
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Resource-Constrained Embedded Control Systems: Possibilities and Research Issues

Årzén, Karl-Erik; Cervin, Anton; Henriksson, Dan

Published in:
Proceedings of CERTS'03 – Co-Design of Embedded Real-Time Systems Workshop

2003

Link to publication

Citation for published version (APA):
Årzén, K.-E., Cervin, A., & Henriksson, D. (2003). Resource-Constrained Embedded Control Systems:
Possibilities and Research Issues. In Proceedings of CERTS'03 – Co-Design of Embedded Real-Time Systems
Workshop

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 18. May. 2025

https://portal.research.lu.se/en/publications/04dddcab-a276-4236-9cfb-67a314b086c9

Resource-Constrained Embedded Control Systems:
Possibilities and Research Issues

Karl-Erik Årzén, Anton Cervin, Dan Henriksson

Department of Automatic Control
Lund Institute of Technology

Box 118, SE-221 00 Lund, Sweden
(karlerik|anton|dan)@control.lth.se

Abstract

A survey that points out research issues and open prob-
lems in the area of integrated control and real-time schedul-
ing. Issues that are discussed include temporal robustness,
schedulability margin, optimal and direct feedback schedul-
ing, quality-of-control, and tools.

1. Introduction

The pervasive/ubiquitous computing trend has increased the
emphasis on embedded computing within the computer en-
gineering community. Already today embedded computers
by far outnumber desktop computers. Control systems con-
stitute an important subclass of embedded computing sys-
tems. For example, within automotive systems computers
are commonly denoted as electronic control units (ECU). A
top-level modern car contains more than 50 ECUs of vary-
ing complexity. A majority of these implement different
feedback control tasks, e.g., engine control, traction con-
trol, anti-lock braking, active stability control, cruise con-
trol, and climate control.

Embedded systems are often found in mass-market products
and are therefore subject to hard economic constraints. The
pervasive nature of the systems generate further constraints
on physical size and power consumption. These product-
level constraints give rise to resource constraints on the
computing platform level, e.g., constraints on computing
speed, memory size, and communication bandwidth. Due
to the economic constraints this is true in spite of the fast
development of computing hardware. In most cases it is
not economically justified to use a processor with more
capacity, and hence that is more expensive, than what is
required by the application. The economical constraints
also favor general-purpose computing components over
specially designed hardware solutions.

The resource constraints increase the need for co-design.
Co-design is needed at several levels. One example, is
hardware and software co-design. Which system functions
should be implemented in hardware and which should
be implemented in software? The possibility to use pro-
grammable hardware, e.g., FPGAs, further increases the de-

sign complexity. Another example is the co-design of the
mechanical design and the electrical design. The aim of this
paper, however, is the co-design of the control system and
computing system, with a special emphasis on integration
of control and real-time scheduling.

Co-design of control and computing systems is not a new
topic. Control applications were one of the major driving
forces in the computer development. In the early days of
computer control limited computer resources was a general
problem, not only a problem for embedded controllers. For
examples, the issues of limited word length, fixed-point
calculations, and the results that this has on resolution was
something that was well-known among control engineers
in the 1970s. However, as computing power has increased
these issues have received decreasing attention. Agood
survey of the area from the mid 1980s is [Hanselmann,
1987].

The aim of this paper is to highlight important principles
and unsolved research questions within the area of inte-
grated control and real-time scheduling. Issues that will be
discussed include temporal robustness, schedulability mar-
gins, quality-of-control, feedback scheduling, and co-design
tools.

2. Temporal determinism

Computer-based control theory in most cases assumes equi-
distant sampling and negligible, or constant, input-output
latencies. However, this can seldom be achieved in practice,
or is too costly for the particular application. In a multi-
threaded system tasks interfere with each other due to pre-
emption and blocking due to task communication. Execu-
tion times may be data-dependent or vary due to, e.g., the
use of caches. For distributed systems with networked con-
trol loops where the sensors, controllers, and actuators re-
side on different physical nodes, the communication gives
rise to latencies that can be more or less deterministic de-
pending on the network protocols used. The result of all
this is jitter in sampling intervals and non-negligible and
varying latencies. The resulting temporal non-determinism
can be approached in two different ways. Thehard real-
time approachstrives to maximize the temporal determin-

ism by using special purpose hardware, software, and pro-
tocols. This includes techniques such as static scheduling,
time-triggered computing and communication [Kopetz and
Bauer, 2003], synchronous programming languages [Ben-
veniste and Berry, 1991], and computing models such as
Giotto [Henzingeret al., 2003]. This approach has several
advantages, specially for safety-critical applications. For ex-
ample, it simplifies attempts at formal verification. The ap-
proach also has drawbacks. The approach has strong re-
quirements on the availability of realistic worst-case bounds
on resource utilization, something which in practice is diffi-
cult to obtain. A result of this could be under-utilizationand,
possibly, poor control performance, due to too long sam-
pling intervals. The approach also makes it difficult to use
general-purpose implementation platforms. This is particu-
larly serious, since it is these systems that have the most
advantageous price-performance development.

