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Daniel Sjöberg
daniel.sjoberg@eit.lth.se

Department of Electrical and Information Technology
Electromagnetic Theory
P.O. Box 118
SE-221 00 Lund
Sweden

Editor: Gerhard Kristensson
c° Daniel Sjöberg, Lund, November 3, 2008



1

Abstract

We derive four variational principles for the electric and magnetic polarizabil-
ities for a structure consisting of anisotropic media with perfect electric con-
ductor inclusions. From these principles we derive monotonicity results and
upper and lower bounds on the electric and magnetic polarizabilities. When
computing the polarizabilities numerically, the bounds can be used as error
bounds. The variational principles demonstrate important di�erences between
electrostatics and magnetostatics when PEC bodies are present.

1 Introduction

Variational principles can be viewed as a physical way of interpreting mathematical
equations. Instead of giving the relevant physical law as, for instance, a partial
di�erential equation, a variational principle typically de�nes an energy functional,
where the correct physical behavior is obtained for the trial function giving the
minimum value of the functional. Typically, the functional can be interpreted as
the energy of the system.

In our case, we are interested in calculating the electric and magnetic polariz-
ability of a system consisting of anisotropic permittivity and permeability, possibly
containing inclusions of metal modelled as a perfect electric conductor (PEC). This
can be used in various applications, for instance Rayleigh scattering [10, 11, 13, 14]
and homogenization theory [7, 9, 16]. Recently, a series of papers have proposed the
use of electric and magnetic polarizability to give physical bounds on electromagnetic
interaction over all frequencies for antennas, materials and general scatterers [6, 19�
22].

Electrostatics is one of the prime examples of the Laplace equation, and has thus
been studied thoroughly. Magnetostatics is somewhat younger, but due to its large
�nancial impact on for instance power transformers and hard disk drives, it has also
received signi�cant attention [1�3]. A classical problem linking directly to ours is to
compute low frequency circuit parameters such as capacitance and inductance [12,
24, 26, 27]. It is interesting to note that the problem of magnetic polarizability of
a PEC body, is mathematically equivalent to the problem of computing the virtual
mass [15, p. 31] of a body in a uniformly �owing �uid [17, 18, 23].

Even though variational principles are typically associated with a self-adjoint
operator, we note that in some cases there exist techniques for reformulating the
problem so that variational principles can be found for, for instance, complex valued
non-hermitian matrices describing material properties [4]. However, in this paper
we assume all material properties can be modelled using symmetric, real-valued
matrices.

This paper is organized as follows. In Section 2, we state the geometry of our
problem. In Section 3 we summarize the variational principles, which are given a full
derivation from Maxwell's equations in Appendix A. In Section 4, it is shown that
these principles imply monotonicity results for the polarizabilities. The variational
principles are interpreted as giving upper and lower bounds for the polarizabilities in
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Figure 1 : Typical geometry of the considered structure.

Section 5, and a numerical illustration is given in Section 6. Finally, some conclusions
are given in Section 7.

2 Geometry and statement of the problem

We consider the situation of a structure as in Figure 1 with anisotropic permittivity
and permeability matrices² (x ) and ¹ (x ) and possibly PEC inclusions in a region­
with volume V­ , such that R3 n ­ is simply connected. The structure is surrounded
by a vacuous medium with permittivity ² 0 = ²0I and permeability ¹ 0 = ¹ 0I . The
structure is subjected to a homogeneous electric �eld and a homogeneous magnetic
�eld. The induced redistribution of charges and currents in the structure gives rise
to an electric and magnetic dipole moment according to

p =
Z

(² ¡ ² 0)E dV +
I

@­
x n̂ ¢D dS (2.1)

m =
Z

(¹ ¡ 1
0 ¡ ¹ ¡ 1)B dV +

1
2

I

@­
x £ (n̂ £ H ) dS (2.2)

where E , D , B , and H are the full electric �eld strength, electric �ux density,
magnetic �ux density, and magnetic �eld strength, respectively. Even though we do
not write it out explicitly, the volume integrals do not encompass the PEC region­ ,
since both the electric and magnetic �elds are zero inside, with boundary conditions
n̂ £ E = 0 and n̂ ¢B = 0 [8, p. 204]. Thus, the integral

R
(² ¡ ² 0)E dV should
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be interpreted as
R

R3n­ (² ¡ ² 0)E dV. This helps us considering structures with and
without PEC bodies without complicating the notation.

The electric and magnetic polarizabilities are de�ned by

p = ²0° eE 0 = ° eD 0 (2.3)

m = ¹ ¡ 1
0 ° mB 0 = ° mH 0 (2.4)

where we used that in the surrounding medium, we cannot distinguish between the
applied electric �eld strength E 0 or the �ux density D 0, since these are related by
D 0 = ²0E 0. The same reasoning applies for the magnetic �elds.

Even though the problem is primarily stated for �nite structures in three-dimen-
sional space, the �nal formulation of the variational principles admits also periodic
solutions, where for instance the �nite structure in Figure 1 is repeated periodically
without the PEC portion of the copies touching each other.

3 Summary of variational principles

In this section, we summarize the variational formulations derived in Appendix A.
The derivation is based on starting from the static Maxwell's equations, representing
the �elds using either scalar or vector potentials, and constructing natural quadratic
forms. The variational principles along with the associated classes of admissible
potentials are as follows. Using scalar potential for the electric �eld:

Je('; E 0) =
Z

r ' ¢² r ' dV ¡ 2
Z

r ' ¢(² ¡ ² 0)E 0 dV

+ E 0 ¢
· Z

(² ¡ ² 0) dV + V­ ² 0

¸
¢E 0 (3.1)

A ' = f ' 2 H1(R3 n ­); n̂ £ (E 0 ¡ r ' ) = 0 on @­ g (3.2)

Using vector potential for the electric �eld:

K e(F ; D 0) =
Z

(r £ F ) ¢² ¡ 1r £ F dV ¡ 2
Z

(r £ F ) ¢(² ¡ 1
0 ¡ ² ¡ 1)D 0 dV

¡ 2D 0 ¢² ¡ 1
0

I

@­
x n̂ ¢(D 0 + r £ F ) dS

+ D 0 ¢
·
¡

Z
(² ¡ 1

0 ¡ ² ¡ 1) dV + V­ ² ¡ 1
0

¸
D 0 (3.3)

