9]. This paper is an extension of the work by Karlsson and
Kristensson [9] in which a particular wave splitting was developed for spherically
symmetric geometries.

Other work has been done in the time domain on dispersive and dissipative media
by wave splitting techniques. In [5] a dissipative model, in which the permittivity
varies spatially but not with frequency, was used. Beezley and Krueger [1] first
dealt with a frequency dependent permittivity; they solved the inverse problem for
the one dimensional slab. Kreider [11], [10] extended this work to the stratified
cylinder. Similarities to the slab problem are evident, and the differences due to the
more complicated geometry are easily discerned.

An outline of the remainder of the paper follows. In Section 2, the mathematical
formulation of the direct problem is presented, and the wave splitting is used to
derive a set of equations to be solved. Section 3 contains discussion and derivations
involving the so-called reflection operator, which relates the two split fields. The
equations of Section 2 are modified here, and placed in a form suitable for numerical
solution, which is then discussed in Section 4. An algorithm for solving the direct
problem is presented. A discussion of certain numerical problems that appear is
given here as well. The section concludes with several numerical examples showing
the strengths and weaknesses of the algorithm. Section 5 contains a brief summary
with a description of future work.

2 Problem formulation

A homogeneous, dispersive sphere of radius a rests in a homogeneous, nondispersive
space. The electromagnetic propagation velocity c has the same constant value in
the sphere and the surrounding space. The dispersive nature of the sphere is char-
acterized in the time domain by the susceptibility kernel g(t). The direct problem
is to calculate the resulting electric field for t > 0 from an incident electric field
Ei(r, t) that strikes the sphere at time t = 0.

When the relation (1.2) is substituted into Maxwell’s equations, the following
wave equation governing the behavior of E results:

∇× (∇× E) +
1

c2
∂2

t (E + g ∗ E) = 0. (2.1)

Partial derivatives in t and r are denoted by ∂t and ∂r, respectively.
The scattering problem is now reduced to a one-dimensional problem by expand-

ing the electric field in vector spherical harmonics, i.e.

E(r, t) =
∑
τn

Eτn(r, t)Aτn(r̂, t), (2.2)
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where r = |r|. The multi-index n = (�,m, σ), with � = 0, 1, 2, . . . ,∞, m =
0, 1, . . . , �, and σ = odd or even (corresponding to the odd or even parts of Yn

described below); τ = 1, 2, 3, corresponding to the three vector spherical harmonic
functions. The vector spherical harmonics are given by

λ� = 1/
√

�(� + 1) (2.3)

A1n(r̂) = λ�∇× (rYn(θ, φ)) (2.4)

A2n(r̂) = λ�r∇Yn(θ, φ), (2.5)

A3n(r̂) = r̂Yn(θ, φ), (2.6)

Yn(θ, φ) = ξ�mPm
� (cos θ)

{
cosmφ
sinmφ

}
,

{
σ = even
σ = odd

}
, (2.7)

ξ�m = (2 − δm,0)

√
(2� + 1)

4π

(�−m)!

(� + m)!
.

where (r, θ, ϕ) are the spherical coordinates .
To obtain the equations for the Eτn, the series expansion (2.2) is inserted into

the wave equation (2.1). After extensive simplification, they are:

1

λ2
�r

2
E1n −∇2E1n +

1

c2
∂2

t (E1n + g ∗ E1n) = 0, (2.8)

1

λ�r
∂rE3n −∇2E2n +

1

c2
∂2

t (E2n + g ∗ E2n) = 0, (2.9)

1

λ2
�r

2
E3n − 1

λ�r2
E2n − 1

λ�r
∂rE2n +

1

c2
∂2

t (E3n + g ∗ E3n) = 0. (2.10)

The divergence free condition ∇ · E = 0 holds because g(t) has no spatial de-
pendence. This condition implies

E2n =
λ�

r
∂r(r

2E3n), (2.11)

which further implies that (2.9) and (2.10) are equivalent, so that the second wave
equation can be replaced by (2.11).

