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Abstract - In today’s highly competitive 
market place it is of great importance for 
companies to deliver reliable products while 
decreasing the development time and costs. 
The time to market is a driving force for 
many companies, and throughout the 
engineering design process as well as the 
manufacturing process, the focus is on 
finding timesaving actions. However, the 
search for timesaving actions will most 
certainly result in a loss in product reliability 
if it is not combined with improved 
techniques and tools used by members of 
the engineering design team in order to 
maintain an acceptable level of reliability.  
One of the areas within engineering design 
that is adopting new techniques and 
methodologies is the design analysis 
activity that has conventionally been 
performed by specialists, but has to some 
extent shifted to also be performed, where 
applicable, by design engineers. Further, 
design analysis has traditionally been 
utilized as a verification tool at the latter 
engineering design phases and also for 
failure mode analysis with the objective to 
investigate failed designs or produce results 
about whether or not it will withstand 
applied loading conditions. Today both the 
research community and industry perceive 
the value added when design analysis is 
used in early engineering design phases to 
predict the performance of the product to be.  
Statistically planned and Stochastic 
(alternatively called in literature 
probabilistic) Finite Element Analysis (FEA) 
are addressed frequently in this area of 
research, and different mathematical 
methodologies have been discussed to 
provide this value-added information within 
design analysis. Fractional factorial 
designed experiments, Response Surface 
Methodologies (RSM) and Monte Carlo 
Simulations (MCS) are among the most 

commonly discussed approaches. One of 
the vital issues here is the shift from the 
deterministic design analysis approach, in 
which accounting for variations is done 
through safety factors that are overly 
conservative, to a Statistical or Stochastic 
design analysis approach where variables 
are defined in terms of their characteristics: 
the nature of the distribution of values, a 
typical value, and also, in stochastic 
approaches, a measure of the variability.  
A presentation of Predictive Design Analysis 
(PDA) is made in this paper, which 
incorporates Statistical and Stochastic 
approaches to perform design analysis at 
different phases of the engineering design 
process. The PDA methodology addresses 
abounding uncertainties i.e. material 
properties, magnitude and direction of 
loading, part geometry as well as the issues 
regarding sensitivity to variables acting on 
the product in service, all of which result in 
performance that is considerably different 
from the ideal. 

INTRODUCTION 
 
In this paper the foundation for PDA is 
established. PDA was originally proposed by 
Bjärnemo and Burman [1] as a concept for 
handling the uncertainties accompanying the 
design of a product – from the establishment of 
the market need until the materialization of a 
complete physical prototype, incorporating all of 
the expected functions of the product. In the 
origination of the concept of PDA, methods and 
techniques for handling the uncertainties 
throughout the engineering design process was 
just briefly elaborated upon. However, the use 
of PDA in the conceptual design phase has 
been covered to some extend in Eriksson [2]. In 
the present engineering design methodologies 
the importance and relevance of different 



functions within the engineering design process 
are frequently discussed within both academia 
and industry. There exist many general 
methodologies on the subject and also, in 
practice, most companies have a modified “in 
house” methodology that is adapted to their 
special needs. One common denominator, in 
these methodologies, however, is that of 
designing a product that satisfies a number of 
needs and demands on the product. 
Furthermore, most of the current methodologies 
discuss the design of products in the context of 
concurrent, integrated or simultaneous design, 
which means that the activities are more or less 
to be performed concurrently in order to 
increase the efficiency in the overall 
development process. Functions within the 
development process are among others 
manufacturing, marketing as well as industrial 
and engineering design.  
Most methodologies begin by the product-
planning phase where the selection, “portfolio”, 
of products to be developed is planned; see e.g. 
Ulrich and Eppinger [3]. The next activity in the 
engineering design process is the conceptual 
design phase, in which the generation of 
concepts that fulfill the criteria are identified 
through evaluation and decision-making, 
resulting in the most promising conceptual 
solutions. 
In an intermediate phase, this concept is 
designed further, which is referred to e.g. by 
Pahl and Beitz [4] as embodiment design and 
by Ulrich and Eppinger [3] as system-level 
design. Note that these phases are just 
approximately identical. The objective for this 
phase is to design product candidates to a level 
of abstraction where detail designing is 
worthwhile. The detail design phase is where 
the engineering design is finalized in terms of 
e.g. geometry, material and tolerances. 
The phases of the engineering design process 
that will be discussed in this paper is: 

•  Conceptual design 
•  Embodiment design 
•  Detail design  

Another topic that is important to address when 
designing products is the nature of the products 
to be designed. Pahl and Beitz [4] mention three 
types of product designs: 
Novelty: New solution principles are introduced 
either by selecting and combining known 
principles and technologies, or by inventing new 
technology. 
Adaptive design: One keeps to known solution 
principles and adapts the embodiment to 
changed requirements. 
Variant design: the sizes and arrangements of 
parts and assemblies are varied within certain 
previously defined product structures. 