The second,soft or control-based,approach instead views
the temporal nondeterminism caused by the implementa-
tion platform as an uncertainty or disturbance acting on the
control loop, and handles it using control-based approaches.
Some example of techniques that can be applied are tem-
porally robust design methods and measurement-based ac-
tive compensation. The latter can be compared to traditional
gain-scheduling and feed-forward from disturbances. In or-
der to apply these techniques it is necessary to increase
the understanding of how temporal nondeterminism affects
control performance. This requires new theory and tools that
now gradually is beginning to emerge. It is somewhat sur-
prising, though, that the large robust control community not
yet has focused on temporal robustness. A large amount of
general theory and design methods have been developed.
However, almost everything is developed for plant uncer-
tainties, i.e., parametric or frequency-dependent uncertain-
ties. Although parts of this carries over to temporal robust-
ness it is likely that there is room for much more research
here. The approach also requires language and/or operating
support for instrumenting an application with measurement
code.

An important issue that still is lacking is theory that allows
us to determine which level of temporal determinism that
a given control loop really requires in order to meet given
control objectives on stability and performance. Is it neces-
sary to use a time-triggered approach or will an event-based
approach perform satisfactorily? How large input-output la-
tencies can be tolerated? Is it OK to now and then skip a
sample in order to maintain the schedulability of the task
set? Ideally one would like to have an index that decides
the required level of temporal determinism through a single
quantitative measure. One possible name for such an index
would be theschedulability margin.This measure would
need to combine both a margin with respect to input-output
latencies and a margin that decides how large sampling jit-
ter the loop can tolerate. For constant input-output laten-
cies the classical phase margin can be applied. The phase
margin is based on a graphical frequency-domain represen-

tation. Recently new theory has been developed that uses
the same graphical Bode-diagram representation, but which
applies to systems with varying latencies [Lincoln, 2002b].
The stability criterion is based on the small gain theorem.
The same theory can also be used to design dynamic latency
compensation schemes [Lincoln, 2002a]. The approach as-
sumes that the actual latencies can be measured and that a
high-frequency model of the process is available. It does,
however, not require any latency statistics information.

What is still missing in order to be able to define a rea-
sonable analytical concept for a schedulability margin is a
simple sampling jitter criterion. The criterion should ideally
tell how large variations around a nominal sampling inter-
val that the process could tolerate and still remain stable,
alternatively maintain acceptable performance.

3. Feedback Scheduling

The objective of feedback scheduling is to increase flexibil-
ity and to master uncertainty with respect to resource allo-
cation. Instead of pre-allocating resources based of off-line
analysis the resources are allocated dynamically on-line,
based on feedback from the actual resource utilization. In
general the resources can be any computational resources.
Here, we will however concentrate on the scheduling of the
execution of real-time tasks, and in particular of the execu-
tion of real-time controller tasks.

3.1 Optimal Feedback Scheduling

Most of the suggested approaches to feedback scheduling
have been more or less ad-hoc. Typically the aim has been
to adjust sampling periods or execution time demands in
such a way that the task set becomes schedulable or that the
deadline miss ratio is at an acceptable level [Luet al., 2002].

However, in order for feedback scheduling to really become
a realistic alternative it is necessary to take the applica-
tion performance into account. For example to adjust the
scheduling parameters in such a way that the global perfor-
mance is optimized. To do this it is necessary to have perfor-
mance metrics that are parameterized in terms of sampling
intervals, latencies, and the jitter in these. When the appli-
cations are control loops there are certain possibilities do
this. However, for more general applications this might not
be so easy. In [Cervin, 2003] it was shown that a simple
linear proportional rescaling of the nominal sampling peri-
ods in order to meet the utilization set-point is optimal with
respect to the overall control performance under certain as-
sumptions. It holds if the control cost functionsJi(hi), where
hi is the sampling period, are quadratic, i.e.,

Ji(hi) = αi +βih
2
i

or if they are linear,

Ji(hi) = αi + γihi ;

and if the objective of the feedback scheduler is to minimize
the sum of the control cost functions or a weighted sum of