A F = f F 2H1(curl; R3 n ­); n̂ £ ² ¡ 1(D 0 + r £ F ) = 0 on @­ g (3.4)
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Using scalar potential for the magnetic �eld:

Jm(Ã;H 0) =
Z

r Ã ¢¹ r Ã dV ¡ 2
Z

r Ã ¢(¹ ¡ ¹ 0)H 0 dV

+ 2H 0 ¢
¹ 0

2

I

@­
x £ (n̂ £ (H 0 ¡ r Ã)) dS

+ H 0 ¢
· Z

(¹ ¡ ¹ 0) dV + V­ ¹ 0

¸
H 0 (3.5)

A Ã = f Ã 2 H1(R3 n ­); n̂ ¢¹ (H 0 ¡ r Ã) = 0 on @­ g (3.6)

Using vector potential for the magnetic �eld:

K m(A ; B 0) =
Z

(r £ A ) ¢¹ ¡ 1r £ A dV ¡ 2
Z

(r £ A ) ¢(¹ ¡ 1
0 ¡ ¹ ¡ 1)B 0 dV

+ B 0 ¢
·
¡

Z
(¹ ¡ 1

0 ¡ ¹ ¡ 1) dV + V­ ¹ ¡ 1
0

¸
B 0 (3.7)

A A = f A 2 H1(curl; R3 n ­); n̂ ¢(B 0 + r £ A ) = 0 on @­ g (3.8)

The minimum values of these functionals are given by

min
' 2A '

Je('; E 0) = Je(' 0; E 0) = E 0 ¢p = ²0E 0 ¢° eE 0 (3.9)

min
F 2A F

K e(F ; D 0) = K e(F 0; D 0) = ¡ D 0 ¢² ¡ 1
0 p = ¡ ²¡ 1

0 D 0 ¢° eD 0 (3.10)

min
Ã2A Ã

Jm(Ã;H 0) = Jm(Ã0; H 0) = H 0 ¢¹ 0m = ¹ 0H 0 ¢° mH 0 (3.11)

min
A 2A A

K m(A ; B 0) = K m(A 0; B 0) = ¡ B 0 ¢m = ¡ ¹ ¡ 1
0 B 0 ¢° mB 0 (3.12)

where the minimizing potentials(' 0; F 0; Ã0; A 0) satisfy the electrostatic and mag-
netostatic equations

r ¢ D = r ¢ [² (E 0 ¡ r ' 0)] = 0 (3.13)

r £ E = r £ [² ¡ 1(D 0 + r £ F 0)] = 0 (3.14)

r ¢ B = r ¢ [¹ (H 0 ¡ r Ã0)] = 0 (3.15)

r £ H = r £ [¹ ¡ 1(B 0 + r £ A 0)] = 0 (3.16)

We call Je and K m the direct functionals, since they are associated with the �natural�
potentials for electric and magnetic �elds, whereasK e and Jm are called the dual
functionals. An interesting di�erence between the direct functionals and the dual
functionals, is that the dual functionals include a term which is the scalar product
of the applied �eld and (twice) the induced dipole moment in the PEC body. In
the electric case this term is minimized when the dipole moment is parallel with the
applied �eld, whereas in the magnetic case the term is minimized when the dipole
moment is antiparallel to the applied �eld. This expresses a fundamental di�erence
in sign for the PEC polarizability for electric and magnetic �elds. This is further
explored in the following section.
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4 Monotonicity of the polarizabilities

Consider a situation with two di�erent PEC bodies, ­ and ­ 0, where ­ 0 µ ­ and
±­ = ­ n ­ 0. Associated with ­ and ­ 0 are also the permittivity functions ² (x )
and ² 0(x ) and permeability functions ¹ (x ) and ¹ 0(x ), respectively. The spaces of
admissible test functions are slightly di�erent, since the boundary conditions are not
the same. However, for each' 2 A ' , we can choose a' 0 2 A 0

' 0 such that ' 0 = '
in the exterior of ­ and ' 0 = x ¢E 0 in ±­ , i.e., E 0 ¡ r ¢ ' 0 = 0 in ±­ . Also, for
eachA 2 A A , we can choose aA 0 2 A 0

A 0 such that A 0 = A in the exterior of ­
and A 0 = 1

2x £ B 0 in ±­ , i.e., B 0 + r £ A 0 = 0 in ±­ . This construction can
only be applied to the test functions for the direct functionalsJe and K m, and not
the dual functionals K e and Jm. This is because the boundary conditions for the
dual functionals are expressed in spatial derivatives of the potentials, and making
the corresponding construction for the duals functionals would lead to discontinuous
potentials. Using the results from (A.22) and (A.37) we then have (for arbitrary
' 2 A ' and A 2 A A )

Je('; E 0) ¡ J 0
e('

0; E 0) =
Z

R3n­
(E 0 ¡ r ' ) ¢(² ¡ ² 0)(E 0 ¡ r ' ) dV (4.1)

K m(A ; B 0) ¡ K 0
m(A 0; B 0) =

Z

R3n­
(B 0 + r £ A )(¹ ¡ 1 ¡ (¹ 0)¡ 1)(B 0 + r £ A ) dV

(4.2)

Using the minimizing potentials' 0 and A 0 for the unprimed functionals, we obtain
the inequalities, valid for any­ 0 µ ­ ,

²0E 0 ¢(° e ¡ ° 0
e)E 0 ¸

Z

R3n­
(E 0 ¡ r ' 0) ¢(² ¡ ² 0)(E 0 ¡ r ' 0) dV (4.3)

¹ ¡ 1
0 B 0 ¢(¡ ° m + ° 0

m)B 0 ¸
Z

R3n­
(B 0 + r £ A 0)(¹ ¡ 1 ¡ (¹ 0)¡ 1)(B 0 + r £ A 0) dV

(4.4)

It is seen that these inequalities imply° e ¸ ° 0
e if ² ¸ ² 0, and ° 0

m ¸ ° m if ¹ 0 ¸ ¹ .
This proves that both the electric and the magnetic polarizability are nondecreasing
when the material parameters increase in the region exterior to­ . If the material
parameters are equal in the region exterior to­ , i.e., ² = ² 0 and ¹ = ¹ 0, it is seen
that ° e ¸ ° 0

e and ° m · ° 0
m for arbitrary ­ 0 µ ­ . Thus, when the volume of PEC

increases, the electric polarizability is nondecreasing, but the magnetic polarizability
is nonincreasing. A corresponding result is shown for isotropic dielectric bodies
in [11].