Ulrich and Eppinger [3] presents a similar 
categorization: 
New Platforms: Creation of new family of 
products based on a new, common platform. 
Derivatives: The products are an extension of 
an existing product platform.  
Improvements: Products that are based on 
modified features on existing products. 
Fundamentally New: Products that are based 
on different product and production 
technologies. 
It is obvious that the procedures within the 
design process are quite different depending on 
what type of product is to be designed. Thus the 
number of design process activities utilized 
differs among different industries and also from 
project to project within a company. 

OBJECTIVE 
 
In the present paper the different statistical and 
stochastic mathematical procedures utilized 
within PDA is elaborated on. A generalized 
methodology for the utilization of these 
combined techniques is discussed and 
exemplified. The mechanical engineering design 
process, or design process for short, and Finite 
Element Analysis (FEA) are selected to 
exemplify the engineering design process and 
the design analysis techniques respectively. 
The general objective is to present the design 
analysts and/or design engineer with some 
general guidelines on how and when to employ 
different statistical or stochastic techniques, 
within PDA, to extract the appropriate amount of 
information at different levels of concretization 
of a product to be. The word design will occur in 
terms of both engineering design, design 
analysis and also in the term of statistical design 
of experiments, where it refers to the order in 
which experiments are performed.  

DESIGN ANALYSIS WITHIN THE 
DESIGN PROCESS 

 
Design analysis could be seen as analyses and 
simulations performed on computers that result 
in some quantitative or qualitative information 
(data/indication) of the product to be, which 
could be performed throughout the entire design 
process. A vast variety of techniques and 
softwares based on mathematical formulations 
exist and the mathematical method chosen to 
exemplify design analysis, in this paper, is the 
Finite Element (FE) Method (FEM); see e.g. 
Zienkiewizc [5]. FEM is selected because it is 
the most commonly used method in both 
industry and in the research community to 
perform analyses in “problem areas “ such as 



analyses of multibody systems (MBS), structural 
analyses, thermal analyses, electrical analyses, 
magnetic analyses and computational fluid 
dynamics (CFD).  
FEM is commonly used as a tool by engineering 
analysts and engineering designers to verify 
whether a product’s design can withstand the 
loading and environment to which it is 
subjected. Further, the method can be applied 
in both single deterministic static analyses, 
where the general overall behaviour is studied 
along with stresses and displacement, as well 
as in complicated optimization problems, where 
the goal is to find the most suitable design for 
the given premises. Approaches where FEM is 
treated as an engineering design tool and not 
exclusively as verification tool that could be 
integrated with most methodologies to the 
design process have been addressed more 
frequently in recent years.  
When performing design analysis, a number of 
uncertainties concerning physics and numerical 
simulation techniques have to be considered. In 
general terms the analyses are often referred to 
some level of complexity that relates to 
dependency of a response on different variables 
and uncertainties. Marczyk [6], among others, 
has summarized these uncertainties into a few 
categories, which are listed below, with some 
different examples in comparison with the 
original text. 
1 Loads (static, dynamic, impacts, etc.) 
2 Boundary and initial conditions (stiffness of  
     support, velocities, etc.) 
3 Material properties (stress-strain data,  
  density, imperfections, etc.) 
4 Geometry (shape, assembly tolerances, etc.)  
5 Modeling uncertainty (level of abstraction, 
    lack of knowledge, etc.) 
6 Mathematical uncertainty (accuracy of the  
    model) 
7 Discretization error (discretization of  
    BCs, etc.) 
8 Programming errors in the code used 
9 Numerical solution errors (round off, etc.) 
 