Scheduler Tasks Resources

Feedforward

Feedback

Figure 1 A general feedback scheduling structure. The re-
sources are distributed among the tasks based on feedback from
the actual resource use. The tasks can be use feedforward to no-
tify the scheduler about changes in their resource demands.

the control cost functions. The advantage of this is a simple
and fast calculation that easily can be applied on-line. The
linear rescaling also has the advantage that it preserves the
rate-monotonic ordering of the tasks and, thus, avoids any
changes in task priorities in the case that fixed priority
scheduling is used. Linear or quadratic cost functions are
also quite good approximations of true cost functions in
many cases. It is also possible to add more constraints to
the optimization problem and still retain a simple solution.
For example, one can use the nominal sampling periods
as minimal sampling periods and use these whenever the
utilization is less than the utilization set-point. However, the
linear rescaling property does not hold in all cases. If the
task set includes both tasks with quadratic cost functions
and tasks with linear cost functions, the solution is not as
simple, although it is still computable.

It is also possible to assign maximum sampling periods to
certain tasks. This leads however to an iterative computation
(LP-problem) in order to find the total rescaling of all
the tasks. This is equivalent to the calculations needed in
the elastic task model [Buttazzoet al., 1998] when the
tasks (springs) have constraints on how much they may be
compressed. However, it should be noted that the the cost
functions above only concern the task periods and not the
input-output latencies.

3.2 Feedback Scheduling Structures

Different structures are possible in feedback scheduling.
A pure feedback scheme is reactive in the sense that the
feedback scheduler will only remove a utilization error
once it is already present. By combining the feedback
with feedforward a pro-active scheme is obtained. The
feedforward path could be use to allow controller task to
inform the scheduler that they are changing their desired
amount of resources, e.g., changing their execution times
or nominal sampling periods, and to give the scheduler the
possibility to compensate for this before any overload has
occurred. The feedforward path can be also be used for
dynamic task admission. A block diagram of the feedback-
feedforward structure is shown in Fig. 1.

It is also possible to consider a layered or cascaded control
structure. The outer layer would consist of a feedback
scheduler that, based on a desired set-point for the overall

utilization, generates as outputs the desired utilization for
each controller task. Associated with each controller task
is then a local feedback scheduler that is responsible for
adjusting the timing parameters of the task in order to
fulfill the desired utilization. The utilization assigned to
each controller task can be viewed as its share of the total
resource, e.g., the total CPU capacity. This approach can
be combined with reservation-based scheduling in order to
provide temporal protection for the individual tasks [Mercer
et al., 1993]. Each task can then be seen as if it is executing
on its own virtual CPU. One example of a reservation-based
scheduling scheme is the constant-bandwidth server (CBS)
[Abeni and Buttazzo,1998]. Analysis of a reservation-based
feedback scheduler is presented in [Abeniet al., 2002].
The control server computational model for controller tasks
is based on reservation-based scheduling and feedback
scheduling [Cervin and Eker, 2003].

3.3 Direct Feedback Scheduling

Most of the feedback scheduling approaches proposed for
control applications are indirect. By adjusting the task pa-
rameters, e.g., period and execution time, one makes sure
that the task set is schedulable and has certain timing prop-
erties (latencies and jitter).These timing properties will then
indirectly determine the performance of the application. The
problem with this is the relationship between the timing pa-
rameters and the cost/performance. In most cases the re-
lationship only holds in stationarity and in a mean-value
sense. In direct feedback scheduling the idea is to base the
decision of which task to execute on the instantaneous cost.
This cost will grow the longer the control loop executes in
open loop and decrease when a control action is issued. The
instantaneous cost could then be used as a dynamic priority
similar to the task deadline in EDF. One example of how
this approach could be implemented is the following. Each
controller consists of two parts. The first part contains the
sampling of the measurement signal and evaluation of the
instantaneous cost function. The second part is the actual
control algorithm, which then would be optional. The total
control system would execute at a constant short sampling
period. The first part could be implemented by using inter-
rupt handlers and be executed for all the controller tasks in
the beginning of each sampling period. The scheduler would
then select and execute the controller part of the control task
with the largest instantaneous cost.

The resulting system would be a special case of an aperiodic
event-triggered sampled system. Although time-triggered
sampling is adequate for many simple control loops, there
are a lot of control problems where it is more natural to
use event-triggered sampling, e.g., control of combustion
engines. Another common case is in motion control where
angles and positions are sensed by encoders that give a
pulse whenever a position or an angle has changed by a
specific amount. Event based sampling is also a natural
approach when actuators with on-off characteristic are used.
Satellite control by thrusters is one typical example, [Dodds,

1981]. Systems with pulse frequency modulation [Skoog
and Blankenship, 1970], [Sira-Ramirez, 1989], and analog
or real neurons whose outputs are pulse trains, see [Mead,
1989] and [DeWeerthet al., 1990] are other examples.