When the structure consists of only PEC in vacuum,i.e., ² = ² 0 and ¹ = ¹ 0

everywhere, the minimum properties (3.9) and (3.12) imply

²0E 0 ¢° eE 0 = ²0

Z
jr ' 0j2 dV + ²0V­ jE 0j2 (4.5)

¡ ¹ ¡ 1
0 B 0 ¢° mB 0 = ¹ ¡ 1

0

Z
jr £ A 0j2 dV + ¹ ¡ 1

0 V­ jB 0j2 (4.6)
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Since the right hand sides of these equations are positive, it is readily seen that the
electric polarizability for PEC bodies in vacuum is positive, whereas the magnetic
polarizability is negative. It is also seen that the amplitude of the polarizability
in each case is always larger than the volume of the PEC body. When embedding
PEC bodies in a magnetic material, there is an interplay where the PEC properties
promote negative polarizability, whereas the material properties promote positive
polarizability if ¹ ¸ ¹ 0. A precise example is given by a PEC sphere of radiusa,
surrounded by a spherical layer with isotropic permeability¹ and outer radiusb. It
can be shown that the total magnetic polarizability of this structure is zero if

³ a
b

´ 3
=

2(¹=¹ 0 ¡ 1)
2¹=¹ 0 + 1

= 1 ¡
3

2¹=¹ 0 + 1
(4.7)

If (a=b)3 is larger than this value, the polarizability is negative, and if it is smaller,
the polarizability is positive. In homogenization theory, inclusions with zero polar-
izability are called neutral [16, pp. 134�139], and are typically constructed from
layered spheres as this one.

5 Upper and lower bounds on the polarizabilities

Using the variational formulations, we can �nd upper and lower bounds for the
polarizabilities by inserting any set of admissible trial potentials('; F ; Ã;A ) in the
inequalities

¡ K e(F ; D 0) · ²0E 0 ¢° eE 0 · Je('; E 0) (5.1)

¡ K m(A ; B 0) · ¹ 0H 0 ¢° mH 0 · Jm(Ã;H 0) (5.2)

where the applied �elds are related byD 0 = ²0E 0 and B 0 = ¹ 0H 0. Using for
instance the �nite element method (FEM) for solving the �eld equations, we can
compute each functional and consider the numerical potentials as trial �elds. Each
set of numerical potentials(' num ; F num ; Ãnum ; A num ) can then be inserted in the
inequalities (5.1) and (5.2), which provides a strict error bound for the numerical
computation of the polarizabilities. A corresponding interpretation of variational
bounds in homogenization theory can be found in [5].

When there are no PEC bodies, the zero potentials are admissible in the inequal-
ities (5.1) and (5.2), implying

D 0 ¢
Z

(² ¡ 1
0 ¡ ² ¡ 1) dVD 0 · ²0E 0 ¢° eE 0 · E 0 ¢

Z
(² ¡ ² 0) dVE 0 (5.3)

B 0 ¢
Z

(¹ ¡ 1
0 ¡ ¹ ¡ 1) dVB 0 · ¹ 0H 0 ¢° mH 0 · H 0 ¢

Z
(¹ ¡ ¹ 0) dVH 0 (5.4)

This states that the polarizabilities are bounded by the harmonic and arithmetic
mean of the material parameters. In homogenization theory, this is known as the
Wiener bounds [25].
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From the monotonicity results in the previous section, it can be concluded that
if we have a set of PEC regions included in each other,­ 0 µ ­ µ ­ 00, then we have

° 0
e · ° e · ° 00

e (5.5)

¡ ° 0
m · ¡ ° m · ¡ ° 00

m (5.6)

if the material parameters² (x ) and ¹ (x ) are identical in each case. If the polar-
izability can be computed for the regions­ 0 and ­ 00, this leads to bounds for the
unprimed polarizability. For instance, for PEC spheres in vacuum, it is easy to show
that

° e = 4¼a3I = 3VI ; ° m = ¡ 2¼a3I = ¡
3
2

VI (5.7)

whereV is the volume of the sphere. For an arbitrary PEC region­ in vacuum, we
can then formulate the bounds [18]

3V 0I · ° e · 3V 00I (5.8)

3V 0=2I · ¡ ° m · 3V 00=2I (5.9)

where V 0 is the volume of the largest sphere contained in the body, andV 00is the
volume of the smallest sphere containing the body. This result can be generalized
to shapes like ellipsoids.

6 Numerical example

To demonstrate the upper and lower bounds provided by the variational principles,
we consider the case of a PEC sphere in vacuum. For an axially symmetric structure,
we can reduce the problem to two dimensions using cylindrical coordinates. In
this case, the vector potentials are reduced to a singleÁ-component. The scalar
and vector potentials satisfy theÁ-independent Laplace equation with associated
boundary conditions (assuming all exciting �elds are directed along thez-direction)

1
r c

@
@rc

µ
r c

@'
@rc

¶
+

@2'
@z2

= 0; ' = E0z (6.1)

1
r c

@
@rc

µ
r c

@FÁ
@rc

¶
+

@2FÁ

@z2
= 0; n̂ ¢

·
r̂ c

1
r c

@(r cFÁ)
@rc

+ ẑ
@FÁ
@z

¸
= ¡ D0n̂ ¢ẑ (6.2)

1
r c

@
@rc

µ
r c

@Ã
@rc

¶
+

@2Ã
@z2

= 0; n̂ ¢
·
r̂ c

@Ã
@rc

+ ẑ
@Ã
@z

¸
= H0n̂ ¢ẑ (6.3)

1
r c

@
@rc

µ
r c

@AÁ
@rc

¶
+

@2AÁ

@z2
= 0; AÁ = ¡

1
2

B0r c (6.4)

These equations are easily solved using software like Comsol Multiphysics, and we
can compute the functionalsJe, K e, Jm, and K m using di�erent discretizations. Each
of these computations provides a new bound for the polarizabilities, and in Figure 2
we show how the bounds become progressively narrower as the discretization is made
�ner. The bounds are leveling out after just a few re�nements of the grid. With
the simple procedure of only re�ning the discretization, we conclude that we cannot
expect more than about three digits accuracy using this program.
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Figure 2 : Demonstration of how numerical computations of the functionals pro-
vide bounds for° e and ° m. Solid lines are for the electric case (normalized to° e),
and dashed lines are for the magnetic case (normalized to° m). The x scale corre-
sponds to the discretization used. The data points are for a PEC sphere descretized
with 294, 665, 2660, 10640, and 42560 elements in a 2D axial symmetric geometry.
The calculations are made with the commercial software Comsol Multiphysics 3.4
(http://www.comsol.com).