By scaling the E1n and E3n fields by

E1n =
1

r
V1n, E3n =

1

r2
V3n, (2.12)

both (2.8) and (2.10) reduce to the same form

1

λ2
�r

2
Vτn − ∂2

rVτn +
1

c2
∂2

t (Vτn + g ∗ Vτn) = 0, τ = 1, 3. (2.13)

At this point, it is convenient to introduce dimensionless variables

q = r/a, s = ct/a. (2.14)
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Letting v�(q, s) = Vτn(r, t), (2.13) may be written as

1

λ2
�q

2
v� − ∂2

qv� + ∂2
s (v� + g ∗ v�) = 0, (2.15)

with conditions

v�(0, s) = 0, s > 0,

v�(q, s) = 0, s ≤ 0, 0 ≤ q ≤ 1.

The only index parameter that plays a role here is �, due to the presence of λ�, so
the other index parameters are suppressed until the appropriate place in Section 3.

The method used to solve (2.15) is called wave splitting. As mentioned earlier,
there are many possible splittings that could be used; the one chosen for this problem
was developed by Karlsson and Kristensson [9]. A summary of the relevant results
of that paper is presented here.

Wave splitting. The main idea is to split the scaled electric field v� into two
parts, corresponding to incoming and outgoing spherical waves in a homogeneous
medium. To this end, Karlsson and Kristensson found operators Γ+

� and Γ−
� such

that

v�(q, s) = {Γ+
� f

+
� (q, ·)}(s) + {Γ−

� f
−
� (q, ·)}(s), (2.16)

for suitable f+
� and f−

� . In a homogeneous, dispersion-free medium, f+
� and f−

�

are outgoing and incoming spherical waves, respectively, and Γ+
� f

+
� and Γ−

� f
−
� carry

energy away from and towards the origin, respectively. The operators are initially
derived for a homogeneous, dispersionless medium; the effects of dispersion and
inhomogeneities appear later. The operators were found in [9] to have the following
representation:

{Γ±
� (q)f(·)}(s) = f(s) +

�∑
k=1

(� + k)!

(�− k)!k!(k − 1)!
(±2q)−k ×

×
∫ s

−∞
(s− s′)k−1f(s′)ds′. (2.17)

An alternative representation which is often more useful is the following:

{Γ±
� (q)f(·)}(s) = ∂s

∫ s

−∞
P�

(
1 ± s− s′

q

)
f(s′) ds′, (2.18)

where P� is the Legendre polynomial of order �; note that Γ±
� do not depend on τ ,

m or σ. These operators have singular behavior at q = 0, which is a manifestation
of the imposition of spherical coordinates on the problem. To partially alleviate this
troublesome situation, Γ−

� can be replaced by a regular operator γ� given by

{γ�(q)f(·)}(s) =
1

2

(
{Γ−

� (q)f(·)}(s) − (−1)�{Γ+
� (q)f(·)}(s− 2q)

)
=

1

2
∂s

∫ s

s−2q

P�

(
1 − s− s′

q

)
f(s′) ds′. (2.19)
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It is shown in [9] that γ� can replace Γ−
� in the sense that

v� = Γ+
� f

+
� + γ�f

−
� , (2.20)

and that, in homogeneous non-dispersive regions,

∂qv� = (∂qΓ
+
� − ∂sΓ

+
� )f+

� + (∂qγ� + ∂sγ�)f
−
� . (2.21)

In matrix notation,(
v�

∂qv�

)
= P

(
f+

�

f−
�

)
, P =

(
Γ+

� γ�

∂qΓ
+
� − ∂sΓ

+
� ∂qγ� + ∂sγ�

)
, (2.22)(

f+
�

f−
�

)
= P−1

(
v�

∂qv�

)
, P−1 =

(
γ� + ∂−1

s ∂qγ� −∂−1
s

Γ+
� − ∂−1

s ∂qΓ
+
� ∂−1

s Γ+
�

)
. (2.23)

These equations define the wave splitting – the scaled electric field v� is split by
means of outgoing and incoming spherical waves f+

� and f−
� . At this point, the

splitting is now generalized to an inhomogeneous, dispersive medium. In those
regions where g is not zero, f+

� and f−
� are no longer pure outgoing and incoming

spherical waves, but the splitting is still valid, in the sense that v� = Γ+
� f

+
� + γ�f

−
� .