Analysis of systems with event based sampling is related
to general work on discontinuous systems, [Utkin, 1981],
[Utkin, 1987], [Tsypkin, 1984] and to work on impulse
control, see [Bensoussan and Lions, 1984]. Much work on
systems of this type was done in the period 1960–1980.
Analysis of event-based sampled systems is considerably
harder than for time-based sampled systems. This is due
to the fact that sampling is no longer a linear operation.
There are several papers that treat special system setups,
such as observers for linear system with quantized outputs,
[Sur, 1996], [Delchamps, 1989] many of which use classical
ideas from Kalman observer design. In [Åström and Bern-
hardsson, 1999] it is shown that event-based sampling can
be more efficient than equidistant sampling. For example,
an integrator system driven by white noise must be sam-
pled 3–5 times faster using equidistant sampling than using
event-based sampling to achieve the same output variance.
However, we are still very far from a general theory for ape-
riodic event-triggered sampled systems.

In spite of the lack of theory it is possible to derive different
heuristic versions of direct feedback scheduling. A question
is then how the instantaneous cost function should look
like. It would be quite natural to include the controller error
in the function. The larger the error the more critical the
loop is in general. One could also consider including the
error derivative. The motivation for this would be to be
able to judge the decision whether to execute a controller
on a prediction of the error rather than on the actual error.
A loop with a large but decreasing error would be less
urgent than a loop with an increasing error of the same
magnitude. One could also consider the past history of
the error signal, i.e., include an integral term in the cost.
One possibility would be to judge the decision of which
controller to execute on a performance measure such as
the IAE (Integrated Absolute Error) or the ISE (Integrated
Square Error), possibly in combination with some forgetting
factor. Interestingly enough an instantaneous cost function
of this kind shows strong similarities with the well-known
PID controller. Another useful term to add to the function
would be a term that increases the longer the loop has been
running in open loop.

3.4 Scheduling Overhead

In order for feedback scheduling to be practically useful it
is crucial that the overhead associated with the feedback
scheduler itself is small compared to the dynamics and the
time intervals of the task set that is being controlled. Hence,
simple techniques such as linear rescaling is preferable over
methods involving more complex calculations.

Changing the task parameters in an indirect feedback
scheduling scheme gives rise to a mode change transient.
Although the task set may be schedulable both before and

after the mode switch, it is not at all sure that all task dead-
lines are met during the transient. The necessary analysis in
order to guarantee this is still not completely worked out,
e.g., [Tindellet al., 1992], [Pedro and Burns, 1998], and
[Buttazzoet al., 1998].

3.5 Anytime Controllers

A feedback scheduler can control the utilization of task
set by either changing the task periods or by changing
the task execution times. For controller tasks the first al-
ternative is the most natural. However, there are exam-
ples when also the execution times can be changed, e.g.,
Model-Based Predictive Controllers (MPC), see e.g. [Gar-
cia et al., 1989; Richalet, 1993]. In an MPC, the control
signal is determined by on-line optimization of a cost func-
tion in every sample. The optimization problem is solved
iteratively, with highly varying execution time depending
on a number of factors: the state of the plant, the current
and future reference values, the disturbances acting on the
plant, the number of active constraints on control signals
and outputs, etc. For fast processes with dominating time
constants in the same order as the execution time, the ex-
ecution time also gives rise to an input-output latency that
can effect the control performance considerably. The MPC
strategy has won widespread industrial use in recent years,
the main advantages being its ability to handle constraints
and its straightforward applicability to large, multi-variable
processes. However, because of the computational demands
of the control algorithm, MPC has traditionally only been
applied to plants in the process industry, with slow dynam-
ics and low requirements on fast sampling. The industrial
practice has been to run the MPC algorithm on a dedicated
computer, and to decrease the complexity of the problem so
that overruns are avoided.

In the terminology of [Liu et al., 1991] MPCs can be
viewed as anytime algorithms of the “milestone” task type.
In each sample, the quality of the control signal is gradually
refined for each iteration in the optimization algorithm, up
to a certain bound. This makes it possible to abort the
optimization before it has reached the optimum, and still
obtain an acceptable control signal. Another nice feature of
MPC is that it is not onlypossibleto extract a real-world
quality-or-service or cost measure from the controller, but
the control algorithm is indeedbasedon the same measure.
This enables a tight and natural connection between the
control and the scheduling. MPC controllers also fit nicely
with the imprecise computation model [Chunget al., 1990].
Each MPC task has a mandatory part that consists of a
search for a feasible solution that fulfills all the constraints,
and one optional part that is the actual optimization, i.e.,
the gradual refinement of the feasible solution. The use
of feedback scheduling for MPC controllers is reported in
[Henrikssonet al., 2002b; Henrikssonet al., 2002a].