7 Conclusions

We have derived four variational principles from which the electric and magnetic
polarizabilities can be computed or estimated. The polarizabilities are characterized
as minimas and maximas of these functionals, providing strict error bounds when
applying numerical methods to compute the polarizabilities. Similar functionals
have been presented before, but this paper seems to be the �rst to give a uni�ed
presentation of anisotropic permittivity and permeability in combination with PEC
inclusions.

The variational principles display important similarities and di�erences between
electric and magnetic �elds. If there are no PEC bodies present, there is a direct
analogy between the functionals for the electric and magnetic case, making them
formally identical to each other. However, when a PEC body is introduced, the �elds
satisfy di�erent boundary conditions on the PEC surface, which leads to di�erent
variational principles for the electric and magnetic case, respectively. Speci�cally,
the magnetic polarizability of a PEC body is negative, whereas the electric polariz-
ability is positive. It is observed that in the electric case the boundary conditions
are most easily expressed using a scalar potential, whereas the vector potential is
most convenient in the magnetic case.
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Appendix A Derivation of variational formulations
for the polarizabilities

In this Appendix we derive the variational formulations for the polarizabilities. The
electric and magnetic dipole moments are de�ned as

p =
Z

(² ¡ ² 0)E dV +
I

@­
x n̂ ¢D dS = pmtrl + ppec (A.1)

m =
Z

(¹ ¡ 1
0 ¡ ¹ ¡ 1)B dV +

1
2

I

@­
x £ (n̂ £ H ) dS = m mtrl + m pec (A.2)

where E , D , B , and H are the solutions to Maxwell's equations. We make use
of the following integral identities, where­ is a simply connected volume,̂n is the
normal vector pointing out of ­ , and Ã and F are arbitrary functions.

I

@­
n̂x dS = V­ I (A.3)

I

@­
n̂ ¢x dS = 3V­ (A.4)

I

@­
n̂ Ã dS = ¡

1
2

I

@­
x £ (n̂ £ r Ã) dS (A.5)

I

@­
n̂ £ F dS =

I

@­
x n̂ ¢(r £ F ) dS (A.6)

The two �rst are easily proven.
I

@­
n̂x dS =

Z

­
r x dV =

Z

­
I dV = V­ I (A.7)

I

@­
n̂ ¢x dS =

Z

­
r ¢ x dV =

Z

­
3 dV = 3V­ (A.8)

The third is proven in [14], and using a similar trick to that paper we show the
identity

(x n̂ ¢(r £ F )) i = x i n̂ ¢(r £ F ) = n̂ ¢(x i r £ F ) = n̂ ¢(r £ (x i F ) ¡ r x i £ F )

= n̂ ¢(r £ (x i F ) ¡ n̂ ¢(x̂ i £ F ) = n̂ ¢(r £ (x i F ) + x̂ i ¢(n̂ £ F ) (A.9)

Since
H

@­ n̂ ¢(r £ (x i F )) dS = ¡
R

r ¢ (r £ (x i F )) dV = 0, the fourth integral
identity follows.

A.1 Electric case, scalar potential

We start by looking at the �eld equations for the electric polarizability. The �eld
equation r £ E = 0 implies E = E 0 ¡ r ' , and the equationr ¢ D = 0 is then

r ¢ [² (E 0 ¡ r ' )] = 0 (A.10)
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Assume there is one metallic inclusion with domain­ . The potential then satis�es

' = E 0 ¢x + a on @­ (A.11)

where the constanta is such that the potential ' is continuous and the total charge
on the inclusion is zero,i.e.,

I

@­
n̂ ¢² (E 0 ¡ r ' ) dS = 0 (A.12)

This can easily be generalized to several inclusions. Multiply the �eld equation by
' and integrate to �nd

0 =
Z

' r¢ [² (E 0 ¡ r ' )] dV =
Z

r ' ¢² (¡ E 0 + r ' ) dV +
I

@­
n̂ ¢' ² (¡ E 0 + r ' ) dS

(A.13)
The last integral can be rewritten using the boundary condition

I

@­
n̂ ¢' ² (¡ E 0 + r ' ) dS =

I

@­
(E 0 ¢x + a)n̂ ¢² (¡ E 0 + r ' ) dS

= E 0 ¢
I

@­
x n̂ ¢² (¡ E 0 + r ' ) dS (A.14)

To include the e�ect of the polarization from the material, we rewrite the �rst
integral in A.13 as

Z
r ' ¢² (¡ E 0+ r ' ) dV =

Z
r ' ¢² r ' dV ¡

Z
r ' ¢(² ¡ ² 0)E 0 dV¡

Z
r ' ¢² 0E 0 dV

=
Z

r ' ¢² r ' dV ¡ 2
Z

r ' ¢(² ¡ ² 0)E 0 dV +
Z

(¡ E 0 + r ' ) ¢(² ¡ ² 0)E 0 dV

+
Z

E 0 ¢(² ¡ ² 0)E 0 dV ¡
Z

r ' ¢² 0E 0 dV (A.15)

The last integral can be written

¡
Z

r ' dV =
I

@­
n̂ ' dS =

I

@­
n̂x dS ¢E 0 = V­ E 0 (A.16)

where we used (A.3). Collecting our results, we can write (A.13) as

0 =
Z

r ' ¢² r ' dV ¡ 2
Z

r ' ¢(² ¡ ² 0)E 0 dV + E 0 ¢
· Z

(² ¡ ² 0) dV + ² 0V­

¸
¢E 0

¡ E 0 ¢
· Z

(² ¡ ² 0)(E 0 ¡ r ' ) dV +
I

@­
x n̂ ¢² (E 0 ¡ r ' ) dS

¸
(A.17)

The expression in the last row in square brackets is identi�ed as the total dipole
moment p. De�ne the following functional