The first four categories concern physics, and 
the other five categories deal with the numerical 
simulation, which is designed to mimic the 
physics. In most, if not all, design analysis 
performed the numerical simulation 
uncertainties are active, but of course 
probability for influence on the result will 
increase when more advanced FEM 
formulations are used.  
Thus, the level of accuracy of the response is 
highly dependent on the input data and the 
design analysis techniques used. Therefore the 
establishment of an adequate objective, 
relevant variable setting and correct response is 
as important as the execution of the analysis.  

STATISTICALLY PLANNED AND 
STOCHASTIC DESIGN ANALYSIS 

 
In terms of statistics the traditional ways of 
performing design analysis could be referred to 
as the one-factor-at-a-time approach or the 
“best guess” approach. The latter approach 
often works reasonably well due to the fact that 
the analysts often have a great deal of technical 
or theoretical knowledge of the system. 
However, there are obvious disadvantages to 
this approach. Consider the case where the 
initial best guess does not produce the desired 
results; then another “best guess” must be 
made, and this could, in the worst case, be 
repeated many times without any guarantee of 
satisfactory results. Secondly, what if the first 
best guess is acceptable? Should another 
analysis be performed, or should the initial 
variable configuration be accepted without 
knowing anything about the variability of the 
solution? 
In the one-factor-at-a-time approach, in which 
the analyses are performed by first selecting a 
starting point for each factor, then successively 
varying each factor over its range with the other 
factors held constant. This can be illustrated 
with Figure 1 where three variables A, B and C 
are studied. As can be seen, one factor at a 
time gives results at four corners of the design 
space. It is quite obvious that any interaction 
effects among the studied variables are 
neglected. 
 
 
 
 
 
 
 
 
Figure 1. The one-factor-at-a-time approach.  
 
A more scientific approach to the problem is to 
reason out all the factors that might affect the 
response and then perform a number of 
systematically planned analyses for these 
variables. In the context of statistics a variety of 
methods exist, and in the area of design 
analysis two approaches are commonly used. 
These methods are statistically planned 
experiments also referred to as Design of 
Experiments (DOE) and stochastic simulations, 
which will be outlined in the next two sections.  
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DESIGN OF EXPERIMENTS 
 
The primary objective of industrial DOE is to 
extract as much information as possible with a 
reasonable number of experiments. One of the 
basic ideas behind DOE methodologies is the 
assumption that lower order effects are more 
likely to be important, which is often called the 
Pareto effect. It is often concluded that for 
engineering problems the main effects and the 
two factor effects, which are the interaction 
between any two main effects, are the important 
effects; see e.g. Bisgaard [7]. 
The often-used experimental design layouts 
within industrial experimentation are: 2k-p 
designs (two-level), 3k-p designs (three-level), 
mixed designs (with 2, 3 and more level 
factors), Latin square designs, Taguchi 
methods, central composite designs (used 
mainly in the response surface method) and 
screening designs for large numbers of factors 
such as Placket Burman designs. Detail 
description of these designs can be found in 
standard textbooks such as Box et al. [8], 
Montgomery [9]. However, some short notes for 
the different design layouts will be presented for 
the completeness of the current paper. 
Factorial designs: The most intuitive approach 
to study the variables would be to vary the 
factors in a full factorial design, that is, to try all 
possible combinations of settings. Figure 2 
displays the design points, with a cube plot, for 
four variables A, B, C and D in 16 runs. 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Factorial design with four variables. 
 
The factorial approach can always be applied, 
but the downside is that the number of 
necessary runs (observations) in the experiment 
will increase dramatically with the number of 
variables. Whenever fewer experimental runs 
are requested in an experiment than would be 
required by the full factorial design, a "sacrifice" 
in interaction effects is required. The resulting 
design is no longer a full factorial but a 
fractional factorial.  
Furthermore, based on the Pareto effect, three-
factor and higher order interactions are usually 
not significant in engineering design 

applications. Therefore a fractional approach 
that allows the lower order effects to be 
estimated would be more economical. One such 
fractional design would be to take a half fraction 
of the design, e.g. half the number of 
experiments (8 runs), which is referred to as 

142 −
IV , where 4 denotes the number of variables 

and 2
112 =−  denotes the fraction. Table 1 

shows the design layout for a 142 −
IV , where each 

row is called a contrast that specifies the 
combination of settings for each run, and –1 
denotes the lower variable level and +1 the 
higher.  