Another area where the task execution time may be varied
is in visual servoing. A camera-based vision sensor can in
a certain sense be viewed as an anytime sensor, especially

if the visual feedback is based on the extraction of image
feature points. The more time available for the sensing the
better estimates of the feature points can be derived.

3.6 Quality of Control

When applying feedback scheduling the control perfor-
mance can be viewed as a quality parameter similar to
the quality-of-service parameters used within multimedia
and communication systems. Several important issues re-
quire attention. One issue is how performance specifica-
tions should be represented. Instead of specifying absolute
values of different performance parameters, e.g., overshoot,
steady state variance, etc, the designer needs to specify ac-
ceptable ranges of these values. An interesting issue is how
these specifications should be expressed. One possibility is
to use a minimum-maximum interval, i.e., in essence spec-
ify that the actual value of the performance metric should be
uniformly distributed. Another possibility is to use general
distributions.

Another important issue is how the run-time resource nego-
tiation should be expressed. The exact nature of which ne-
gotiation scheme that is most appropriate is still open. One
possibility is to use contracts that specifies how the control
loop performance depends on the assigned resource level.
Another possibility is to apply the Broker architectural soft-
ware pattern.

4. Co-design Tools

In order for integrated control and real-time scheduling to be
a reality it is necessary to have computers tools for simula-
tion, analysis, and synthesis. During recent years a few such
tools have emerged, e.g., the RTSIM scheduling simulator
extended with a numerical simulation module [Casileet al.,
1998], the Ptolemy system with its recently included timed
multitasking domain [Liu and Lee, 2003], and the simu-
lation tool presented in [El-khoury and Törngren, 2001].
Here we will focus on the two Matlab/Simulink tools that
have been developed in our group, Jitterbug and TrueTime
[Cervinet al., 2003].

4.1 Jitterbug

Jitterbug [Lincoln and Cervin, 2002] makes it possible to
analyze the impact of latencies, jitter, lost samples, aborted
computations, etc on controller performance. The tool can
also be used investigate jitter-compensating, aperiodic, and
multi-rate controllers. The basis of Jitterbug is the calcula-
tion of a quadratic performance criterion. The main con-
tribution of Jitterbug is the packaging that it provides of
the theory for linear quadratic Gaussian systems and jump-
linear systems in a user-accessible way and on a format that
suits the analysis of controller timing issues. However, the
tool also has a number of limitations that it is important to
be aware of.

Linear Systems: Jitterbug only applies to linear systems.
Although linear theory often provides a very good approx-

imation of non-linear systems there are a lot of situations
when non-linear issues are important. For example, all ac-
tuators have limited range, i.e., they saturate. During ac-
tuator saturation the control loop is effectively cut-off and
the controlled process runs in open loop. In order to avoid
that unstable controller states, e.g., the integrator state, ex-
plode (wind-up) during saturations all practical controllers
must be equipped with an anti-windup scheme. This can not
be analyzed using Jitterbug. The fact that Jitterbug is not
applicable to non-linear systems is, however, not surpris-
ing. Non-linear discrete-time systems is a very undeveloped
field. For example, there is not even a commonly accepted
sampled-time representation of general non-linear systems
yet.

Stationarity: The quadratic cost calculated by Jitterbug is
a measure of the controller performance during stationarity.
This is well suited for regulatory control systems where the
objective is to keep the controlled variables at constant set-
point values during the presence of stochastic noise. How-
ever, for servo-control systems where the main objective is
tracking of non-constant set-point signals and rejection of
deterministic disturbances it is the performance during tran-
sient conditions, e.g. overshoot and rise time, that is most
important. Although this is closely related to the type of per-
formance measures that Jitterbug calculates, Jitterbug is in
general not ideally suited for these types of control prob-
lems.