Specifically, define(
w+

�

w−
�

)
= P−1

(
v�

∂qv�

)
,

(
v+

�

v−�

)
=

(
Γ+

� 0
0 γ�

) (
w+

�

w−
�

)
, (2.24)

where v� = v+
� + v−� satisfies (2.15) and in regions where c is constant, w±

� revert to
outgoing and incoming spherical waves, so that w±

� (q, s) = w±
� (s∓ q) there (making

it preferable to solve the problem in terms of w±
� rather than v±� ).

The immediate goal is to find equations that w±
� satisfy for a homogeneous,

dispersive medium. By solving these equations, the v� can be determined, and the
Eτn and finally E itself can be constructed.

The wave equation (2.15) in matrix form is

∂q

(
v�

∂qv�

)
= A

(
v�

∂qv�

)
, A =

(
0 1

1
λ2

�q2 + ∂2
s (I + g∗) 0

)
. (2.25)

Letting W =

(
w+

�

w−
�

)
, this can be written

∂q(PW ) = APW. (2.26)

Some algebraic manipulation gives the desired form of the system of equations:

∂q

(
w+

�

w−
�

)
=

(
−∂s 0
0 ∂s

) (
w+

�

w−
�

)

+

(
−γ�∂s(g ∗ Γ+

� ) −γ�∂s(g ∗ γ�)
Γ+

� ∂s(g ∗ Γ+
� ) Γ+

� ∂s(g ∗ γ�)

) (
w+

�

w−
�

)
(2.27)

under the conditions w±
� (q, 0) = 0, q < 1, w+

� (0, s) = 0, s ≥ 0.
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3 Exterior field calculation

In this section, algorithms for the calculation of the near and far exterior fields are
presented. The relation between w+

� and w−
� is established in order to obtain an

equation (from (2.27), and involving only the parameter �) that characterizes the
medium independently of the incident field. The equation is then solved for all �
values so that the series (2.2) can be computed, solving this direct problem. A
numerical solution, of course, would involve only a finite set of � values, yielding an
approximate solution.

Outside the sphere, w−
� is an inward-moving spherical wave, so it is possible to

set up an incident field such that its value at the boundary of the sphere is arbitrarily
specified. Beginning at time s = 0, this incident field penetrates the sphere, whose
dispersive nature gives rise to a reflected field represented by a sum of the w+

� .
Karlsson and Kristensson [9] note that if the incident field is planar, then its split
form contains only w−

� components. Hence, any w+
� components present outside the

sphere (outward-moving spherical waves) are due to reflection processes. This is
convenient because, experimentally, one is usually interested in only the reflected
field, and this set-up makes the determination of the reflected field easier.

Inside the sphere, w+
� and w−

� lose their travelling wave interpretations. Here,
the relation between the two is given by the reflection operator R� [3]:

w+
� (q, s) = R�w

−
� (q, s), 0 ≤ s, 0 ≤ q < 1. (3.1)

The exact form of R� must be carefully derived. Because the definition of γ� (2.19)
contains a time delay term s− 2q, the initial assumed form of R� is

w+
� (q, s) = R�w

−
� (q, s) = A�(q)w

−
� (q, s− 2q) +

∫ s

0

R�(q, s− σ)w−
� (q, σ) dσ. (3.2)

The reflection kernel R�(q, s) is assumed to have jump discontinuities along s = 0,
s = 2q and s = 4q, due to the presence of γ� and γ2

� in (2.27).
Substituting this expression into the system (2.27) determines A� and the values

of the discontinuities, and leads to an equation of the form Υ� ∗ w−
� = 0. Since

the input field w−
� is arbitrary, it is clear that Υ� = 0; this is commonly called the

R-equation:

0 = Υ� = (∂q + 2∂s)R� + g0R� ∗R� + B� ∗R� ∗R� + g0R� + 2C� ∗R� + E�

+ g0(2A� − (−1)�)R̃� + 2A�B� ∗ R̃� + 2D� ∗ R̃� + 2A�C̃� + F̃�

+ 2A�
˜̃D� + A2

�
˜̃B� + ˜̃J�, (3.3)

R�(q, 0) = −1

8
g0, 0 < q < 1, R�(0, s) = 0, s ≥ 0,
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with g0 = g(0), R̃(q, s) = R(q, s− 2q), ˜̃R(q, s) = R(q, s− 4q) and

A�(q) = (−1)�
(
1 − e−g0q

)
/2,

B� = g′ + (2b� + b� ∗ b�) ∗ g′,

C� = g′/2 + (b� − a� − a� ∗ b�) ∗ g′/2,

D� = −(−1)�g′/2 + (a� + a� ∗ b� − (−1)�b�) ∗ g′/2,

E� = g′/4 + (a� ∗ a�/4 − a�/2) ∗ g′,

F� = −(−1)�g′/2 +
(
(1 + (−1)�)a�/2 − a� ∗ a�/2

)
∗ g′,

J� = g′/4 + (a� ∗ a�/4 − (−1)�a�/2) ∗ g′,

a�(q, s) =
1

q
P ′

�(1 − s/q),

b�(q, s) =
1

q
P ′

�(1 + s/q).

The reflection kernel also has discontinuities along the lines s = 2q and s = 4q. The
first discontinuity is carried along the characteristic of the imbedding equation. The
second arises from the time delayed terms that appear in the imbedding equation.
These jump discontinuities are given by

[R�(q, 2q)] = −1

8
g0 exp(−g0q) +

1

2
(−1)�

{
g′(0) − (g0/2)2} q exp(−g0q),

[R�(q, 4q)] =
1

8
g0 exp(−2g0q),

with [R�(q, f(q))] = R�(q, f(q)+) −R�(q, f(q)−).
It is generally acknowledged that physical arguments imply that g(0) = 0 [8,

pp. 306-310] since g(0) �= 0 corresponds to a polarisation-current that behaves like
a Heaviside function at time t = 0. There are, however, situations (e.g. when the
transient fields do not contain high frequencies) where approximate models of the
medium having g(0) �= 0 are relevant [2, p. 97]. Here, the more general condition
g(0) �= 0 is maintained, although the numerical example in Section 4 is based on a
model in which g(0) = 0.

At this point the suppression of the subscripts of w± is lifted, so that m and σ
may be dealt with explicitly.

The Near Field. Once (3.3) has been solved for R� (as discussed in Section 4)
for the desired number of � terms, the calculation of the near scattered field Escat

exterior to the sphere proceeds as follows:

1. Calculate w−
1n and w−

3n for the incident field. Specifically, for a planar delta
input and q ≥ 1 (as noted, w+

τn = 0 for this field),

w
−(δ)
1n (s + q − 1) = −α�δm,1δσ,oddH(s + q − 1) (3.4)

w
−(δ)
3n (s + q − 1) = β�δm,1δσ,even(s + q − 1)H(s + q − 1) (3.5)

where

α� = (2c2/a)(−1)�
√

(2� + 1)π, (3.6)

β� = 2caπ�(� + 1)(−1)�, (3.7)
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and δx,y is the Kronecker delta. For a general input f(s + q − 1), then,

w−
τn = w−(δ)

τn ∗ f. (3.8)

The Kronecker deltas reduce the quadruple summation in (2.2) to a double
summation in τ = 1, 2, 3 and � = 1, 2, . . . .

2. Calculate w+
τn = R� ∗ w−

τn for τ = 1, 3.

3. Calculate v+
τn = Γ+

� w
+
τn for τ = 1, 3.

4. Convert from normalized co-ordinates (q, s) to physical co-ordinates (r, t) via
(2.14).

5. Calculate Escat
1n = v+

1n/r and Escat
3n = v+

3n/r
2.

6. Compute Escat
2n = λ�∂r(v

+
3n)/r.

7. Finally, Escat =
∑

τn Escat
τn Aτn.