Je('; E 0) =
Z

r ' ¢² r ' dV ¡ 2
Z

r ' ¢(² ¡ ² 0)E 0 dV

+ E 0 ¢
· Z

(² ¡ ² 0) dV + V­ ² 0

¸
¢E 0 (A.18)
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Note that the expression in square brackets does not depend on' . For a �xed E 0

this functional is minimized by a function ' 0 (in the space of potentials satisfying
the proper boundary conditions), such that its minimal value is

min
'

Je('; E 0) = Je(' 0; E 0) = E 0 ¢p (A.19)

Consider now the variation of the functional at the minimum' 0:

1
2

±Je;s =
Je;s(' 0 + ±'; E 0) ¡ Je;s(' 0; E 0)

2
=

Z
r ±' ¢² r ' 0 dV¡

Z
r ±' ¢(² ¡ ² 0)E 0 dV

=
Z

±' r ¢ [² (E 0 ¡ r ' 0)] dV +
I

@­
n̂ ¢±' ² (E 0 ¡ r ' 0) dS ¡

I

@­
±' n̂ ¢(² 0E 0) dS

(A.20)

The last two integrals are identically zero since the variation±' must be zero on
the PEC surface in order to comply with the boundary condition. Since the �rst
variation of the functional should vanish at the extremum for all±' , the minimizing
potential must satisfy r ¢ [² (E 0 ¡ r ' 0)] = 0 , i.e., the electrostatic equation.

We �nally consider the di�erence between two functionals for di�erent geome-
tries, primed and unprimed. We start by rewriting the functional as

Je('; E 0) =
Z

R3n­
r ' ¢² r ' dV ¡ 2

Z

R3n­
r ' ¢(² ¡ ² 0)E 0 dV

+ E 0 ¢
· Z

R3n­
(² ¡ ² 0) dV + V­ ² 0

¸
E 0 =

Z

R3n­
(E 0 ¡ r ' ) ¢² (E 0 ¡ r ' ) dV

+ 2
Z

R3n­
r ' ¢² 0E 0 dV + ²0jE 0j2

·
¡

Z

R3n­
dV + V­

¸

=
Z

R3n­
(E 0 ¡ r ' ) ¢² (E 0 ¡ r ' ) dV + ²0jE 0j2

·
¡

Z

R3n­
dV ¡ V­

¸
(A.21)

where we used that
R

R3n­ r ' dV = ¡ V­ E 0, as shown previously. Even though
this expression involves in�nite integrals, they are cancelled when looking at the
di�erence between two functionals. Assume the PEC bodies are in regions­ and
­ 0. We then have

Je('; E 0) ¡ J 0
e('

0; E 0) =
Z

R3n­
(E 0 ¡ r ' ) ¢² (E 0 ¡ r ' ) dV

¡
Z

R3n­ 0
(E 0 ¡ r ' 0) ¢² 0(E 0 ¡ r ' 0) dV (A.22)

A.2 Magnetic case, vector potential

The magnetic case is dual to the electric case. On the PEC boundary the condition
n̂ ¢B = 0 applies, and the �eld equationr ¢ B = 0 implies B = B 0 + r £ A . The
�eld equation r £ H = 0 then becomes

r £ [¹ ¡ 1(B 0 + r £ A )] = 0 (A.23)
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The boundary condition n̂ ¢B = n̂ ¢(B 0 + r £ A ) = 0 implies that the tangential
part of the vector potential satis�es

n̂ £ A = n̂ £
µ

1
2

x £ B 0 + a
¶

on @­ (A.24)

wherea is a constant vector. It is readily veri�ed that r£ ( 1
2x £ B 0) = ¡ B 0. Note

that only the tangential part of A is speci�ed, making only the normal component of
r£ A being prescribed. The tangential part ofr£ A corresponds to the tangential
magnetic �eld, which is proportional to the resulting surface current.

The condition corresponding to zero total charge in the electric case, is that the
total surface current on the PEC surface must be zero,i.e.,

I

@­
n̂ £ [¹ ¡ 1(B 0 + r £ A )] dS = 0 (A.25)

Following the recipe from the electric case, we multiply the �eld equation withA
and integrate to �nd

0 =
Z

A ¢ r £ [¹ ¡ 1(B 0 + r £ A )] dV =
Z

(r £ A ) ¢¹ ¡ 1(B 0 + r £ A ) dV

+
I

@­
n̂ ¢[A £ ¹ ¡ 1(B 0 + r £ A )] dS (A.26)

where we used the identity (here,̂n is the outward unit normal for the volumeV,
whereas the unit normal above is pointinginto the domain of integration)
I

@V
n̂ ¢(A £ B ) dS =

Z

V
r¢ (A £ B ) dV =

Z

V
[B ¢(r£ A ) ¡ A ¢(r£ B )] dV (A.27)

for arbitrary vector �elds A and B . The surface integral in (A.26) can be written
(due to the occurrence of the unit normal̂n only the tangential components ofA are
needed in the evaluation of the integral, in compliance with the boundary condition)

I

@­
n̂ ¢[A £ ¹ ¡ 1(B 0 + r£ A )] dS =

I

@­
n̂ ¢[(

1
2

x £ B 0 + a) £ ¹ ¡ 1(B 0 + r£ A )] dS

= ¡
1
2

I

@­
(x £ B 0) ¢[n̂ £ ¹ ¡ 1(B 0 + r £ A )] dS

= B 0 ¢
1
2

I

@­
x £ [n̂ £ ¹ ¡ 1(B 0 + r £ A )] dS (A.28)

The integral containing the constanta is zero due to the zero total current require-
ment. The �rst integral in (A.26) is

0 =
Z

(r £ A ) ¢¹ ¡ 1(B 0 + r £ A ) dV =
Z

(r £ A ) ¢¹ ¡ 1r £ A dV

+
Z

(r £ A ) ¢(¹ ¡ 1 ¡ ¹ ¡ 1
0 )B 0 dV +

Z
(r £ A ) ¢¹ ¡ 1

0 B 0 dV (A.29)
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By adding and subtracting the second integral can be written