Statistical measure:The output of Jitterbug is a statistical
measure, i.e., an expected value. Latencies and jitter are
modeled using statistical distributions. A result of this is
that Jitterbug can never be used to formally prove that, e.g.,
the cost function for a certain timing scenario in actual
case will have a certain result. The results only hold in a
mean-value sense. Another effect of the statistical nature
of Jitterbug is that timing situations that have probability
zero will be disregarded in the analysis. A case where this
can be important is for systems with switching-induced
instability. Consider the following example from [Schinkel
et al., 2002]. The process to be controlled is modeled by

ẋ = Ax+Bu

where

A =

"
0 1

�10000 �0:1

#
B=

"
0

1

#

The system is stable with poles inp1;2 = �0:05� 100i.
The process has been discretized withh1 = 0:002s and
h2 = 0:094s. The two discrete-time systems are represented
by

xk+1 = Φixk+Γiuy

i 2 f1;2g

whereΦi = eAhi , Γ1 =
R hi

0 eAsBds. Both discretizations lead
to stable discrete systems with the spectral radiusρ(Φ1) �

P(s)

Ci(z)

yu
h1

h1

h1 h2h2h2

h2

C1

C1

C1

C2C2C2

C2

11

1

22

2

33

0

33% 67%

(a) (b)

(c) (d)

Figure 2 Jitterbug model of system with varying sampling
intervals: (a) signal model, (b) timing model with repeating
intervals h1, h2, (c) timing model with repeating intervalsh1,
h2, h2, and (d) timing model with random sequence of sampling
intervals.

1;ρ(Φ2) � 1, whereρ(Φi) gives the largest eigenvalue of
Φi. For each discrete-time system a LQ-controller has been
designed to minimize the continuous-time cost function

J= lim
t!∞

1
t

Z T

0

�
xT (s)Q1x(s)+uT(s)Q2u(s)

�
ds

where

Q1 =

8>>:20000 0

0 20000

9>>; ; Q2 = 50

The resulting state feedback law is represented byu=�Kix.

By looking upon the spectral radius forΦi�ΓiKi it is easy
to verify that the closed loop system is stable for both
sampling intervals. However, for the repeating switching
cycle h1h2h2 the system is unstable. This can be verified
by looking upon the spectral radius of the resulting system
ρ((Φ2�Γ2K2)2(Φ1�Γ1K1)1) � 1.

Using Jitterbug it can easily be verified that the closed loop
system is stable for both the two sampling intervals. It is
also possible to use Jitterbug to verify that the switching
sequenceh1h2h2 is stable. However, if it not known before-
hand that this sequence yields an unstable system, one may
easily be fooled. For example, if the sampling interval is
modeled as a two-point distribution with 33% probability
for h1 and 67% probability forh2 then Jitterbug gives a re-
sult that indicates that the closed loop system is stable. Us-
ing a feedback scheduler that dynamically adjusts the sam-
pling periods it is not impossible that a situation like this
could arise.

The Jitterbug models for different timing sequences situa-
tions are shown in Fig. 2. The simulated time sequences for
the switching sequenceh1h2h2 is shown in Fig. 3 and for
the random two-point distribution is shown in Fig. 4.

0 5 10 15 20
−5

0

5

Time

x

Figure 3 Simulation of with switching sequenceh1h2h2. The
result is an unstable system.

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5

Time

x

Figure 4 Simulation of with a random two-point distribution.
The result is a stable system.

4.2 TrueTime

TrueTime, [Henrikssonet al., 2002c], allows co-simulation
of distributed computer-based control loops and the con-
trolled plant. This is achieved by simulating the temporal
behavior of multitasking real-time kernels and network pro-
tocols in Matlab/Simulink. TrueTime was primarily devel-
oped as a co-design tool. However, TrueTime can also be
used as an experimental platform for research on feedback
scheduling. Using TrueTime it is possible to implement
user-defined scheduling policies, it supports deadline over-
run and execution-time overrun handling, measurements of
execution time is straightforward, and the application tasks
can be interfaced with the kernel level. Used in this way
TrueTime can be used to evaluate and test different new
real-time kernel features before they are implemented for
real. The possibility to run TrueTime in real-time makes
this even more interesting. Interfacing the computer to a real
process using A-D and D-A converters the setup can be used
to emulate a slow, multitasking computer controlling a real
plant.

Extensions:Although TrueTime is a quite powerful already
today there are certain areas that could be extended. The net-
work block only supports data-link protocols and only a sin-
gle network segment may be present. In current work we are
extending this by also implementing transport layer proto-
cols, e.g., TCP with acknowledgment messages, buffering,

congestion control, and flow control. We also allow multiple
network segments within the same model. This is necessary
in order to be able to model networked control loops over
switched Ethernet, a technology that is becoming increas-
ingly popular for real-time communication. Another area
where TrueTime needs improvement is execution time es-
timation. In TrueTime it is the user that assigns the time it
takes to calculate every code segment or interrupt handler.
This time should ideally match the actual time that it would
take to execute the equivalent code on the target platform
under consideration. However, assigning these times can in
practice be very difficult. It would be interesting to combine
TrueTime with an execution time analysis tool. However,
exactly how that should be done is still unclear.