The feasibility of practical computation involving these seven steps needs to be
investigated, but in principle it provides a means of solving the scattering problem in
physical co-ordinates by calculating the reflection kernel in normalized co-ordinates.

The Far Field. Calculating the far field F scat(r̂, t) is somewhat easier. Follow-
ing Friedlander [7],

F scat(r̂, t) = lim
r→∞

rEscat(r, t +
r − a

c0

). (3.9)

The form of the far scattered field F scat in normalized co-ordinates is obtained
by writing Escat in terms of vector spherical harmonics, using (3.4-3.8) explicitly,
and noting that as q → ∞,

Γ+
� w

+ → w+,

∂q(Γ
+
� w

+) → ∂qw
+.

After simplification, this form is seen to be

F scat(q̂, s) = ēθ

∞∑
�=1

ε�ω�(1, s) cosφ
[
λ�β� sin θP 1

�
′(cos θ) − α� csc θP 1

� (cos θ)
]

+ ēφ

∞∑
�=1

ε�ω�(1, s) sinφ
[
λ�β� csc θP 1

� (cos θ) − α� sin θP 1
�
′(cos θ)

]
,(3.10)

where

ε� = 2λ�

√
(2� + 1)

4π

(�− 1)!

(� + 1)!
, (3.11)

ω�(1, s) = A�(1)H ∗ f(s− 2) + R� ∗H ∗ f(1, s). (3.12)

These terms are easy to compute once R� is calculated and the input function f is
specified, and the conversion to physical co-ordinates is achieved through (2.14).
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Figure 1: The reflection kernel R1(1, s) for 0 ≤ s ≤ 2 using N = 2048 and
N = 4096 spatial steps. The two graphs are indistinguishable.

4 Discretization and numerical example

This section describes the method used to solve (3.3) numerically. For the sake of
clarity, two assumptions are made:

a) g(0) = g0 = 0,
b) s < 2q (only the first round trip is considered).

Under these conditions, (3.3) reduces to

0 = (∂q + 2∂s)R� + B� ∗R� ∗R� + 2C� ∗R� + E�. (4.1)

The expressions for B�, C�, and E� do not change, but now, A�(q) ≡ 0 and the initial
and boundary conditions become R�(q, 0) = 0, 0 < q < 1, R�(0, 0) = 0. Note that
the computational domain is the triangle 0 < s < 2q for 0 < q < 1, so the boundary
condition applies only at s = 0.

Equation (4.1) is discretized by finite differences. In the computational region
T = {(q, s) : 0 < q ≤ 1, 0 < s < 2, s ≤ 2q}, a regular grid is established; fix N and
let h = 1/N , and ∆q = h, ∆s = 2h, so that qi = ih, sj = 2jh for i = 1, 2, . . . N ,
j = 0, 1, 2, · · · , i. The functions can now be discretized as

Fij = F (qi, sj),

where F represents any of R�, B�, C�, E�, a� or b�. Convolutions are evaluated using
the Trapezoid Rule

(f ∗ g)ij =
2/N

2
(fi0gij + 2fi1gi,j−1 + · · · + 2fi,j−1gi1 + fijgi0) .

The derivatives in (4.1) are approximated by forward and backward differences;
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Figure 2: The reflection kernel R7(1, s) for 0 ≤ s ≤ 2 using N = 2048 and
N = 4096 spatial steps. The two graphs are indistinguishable. As L increases, RL

becomes more oscillatory; this is caused by oscillations in aL and bL, which appear
in (4.2).

the subsequent equations are averaged to give the discrete equation

2

h
(Ri+1,j+1 −Rij) = −(B ∗R ∗R)i+1,j+1 − (B ∗R ∗R)ij − 2(C ∗R)i+1,j+1

− 2(C ∗R)ij − Ei+1,j+1 − Eij. (4.2)

For clarity, the subscript � has been suppressed. Equation (4.2) is solved by calcu-
lating along vertical strips, starting at q0 = 0 and moving to the right, so that R�

is calculated at (in order) (q0, s0), (q1, s0), (q1, s1), (q2, s0), (q2, s1), (q2, s2), (q3, s0),
and so on. The desired output is the discrete approximation to R�(qN , s) for various
� values. These functions are then used to calculate the near or far electric fields,
as indicated in Section 3.