Table 1. Design Layout for an 
142 −

IV  experiment. 
 Variables Resp

onse 
Interactions 

Run A B C D  AB ABC 
1 -1 -1 -1 -1 Y1 +1 -1 
2 +1 -1 -1 +1 Y2 -1 +1 
3 -1 +1 -1 +1 Y3 -1 +1 
4 +1 +1 -1 -1 Y4 +1 -1 
5 -1 -1 +1 +1 Y5 +1 +1 
6 +1 -1 +1 -1 Y6 -1 -1 
7 -1 +1 +1 -1 Y7 -1 -1 
8 +1 +1 +1 +1 Y8 +1 +1 

 
The key issue is how this fraction should be 
chosen in order to get an orthogonal matrix. In 
the standard 142 −

IV  design the fourth variable D 
is taken as the product of the columns for 
factors A, B and C, which means that each entry 
in the column D is equal to the product of the 
corresponding entries in the columns for A, B 
and C. Since the column for D is used for 
estimating the main effect of D and also for the 
interaction effect between A, B and C, the data 
from such a design is not capable of 
distinguishing the estimate of D from the 
estimate of AxBxC. The factor main effect D is 
said to be aliased, or confounded, with the 
AxBxC interaction. A usual notation of this 
aliasing relation is D=ABC or I=ABCD, where 
D=ABC is often referred to as the design 
generator. Further, I denotes that the product of 
the four columns A, B, C and D is all positive 
and is referred to as the defining relation. The 

142 −
IV  design is said to have resolution IV 

because the defining relation consists of the 
word “ABCD”, which has the length of four 
letters. In general, a design of resolution R is 
one where no l-way interactions are confounded 
with any other interaction of order less than R-l. 
In the current design, R is equal to 4. Thus, no l 
= 1 level interactions (main effects) are 
confounded with any other interaction of order 
less than R-l = 4-1 = 3. 

A 

B 

C 

A 
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In the Resolution IV design above, each of the 
four main effects A, B, C and D is estimable if 
the respective three factor interaction alias is 
negligible, which is as stated before the usual 
case in engineering design situations. One 
desirable characteristic of any design is that the 
main effect and interaction estimates of interest 
are independent of each other. Further, when 
the factor level settings for two variables in an 
experiment are uncorrelated, that is, when they 
are linearly independent of each other, then 
their columns are said to be orthogonal. 
Thus for an orthogonal design the Dot product 
between any two columns is zero, see e.g. 
columns 1 and 2 in Table 1: 
 
(-1)* (-1)+ 1* (-1)+ (-1)* 1+1*1+(-1)* (-1)+ 1*(-
1)+ (-1) *1+1*1=1-1-1+1+1-1-1+1=0 
 
Randomization of the order in which the 
experiments are conducted reduces the 
unwanted effects of other variables not included 
in the experiments. However, when performing 
computer experiments together with FEM, 
randomization has no point since all replicates 
of an experiment will result in the same 
response independently of the order in which 
they are performed. 
A replicated experiment means that the 
experimental plan is carried out two or more 
times. This allows for estimation of the so-called 
pure error in the experiment and also the 
computation of the variability of measurements 
within each unique combination of factor levels. 
Replication is unnecessary for computer 
experiments because repeated computer runs 
with the same input result in the same output. 

Plackett-Burman Designs for 
Screening  
 
When one needs to screen a large number of 
variables to identify those that may be 
significant, the employment of a design layout 
that allows testing the largest number of 
variable main effects with the least number of 
experiments is of interest. In terms of resolution, 
a resolution III design must be used with as few 
runs as possible. Plackett and Burman showed 
how full factorial design can be fractionalized in 
a different manner, to yield saturated designs 
where the number of runs is a multiple of 4, 
rather than a power of 2 as for fractional 2k-p 
designs. These designs are also sometimes 
called Hadamard matrix designs.  

Experiments with variables at three 
levels. 
 
The main differences between two-level designs 
and three-level designs are the fact that each 
three-level variable has two degrees of freedom 
and there are two systems for parameterize the 
interaction effects in three-level designs: the 
orthogonal components system and the linear-
quadratic system. The situations in which 
changing to a three-level design is needed are: 
•  A quantitative variable may affect the 

response in a non-monotone fashion. Three 
or more settings are required to detect a 
curvature effect. The Composite design 
techniques, discussed later, combines a two-
level factorial or fractional factorial design 
with additional levels to account for non-
linear response. 