5. Conclusions

Control systems constitute an important subclass of em-
bedded real-time systems. Control systems have tradition-
ally been relatively static systems. However, technology ad-
vances and market demands are rapidly changing the situ-
ation. The increased connectivity implied by Internet and
mobile device technology will have a major impact on
control system architectures. Products are often based on
commercial-off-the-shelf (COTS) components. The rapid
development of component-based technologies and lan-
guages like Java increases portability and safety, and makes
heterogeneous distributed control-system platforms possi-
ble. The evolution from static systems towards dynamic sys-
tems makes flexibility a key design attribute for future sys-
tems.

A key future challenge is to provide flexibility and reliabil-
ity in embedded control systems implemented with COTS
component-based computing and communications technol-
ogy. Research is necessary on design and implementation
techniques that support dynamic run-time flexibility with
respect to, e.g., changes in workload and resource utiliza-
tion patterns. The use of control-theoretical approaches for
modeling, analysis, and design of embedded systems is a
promising approach to control uncertainty and to provide
flexibility. A related area is quality-of-service (QoS) issues
and feedback scheduling approaches in control systems. In
order to support this development it is important that the
control community increases its efforts on development of
control theory that it is aware of implementation-platform
resource constraints. It is also important that the real-time
computing community work hand in hand with the control
community to develop models, methods, tools, and theory
that match their respective requirements..

5.1 Acknowledgment

This work is supported by the the SSF/ARTES and
SSF/FLEXCON research programmes on real-time sys-
tems and control, and by the LUCAS center for applied
software research.

References

Abeni, L. and G. Buttazzo (1998): “Integrating multimedia
applications in hard real-time systems.” InProc. 19th
IEEE Real-Time Systems Symposium. Madrid, Spain.

Abeni, L., L. Palopoli, G. Lipari, and J. Walpole (2002):
“Analysis of a reservation-based feedback scheduler.” In
Proc. 23rd IEEE Real-Time Systems Symposium.

Åström, K. J. and B. Bernhardsson (1999): “Comparison
of periodic and event based sampling for first-order
stochastic systems.” InProceedings of the 14th IFAC
World Congress. Beijing, P.R. China.

Bensoussan, A. and J.-L. Lions (1984):Impulse control and
quasi-variational inequalities. Gauthier-Villars, Paris.

Benveniste, A. and G. Berry (1991): “The synchronous
approach to real-time programming.”Proceedings of the
IEEE, 79, pp. 1270–1282.

Buttazzo, G., G. Lipari, and L. Abeni (1998): “Elastic task
model for adaptive rate control.” InProc. 19th IEEE
Real-Time Systems Symposium, pp. 286–295.

Casile, A., G. Buttazzo, G. Lamastra, and G. Lipari (1998):
“Simulation and tracing of hybrid task sets on dis-
tributed systems.” InProc. 5th International Conference
on Real-Time Computing Systems and Applications.

Cervin, A. (2003): Integrated Control and Real-Time
Scheduling. PhD thesis ISRN LUTFD2/TFRT--1065-
-SE, Department of Automatic Control, Lund Institute
of Technology, Sweden.

Cervin, A. and J. Eker (2003): “The Control Server: A
computational model for real-time control tasks.” In
Proceedings of the 15th Euromicro Conference on Real-
Time Systems. Porto, Portugal. To appear.

Cervin, A., D. Henriksson, B. Lincoln, J. Eker, and K.-
E. Årzén (2003): “How does control timing affect per-
formance?” IEEE Control Systems Magazine, 23:3,
pp. 16–30.

Chung, J.-Y., J. Liu, and K.-J. Lin (1990): “Scheduling pe-
riodic jobs that allow imprecise results.”IEEE Transac-
tions on Computers, 39:9.

Delchamps, D. (1989): “Extracting state information from
a quantized output record.”Systems and Control Letter,
13, pp. 365–372.

DeWeerth, S., L. Nielsen, C. Mead, and K. J. Åström
(1990): “A neuron-based pulse servo for motion con-
trol.” In IEEE Int. Conference on Robotics and Automa-
tion. Cincinnati, Ohio.

Dodds, S. J. (1981): “Adaptive, high precision, satellite
attitude control for microprocessor implementation.”
Automatica, 17:4, pp. 563–573.