Z
(r £ A ) ¢(¹ ¡ 1 ¡ ¹ ¡ 1

0 )B 0 dV = 2
Z

(r £ A ) ¢(¹ ¡ 1 ¡ ¹ ¡ 1
0 )B 0 dV

¡
Z

(B 0 + r £ A ) ¢(¹ ¡ 1 ¡ ¹ ¡ 1
0 )B 0 dV +

Z
B 0 ¢(¹ ¡ 1 ¡ ¹ ¡ 1

0 )B 0 dV (A.30)

whereas the last integral can be written

Z
(r £ A ) ¢¹ ¡ 1

0 B 0 dV =
Z

r £ A dV ¢¹ ¡ 1
0 B 0 = ¡

I

@­
n̂ £ A dS ¢¹ ¡ 1

0 B 0

= ¡
I

@­
n̂ £ (

1
2

x £ B 0 + a) dS¢¹ ¡ 1
0 B 0 = ¡

1
2

I

@­
[x (n̂ ¢B 0) ¡ B 0(n̂ ¢x )] dS¢¹ ¡ 1

0 B 0

= B 0 ¢
1
2

I

@­
[(n̂ ¢x )I ¡ n̂x ] dS ¢¹ ¡ 1

0 B 0 = B 0 ¢
1
2

(3V­ ¡ V­ )¹ ¡ 1
0 B 0

= V­ B 0 ¢¹ ¡ 1
0 B 0 (A.31)

where we used (A.3) and (A.4) in the last but one line. The integral containing
the constant vectora is zero since it is proportional to the integral

H
@­ n̂ dS = 0.

Collecting the results for the terms in (A.26) we have

0 =
Z

(r £ A ) ¢¹ ¡ 1r £ A dV + 2
Z

(r £ A ) ¢(¹ ¡ 1 ¡ ¹ ¡ 1
0 )B 0 dV

+
Z

B 0 ¢(¹ ¡ 1 ¡ ¹ ¡ 1
0 )B 0 dV + B 0 ¢V­ ¹ ¡ 1

0 B 0

+ B 0¢
·
¡

Z
(¹ ¡ 1 ¡ ¹ ¡ 1

0 )(B 0 + r £ A ) dV +
1
2

I

@­
x £ [n̂ £ ¹ ¡ 1(B 0 + r £ A )] dS

¸

(A.32)

The expression in square brackets is the total magnetic dipole moment for the struc-
ture, m . De�ne the following functional

K m(A ; B 0) =
Z

(r £ A ) ¢¹ ¡ 1r £ A dV ¡ 2
Z

(r £ A ) ¢(¹ ¡ 1
0 ¡ ¹ ¡ 1)B 0 dV

B 0 ¢
·
¡

Z
(¹ ¡ 1

0 ¡ ¹ ¡ 1) dV + V­ ¹ ¡ 1
0

¸
B 0 (A.33)

Note that the expression in square brackets does not depend onA . For a �xed
B 0 this functional is minimized by a vector potential A 0 (in the space of vector
potentials satisfying the proper boundary conditions), such that its minimal value
is

min
A

K m(A ; B 0) = K m(A 0; B 0) = ¡ B 0 ¢m (A.34)

The symmetry with the electric case is interesting, but also the di�erence: in the
electric case the minimum was attained asE 0 ¢p, whereas in the magnetic case it
is the negative,¡ B 0 ¢m .



14

Consider now the variation of the functional at the minimum:

1
2

±Km =
K m(A 0 + ±A ; B 0) ¡ K m(A 0; B 0)

2
=

Z
(r £ ±A ) ¢¹ ¡ 1r £ A 0 dV

¡
Z

(r £ ±A ) ¢(¹ ¡ 1
0 ¡ ¹ 1)B 0 dV =

Z
±A ¢(r £ [¹ ¡ 1(B 0 + r £ A 0)] dV

¡
I

@­
n̂ ¢(±A £ ¹ ¡ 1(B 0 + r £ A 0) dS +

I

@­
n̂ ¢(±A £ ¹ ¡ 1

0 B 0) dS (A.35)

The last two integrals are identically zero since the variation of the tangential part
of ±A must be zero on the PEC surface in order to comply with the boundary
condition. Since the �rst variation of the functional should vanish at the extremum
for all ±A , the minimizing potential must satisfy r £ [¹ ¡ 1(B 0 + r £ A 0)] = 0, i.e.,
the magnetostatic equation.

We �nally consider the di�erence between two functionals. Rewriting the func-
tional as

K m(A ; B 0) =
Z

R3n­
(r £ A ) ¢¹ ¡ 1r £ A dV ¡ 2

Z

R3n­
(r £ A ) ¢(¹ ¡ 1

0 ¡ ¹ ¡ 1)B 0 dV

B 0 ¢
·
¡

Z

R3n­
(¹ ¡ 1

0 ¡ ¹ ¡ 1) dV + V­ ¹ ¡ 1
0

¸
B 0

=
Z

R3n­
(B 0 + r £ A ) ¢¹ ¡ 1(B 0 + r £ A ) dV ¡ 2

Z

R3n­
r £ A dV¹ ¡ 1

0 B 0

+ ¹ ¡ 1
0 jB 0j2

·
¡

Z

R3n­
dV + V­

¸
=

Z

R3n­
(B 0 + r £ A ) ¢¹ ¡ 1(B 0 + r £ A ) dV

+ ¹ ¡ 1
0 jB 0j2

·
¡

Z

R3n­
dV ¡ V­

¸
(A.36)

where we used that
R

R3n­ r £ A dV = V­ B 0, as shown previously. The di�erence
between two functionals can now be written

K m(A ; B 0) ¡ K 0
m(A 0; B 0) =

Z

R3n­
(B 0 + r £ A ) ¢¹ ¡ 1(B 0 + r £ A ) dV

¡
Z

R3n­ 0
(B 0 + r £ A 0) ¢(¹ 0)¡ 1(B 0 + r £ A 0) dV (A.37)

A.3 Electric case, vector potential

In the electric case, the scalar potential �ts nicely with the boundary condition on
PEC surfaces. We now investigate what can be learned from treating the electric
case with a vector potential. The equationr¢ D = 0 implies that D = D 0 + r£ F ,
and we have the �eld equation

r £ [² ¡ 1(D 0 + r £ F )] = 0 (A.38)
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with boundary condition

n̂ £ ² ¡ 1(D 0 + r £ F ) = 0 (A.39)

The zero total charge condition is
I

@­
n̂ ¢(D 0 + r £ F ) dS = 0 (A.40)