•  A qualitative factor may have several levels, 
such as three cross-section layouts.  

Latin Square Designs �
��

�

 
Latin square designs are used when the 
variables of interest have more than two levels 
and when there are no (or only negligible) 
interactions between factors. For example, in an 
experiment with four variables at four levels a 
full factorial design could be utilized, resulting in 
256 experimental runs. However, if the objective 
of the experiment were to estimate main effects, 
the Latin square design with 16 runs would 
estimate 4 unconfounded main effects. 

Taguchi methods 
 
To briefly describe the Taguchi methods in the 
context of statistically designed experiments, it 
can be concluded that the design layouts 
presented by Taguchi can often also be found 
among Western statisticians. The approach 
differs in the way that the variables are explicitly 
categorized as control and noise factors, and 
the design plans are divided up with inner and 
outer arrays for easier evaluation of interaction 
effects of noise and controllable factors. In the 
evaluation of the experiment, the factors that 
most strongly affect the chosen S/N ratio are 
established, where the S/N ratio is divided up 
into three groups, Smaller-the-better, Nominal-
the-best and Larger-the-better, based on the 
current objective of the experiment. 



Statistical evaluation of data 
 
The main effect of a variable in an experiment is 
calculated as the average change in the 
response for e.g. variable A in Table 1: 

4
)7531(

4
)8642( YYYYYYYYA +++−+++=

When the effect of variable A is affected by 
changes in another variable, say variable B, the 
variables A and B are said to interact. The effect 
of interaction AB in Table 1 is calculated as: 

4
)7632(

4
)8541( YYYYYYYYAB +++−+++=  

The interaction effect of variables CD is 
established in the same way and is equal to the 
interaction effect of AB. The resolution four 
designs cannot distinguish any two-factor effect 
from another two-factor effect. The responses 
as well as the established effects in the 
statistical evaluation can be graphically 
displayed in a couple of ways, which will be 
discussed next. 

Pareto chart plots.  
 
The Pareto chart plot of effects is often an 
effective tool for communicating the results of 
an experiment. The magnitude of each effect is 
represented by a column (independent of sign), 
and often, a line going across the columns 
indicates how large an effect has to be to be 
statistically significant.  

Normal probability plot of effects.  
 
Plot the ordered values of the factorial effect 
estimates against their corresponding 
coordinates on the normal probability scale by 
fitting a straight line to the middle group of 
points where the effects are near zero. Any 
effect whose corresponding point falls off the 
line is declared significant. The rationale behind 
this graphical method is as follows. Assume that 
the estimated effects are normally distributed 
with equal means. The normal probability plot is 
testing whether all of the estimated effects have 
the same distribution, so that when some of the 
effects are non-zero, the corresponding 
estimated effects will tend to be larger and fall 
off the straight line. For positive effects, the 
estimated effects fall to the right of the line while 
those for negative effects fall to the left of the 
line. A positive effect is an effect where a shift 
from a low level to a higher value will result in 
increase in the response; a negative effect will 
correspondingly result in a decrease in the 
response for the same shift from a low level to a 

higher. When estimating the significance of 
variables in a normal probability plot, not only 
the departure from the straight line but also the 
magnitude of effects must be considered. The 
significant variables are those with highest 
positive or negative values.  

Plot of mean and interaction effects  
 
There exist many different ways of displaying 
the evaluation of main and interaction effects. 
Three methods for displaying the responses are 
the plot of means and the plot of interaction 
together with the cube or rectangle plot. In the 
interaction plot the mean values for two 
variable interactions are plotted as points that 
are connected by lines. Another type of plot is 
the rectangle or cube plot. These plots are 
often used to summarize the response values 
for two, three or four variables, given the 
respective high and low setting of the variables.  

Diagnostic plots of residuals.  
 
As a basic evaluation of the results from an 
experiment, one can examine the distribution of 
the residual values. This is the good starting 
point for model verification. The residuals are 
computed as the difference between the 
predicted values (as predicted by the current 
model) and the observed values. The residuals 
can be plotted in two different ways; either by 
plotting them against the variables or by the 
normal probability plots, where the residuals 
should plot roughly as a straight line. A marked 
deviation of the plot from a straight line indicates 
that the mathematical model of the response is 
not adequate. 