El-khoury, J. and M. Törngren (2001): “Towards a toolset
for architecural design of distributed real-time control
systems.” InProc. 22nd IEEE Real-Time Systems Sym-
posium.

Garcia, C. E., D. M. Prett, and M. Morari (1989): “Model
predictive control: Theory and practice – a survey.”
Automatica, 25:3, pp. 335–348.

Hanselmann, H. (1987): “Implementation of digital
controllers—A survey.”Automatica, 23:1, pp. 7–32.

Henriksson, D., A. Cervin, J. Åkesson, and K.-E. Årzén
(2002a): “Feedback scheduling of model predictive con-
trollers.” InProceedings of the 8th IEEE Real-Time and
Embedded Technology and Applications Symposium.
San Jose, CA.

Henriksson, D., A. Cervin, J. Åkesson, and K.-E. Årzén
(2002b): “On dynamic real-time scheduling of model
predictive controllers.” InProceedings of the 41st IEEE
Conference on Decision and Control. Las Vegas, NV.

Henriksson, D., A. Cervin, and K.-E. Årzén (2002c): “True-
Time: Simulation of control loops under shared com-
puter resources.” InProceedings of the 15th IFAC World
Congress on Automatic Control. Barcelona, Spain.

Henzinger, T., B. Horowitz, and C. Kirsch (2003): “Giotto:
a time-triggered language for embedded programming.”
Proceedings of the IEEE, 91:1, pp. 84–99.

Kopetz, H. and G. Bauer (2003): “The time-triggered archi-
tecture.”Proceedings of the IEEE, 91:1, pp. 112–126.

Lincoln, B. (2002a): “Jitter compensation in digital control
systems.” InProceedings of the2002 American Control
Conference.

Lincoln, B. (2002b): “A simple stability criterion for control
systems with varying delays.” InProceedings of the 15th
IFAC World Congress.

Lincoln, B. and A. Cervin (2002): “Jitterbug: A tool for
analysis of real-time control performance.” InProceed-
ings of the 41st IEEE Conference on Decision and Con-
trol. Las Vegas, NV.

Liu, J. and E. Lee (2003): “Timed multitasking for real-time
embedded software.”IEEE Control Systems Magazine,
23:1.

Liu, J., K.-J. Lin, W.-K. Shih, A. Yu, J.-Y. Chung, and
W. Zhao (1991): “Algorithms for scheduling imprecise
computations.”IEEE Transactions on Computers.

Lu, C., J. A. Stankovic, S. H. Son, and G. Tao (2002):
“Feedback control real-time scheduling: framework,
modeling and algorithms.”Real-Time Systems, 23:1/2,
pp. 85–126.

Mead, C. A. (1989):Analog VLSI and Neural Systems.
Addison-Wesley, Reading, Massachusetts.

Mercer, C. W., S. Savage, and H. Tokuda (1993): “Processor
capacity reserves for multimedia operating systems.”
In Proc. Fourth Workshop on Workstation Operating
Systems.

Pedro, P. and A. Burns (1998): “Schedulability analysis for
mode changes in flexible real-time systems.” InProc.
10th Euromicro Workshop on Real-Time Systems.

Richalet, J. (1993): “Industrial application of model based
predictive control.”Automatica, 29, pp. 1251–1274.

Schinkel, M., W.-H. Chen, and A. Rantzer (2002): “Optimal
control for systems with varying sampling rate.” InPro-
ceedings of American Control Conference. Anchorage.

Sira-Ramirez, H. (1989): “A geometric approach to pulse-
width modulated control in nonlinear dynamical sys-
tems.” IEEE Trans. of Automat. Control, AC-34:2,
pp. 184–187.

Skoog, R. A. and G. L. Blankenship (1970): “Generalized
pulse-modulated feedback systems: Norms, gains, lips-
chitz constants and stability.”IEEE Trans. of Automat.
Control, AC-15:3, pp. 300–315.

Sur, J. (1996):State Observers for Linear Systems with
Quantized Outputs. PhD thesis, University of Santa
Barbara.

Tindell, K., A. Burns, and A. J. Wellings (1992): “Mode
changes in priority preemptively scheduled systems.”
In Proc. 13th IEEE Real-Time Systems Symposium,
pp. 100–109.

Tsypkin, Ya. Z. (1984):Relay Control Systems. Cambridge
University Press, Cambridge, UK.

Utkin, V. (1981):Sliding modes and their applications in
variable structure systems. MIR, Moscow.

Utkin, V. I. (1987): “Discontinuous control systems: State
of the art in theory and applications.” InPreprints 10th
IFAC World Congress. Munich, Germany.