Multiplying the �eld equation with F and integrating implies

0 =
Z

F ¢ r £ [² ¡ 1(D 0 + r £ F )] dV =
Z

(r £ F ) ¢² ¡ 1(D 0 + r £ F ) dV

+
I

@­
n̂ ¢[F £ ² ¡ 1(D 0 + r £ F )] dS (A.41)

The last integral is zero due to the boundary conditions. We then have

0 =
Z

(r£ F )¢² ¡ 1r£ F ) dV +
Z

(r£ F )¢² ¡ 1D 0 dV =
Z

(r£ F )¢² ¡ 1r£ F ) dV

+
Z

(r £ F ) ¢(² ¡ 1 ¡ ² ¡ 1
0 )D 0 dV +

Z
(r £ F ) ¢² ¡ 1

0 D 0 dV (A.42)

The last but one integral can be written
Z

(r £ F ) ¢(² ¡ 1 ¡ ² ¡ 1
0 )D 0 dV = 2

Z
(r £ F ) ¢(² ¡ 1 ¡ ² ¡ 1

0 )D 0 dV

¡
Z

(D 0 + r £ F ) ¢(² ¡ 1 ¡ ² ¡ 1
0 )D 0 dV + D 0 ¢

Z
(² ¡ 1 ¡ ² ¡ 1

0 )D 0 dV (A.43)

whereas the last integral is
Z

(r £ F ) ¢² ¡ 1
0 D 0 dV = ¡

I

@­
n̂ £ F dS ¢² ¡ 1

0 D 0 (A.44)

Using (A.6), this integral is transformed to

¡
I

@­
n̂ £ F dS = ¡

I

@­
x n̂ ¢(r £ F ) dS =

I

@­
x n̂ ¢(D 0 ¡ D 0 ¡ r £ F ) dS

=
I

@­
x n̂ dS ¢D 0 ¡

I

@­
x n̂ ¢(D 0 + r £ F ) dS = V­ D 0 ¡ ppec (A.45)

Collecting the results, we have

0 =
Z

(r £ F ) ¢² ¡ 1r £ F ) dV + 2
Z

(r £ F ) ¢(² ¡ 1 ¡ ² ¡ 1
0 )D 0 dV

+ D 0 ¢
Z

(² ¡ 1 ¡ ² ¡ 1
0 )D 0 dV + V­ D 0 ¢² ¡ 1

0 D 0

¡
Z

(D 0 + r £ F ) ¢(² ¡ 1 ¡ ² ¡ 1
0 )D 0 dV ¡ D 0 ¢² ¡ 1

0 ppec (A.46)
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By adding and subtracting 2ppec, we can identify the total electric dipole moment
pmtrl + ppec. The functional

K e(F ; D 0) =
Z

(r £ F ) ¢² ¡ 1r £ F ) dV ¡ 2
Z

(r £ F ) ¢(² ¡ 1
0 ¡ ² ¡ 1)D 0 dV

¡ 2D 0 ¢² ¡ 1
0 ppec + D 0 ¢

·
¡

Z
(² ¡ 1

0 ¡ ² ¡ 1) dV + V­ ² ¡ 1
0

¸
¢D 0 (A.47)

then has minimum

min
F

K e(F ; D 0) = K e(F 0; D 0)

= ¡ D 0 ¢

" Z
(² ¡ 1

0 ¡ ² ¡ 1)(D 0 + r £ F 0) dV +
I

@­
x n̂ ¢(D 0 + r £ F 0) dS

#

= ¡ D 0 ¢² ¡ 1
0 p (A.48)

The necessity of adding and subtracting the termD 0 ¢² ¡ 1
0 ppec appears when con-

sidering the variation of the functional at the minimum:

1
2

±Ke =
K e(F 0 + ±F ; D 0) ¡ K e(F 0; D 0)

2
=

Z
(r £ ±F ) ¢² ¡ 1r £ F 0 dV

¡
Z

(r £ ±F ) ¢(² ¡ 1
0 ¡ ² ¡ 1)D 0 dV ¡ D 0 ¢² ¡ 1

0

I

@­
x n̂ ¢(r £ ±F ) dS

=
Z

±F ¢(r £ (² ¡ 1(D 0 + r £ F 0))) dV +
I

@­
n̂ ¢(±F £ ² ¡ 1(D 0 + r £ F 0)) dS

¡
Z

±F ¢(r £ ² ¡ 1
0 D 0) dV +

I

@­
n̂ ¢(±F £ ² ¡ 1

0 D 0) dS ¡
I

@­
n̂ £ ±F dS ¢² ¡ 1

0 D 0

(A.49)

The second integral is identically zero sincên £ ² ¡ 1(D 0 + r £ F ) = 0 on the PEC
boundary. The third is zero since² ¡ 1

0 D 0 is constant, and the last two integrals cancel
each other. The only integral remaining is the �rst one, and since we should have
±Ke = 0 for any ±F at the extremum, we see that the minimizing potential must
satisfy the equationr £ (² ¡ 1(D 0 + r £ F 0)) = 0, i.e., the electrostatic equation.

We �nally consider the di�erence between two functionals. We �rst rewrite the
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functional as

K e(F ; D 0) =
Z

R3n­
(r £ F ) ¢² ¡ 1r £ F ) dV ¡ 2

Z

R3n­
(r £ F ) ¢(² ¡ 1

0 ¡ ² ¡ 1)D 0 dV

¡ 2D 0 ¢² ¡ 1
0 ppec + D 0 ¢

·
¡

Z

R3n­
(² ¡ 1

0 ¡ ² ¡ 1) dV + V­ ² ¡ 1
0

¸
¢D 0

=
Z

R3n­
(D 0+ r£ F )¢² ¡ 1(D 0+ r£ F ) dV ¡ 2

Z

R3n­
r£ F dV² ¡ 1

0 D 0 ¡ 2D 0¢² ¡ 1
0 ppec

+ ²¡ 1
0 jD 0j2

·
¡

Z

R3n­
dV + V­

¸
=

Z

R3n­
(D 0 + r £ F ) ¢² ¡ 1(D 0 + r £ F ) dV

+ ²¡ 1
0 jD 0j2

·
¡

Z

R3n­
dV ¡ V­

¸
(A.50)

where we used that
R

R3n­ r £ F dV = V­ D 0 ¡ ppec, which was shown previously.
The di�erence between two functionals can then be written