For small q, the coefficients B�, C� and E� are not well behaved. First, a� and
b� are not defined for q = 0. However, the initial and boundary conditions on R�

(R�(q, 0) = 0 and R�(0, s) = 0) insure that (4.2) need not be solved at q = 0.
A more serious numerical problem occurs for small q values. The terms a� and

b� oscillate considerably in this region, because they are Legendre polynomial deriv-
atives. In a�, P ′

� is evaluated at argument in [−1, 1], so although it oscillates, it
remains fairly well-behaved. However, in b�, P ′

� is evaluated at argument in [1, 3];
b� varies considerably in this interval, even for small to moderate � values. Conse-
quently, the discrete equation does not produce R� well for small q. This inaccuracy
is propagated along the characteristic and appears in R�(1, s) for s ≈ 2. For small s,
the algorithm does provide a good approximation to R�(1, s). This problem appears
to be caused by the vector spherical harmonic representation of E rather than the
consequence of some physical effect, so it should prove possible to resolve.
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Figure 3: The reflection kernel R10(1, s) for 0 ≤ s ≤ 2 using N = 2048 and
N = 4096 spatial steps. Slight discretization error due to oscillations in aL and bL

is evident.

One possible solution to this problem is to linearize the equation for small q (say,
q < qL). A simple asymptotic analysis provides the linearized form of (4.2):

2

h
(Ri+1,j+1 −Rij) = −Ei+1,j+1 − Eij. (4.3)

Note that the more troublesome term b� does not appear in this equation. Although
detailed analysis is incomplete, numerical experimentation indicates that the so-
lution R�(1, s) is fairly insensitive to the choice of qL, except for s very close to
2.

The example below displays some preliminary numerical results.
Example. Consider the dispersive sphere of radius 1 with susceptibility kernel

g(s) = s exp(.1s). A delta pulse penetrates the sphere along the incident angle
θ = 0.

Reflection kernels R1(1, s), R7(1, s) and R10(1, s) are shown in Figures 1, 2 and
3. In Figure 1, R1(1, s) is shown for 0 ≤ s ≤ 2 with N = 2048 and N = 4096
spatial steps. The two graphs are indistinguishable; N is large enough that (4.2) is
solved to convergence. In Figure 2, R7(1, s) is shown with N = 2048 and N = 4096.
Again, the two graphs are indistinguishable. In fact, for L = 1, . . . , 9, the graphs
of RL(1, s) using N = 2048 and N = 4096 are indistinguishable. For L = 10, the
oscillations in aL and bL cause a slight discretization error, as evident in Figure 3,
where R10(1, s) is displayed for N = 2048 and N = 4096. Clearly, as L increases,
RL becomes more oscillatory, leading to larger discretization errors. This increasing
oscillation will limit the number of terms that can be used to approximate the far
scattered field. A study of the calculation of the far scattered field is currently
underway.
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5 Conclusion

The direct problem of time dependent electromagnetic scattering is solved by a wave
splitting technique. A series expansion in vector spherical harmonics for the vector
electric field is developed, leading to a system of wave equations for each term in
the series. These systems are reduced to scalar wave equations, which are solved via
reflection operators.

The numerical implementation of the solution technique is not yet complete; cer-
tain coefficients in the discrete equation are highly oscillatory, leading to inaccuracies
in the solution. This limits the number of terms that can be used to approximate
the electric field.

More detailed numerical studies are currently underway. Once the numerical
problem mentioned above is resolved, and the direct problem for one round trip
time completed, the direct problem will be considered with no restrictions on the
time interval. At this point, it will be appropriate to study the corresponding
inverse problem, to recover the unknown g(t) from far field or near field measure-
ments. Eventually, the method will be extended to spatially inhomogeneous dis-
persive spheres. A comparison with Weston’s splitting techniques might help to
illuminate some of the mathematical problems inherent in wave splitting in three
dimensions.
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