K e(F ; D 0) ¡ K 0
e(F

0; D 0) =
Z

R3n­
(D 0 + r £ F ) ¢² ¡ 1(D 0 + r £ F ) dV

¡
Z

R3n­ 0
(D 0 + r £ F 0) ¢(² 0)¡ 1(D 0 + r £ F 0) dV (A.51)

A.4 Magnetic case, scalar potential

We now use the scalar potential for the magnetic case. To start with,r £ H = 0
implies H = H 0 ¡ r Ã. The remaining �eld equation r ¢ B = 0 is then

r ¢ [¹ (H 0 ¡ r Ã)] = 0 (A.52)

with the boundary condition n̂ ¢B = 0 on the PEC boundary being

n̂ ¢[¹ (H 0 ¡ r Ã)] = 0 (A.53)

Multiplying the �eld equation with Ã and integrating implies

0 =
Z

Ãr¢ [¹ (H 0¡r Ã)] =
Z

r Ã¢¹ (¡ H 0+ r Ã)] dV +
I

@­
n̂ ¢Ã¹ (¡ H 0+ r Ã) dS

=
Z

r Ã ¢¹ r Ã dV ¡
Z

r Ã ¢(¹ ¡ ¹ 0)H 0 dV ¡
Z

r Ã ¢¹ 0H 0 dV (A.54)

Proceeding along now familiar lines, we write

¡
Z

r Ã ¢(¹ ¡ ¹ 0)H 0 dV = ¡ 2
Z

r Ã ¢(¹ ¡ ¹ 0)H 0 dV

+
Z

(¡ H 0 + r Ã) ¢(¹ ¡ ¹ 0)H 0 dV + H 0 ¢
Z

(¹ ¡ ¹ 0) dV ¢H 0 (A.55)
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and

¡
Z

r Ã ¢¹ 0H 0 dV =
I

@­
n̂ Ã dS ¢¹ 0H 0 (A.56)

Using (A.5), we can write
I

@­
n̂ Ã dS =

I

@­
n̂ (Ã ¡ H 0 ¢x + H 0 ¢x ) dS

=
1
2

I

@­
x £ (n̂ £ (H 0 ¡ r Ã)) dS +

I

@­
n̂x dS ¢H 0 = m pec + V­ H 0 (A.57)

so that we have

0 =
Z

r Ã ¢¹ r Ã dV ¡ 2
Z

r Ã ¢(¹ ¡ ¹ 0)H 0 dV + H 0 ¢
Z

(¹ ¡ ¹ 0) dV ¢H 0

¡ H 0 ¢
Z

(¹ ¡ ¹ 0)(H 0 ¡ r Ã) dV + m pec ¢¹ 0H 0 + V­ H 0 ¢¹ 0H 0 (A.58)

As with the vector potential in the electric case, we add and subtract2H 0 ¢¹ 0m pec.
This suggests that the minimum of the functional

Jm(Ã;H 0) =
Z

r Ã ¢¹ r Ã dV ¡ 2
Z

r Ã ¢(¹ ¡ ¹ 0)H 0 dV + 2H 0 ¢¹ 0m pec

+ H 0 ¢
· Z

(¹ ¡ ¹ 0) dV + V­ ¹ 0

¸
H 0 (A.59)

is given by

min
Ã

Jm(Ã;H 0) = Jm(Ã0; H 0)

= H 0 ¢

" Z
(¹ ¡ ¹ 0)(H 0 ¡ r Ã0) dV + ¹ 0

1
2

I

@­
x £ (n̂ £ (H 0 ¡ r Ã0)) dS

#

= H 0 ¢¹ 0m (A.60)

The necessity of adding and subtracting2H 0 ¢¹ 0m pec is shown by considering the
variation of the functional at the minimum:

1
2

±Jm =
Jm(Ã0 + ±Ã;H 0) ¡ Jm(Ã0; H 0)

2
=

Z
r ±Ã¢¹ r Ã0 dV

¡
Z

r ±Ã¢(¹ ¡ ¹ 0)H 0 dV + H 0 ¢¹ 0
1
2

I

@­
x £ (n̂ £ (¡r ±Ã)) dS

=
Z

±Ãr ¢ (¹ (H 0 ¡ r Ã0)) dV ¡
I

@­
n̂ ¢(Ã¹ (H 0 ¡ r Ã0) dS

¡
Z

±Ãr ¢ (¹ 0H 0) dV ¡
I

@­
±Ãn̂ ¢¹ 0H 0 dS +

I

@­
n̂ ±ÃdS ¢¹ 0H 0 (A.61)

The second integral is zero sincên ¢¹ (H 0 ¡ r Ã0) = 0 on the PEC boundary. The
third integral is zero since¹ 0H 0 is constant, and the two last integrals cancel each
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other. This leaves onle the �rst integral, and since the �rst variation of the functional
should be zero at the extremum, the potential must satisfyr ¢ (¹ (H 0 ¡ r Ã0)) = 0 ,
i.e., the magnetostatic equation.

Finally, we study the di�erence between two functionals. We start by rewriting
the functional as

Jm(Ã;H 0) =
Z

R3n­
r Ã ¢¹ r Ã dV ¡ 2

Z

R3n­
r Ã ¢(¹ ¡ ¹ 0)H 0 dV + 2H 0 ¢¹ 0m pec

+ H 0 ¢
· Z

R3n­
(¹ ¡ ¹ 0) dV + V­ ¹ 0

¸
H 0 =

Z

R3n­
(H 0 ¡ r Ã) ¢¹ (H 0 ¡ r Ã) dV

+ 2
Z

R3n­
r Ã dV¹ 0H 0 + 2H 0 ¢m pec + ¹ 0jH 0j2

·
¡

Z

R3n­
dV + V­

¸

=
Z

R3n­
(H 0 ¡ r Ã) ¢¹ (H 0 ¡ r Ã) dV + ¹ 0jH 0j2

·
¡

Z

R3n­
dV ¡ V­

¸
(A.62)

where we used that
R

R3n­ r Ã dV = ¡ m pec ¡ V­ H 0, as was shown previously. The
di�erence between two functionals can then be written

Jm(Ã;H 0) ¡ J 0
m(Ã0; H 0) =

Z

R3n­
(H 0 ¡ r Ã) ¢¹ (H 0 ¡ r Ã) dV

¡
Z

R3n­ 0
(H 0 ¡ r Ã0) ¢¹ 0(H 0 ¡ r Ã0) dV (A.63)
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