Response Surface method 
 
The Response Surface Method (RSM) is 
designed for experiments where the objective is 
to describe how the response varies as a 
function of more than one variable; see e.g. 
Montgomery [9]. The response surface 
approach constructs smooth functions (e.g. first-
order or second-order), often polynomials, 
which are used to establish an approximation of 
the response (also called the objective function) 
through a number of selected experiments, 
usually executed as “extended” DOE. Thus, with 
RSM the variable settings that correspond to a 
desired value in the response can be extracted. 
The most popular extended DOE utilized in 
response surface design is the Central 
Composite Design that is constructed by 
combining a two-level fractional factorial 



(corners of the cube), and two other kinds of 
points defined as follows. 
Center point for which all the factor values are 
at the zero (or mid-range) value. Axial points, for 
which all but one factor are set at zero (mid-
range) and one factor is set at outer (axial) 
values as displayed in Figure 3. 

 
 
 
 
 
 
 
 
 

Figure 3. Central Composite Design. 
 
The response surface function is established 
through a regression model that is a least-
squares fit of the variables studied. A first-order 
model describes flat surfaces that can be tilted 
and are thus separated from curved regions like 
the maxima, minima, or ridgelines. To be able to 
estimate a curved region, a second-order model 
has to be adopted. One thing that has to be kept 
in mind when working with response surface is 
that these describe local areas. Thus, the 
description will usually not fit the entire design 
space of the variables. So, if different regions 
have to be described, additional experiments for 
those particular variable settings are needed. 
However, the model can be utilized to instruct in 
which direction the variables should be moved, 
through the mathematics of e.g. steepest ascent 
method.  
Certainly the approximate optimum found on the 
response surface has to be checked at least for 
admissibility with an explicit experiment of the 
design. If there is significant difference within 
the evaluation of the objective function, an 
adaptive refinement process of the response 
surface with calculation of additional support 
points may become necessary. Recommended 
areas of application are reasonably smooth 
problems with a maximum of 30-50 variables 
depending on the complexity of the problem. 

Summary of Design of Experiments 
 
The factorial and/or fractional experiments give 
the effect of each variable and they also reveal 
interactions between variables. Interactions 
between noise variables and design variables 
can be exploited. However, the simplicity of 
these designs is also their major flaw. As 
mentioned above, underlying the use of two-
level factors is the belief that the resultant 
changes in the dependent variable are basically 
linear in nature. Thus, one cannot fit explicit 

non-linear (e.g., quadratic) models with 2k-p 
designs. However, this is sometimes not the 
case, and many variables are related to quality 
characteristics in a non-linear fashion and also 
in some case in a non-polynomial fashion. The 
non-linear type of curvature in the relationship 
between the responses in the design and the 
significant variables cannot be detected unless 
experiments are made at the variables center 
points. Depending on the complexity in the 
response at the current variable levels in a non-
polynomial situation a polynomial might be an 
adequate approximation of the response at 
these levels. 
Another problem of fractional designs is the 
implicit assumption that higher-order 
interactions do not matter; but sometimes they 
do. For example, when some other factors are 
set to a particular level, a variable may be 
negatively related to another variable.  
To be able to determine whether or not the used 
model is adequate the diagnostic plots of 
residuals should be established, which is a 
powerful tool to validate the selected model. In 
situations where problems are found through 
the plots of residuals the response should be 
further investigated by additional analyses or 
some adequate transformation of the 
responses. 

STOCHASTIC SIMULATIONS 
 
When the number of variables being 
investigated increases, the resource 
requirements with the statistically designed 
experiments could be too large. Further, optimal 
designs often have the tendency to be very 
sensitive to small (sometimes random) 
fluctuations of variables. Such phenomena may 
occur due to system instabilities like bifurcation 
problems in the structure; see e.g. Marchyk et 
al. al. [10]. Since the evaluation of sensitivity to 
variable changes of the most favorable final 
design is important, the adoption of a systematic 
stochastic analysis provides an efficient way in 
which this can be checked. The problem that 
has to be recognized, however, in dealing with 
stochastic equations, is two-fold. Firstly, the 
random properties of the system must be 
modeled adequately as random variables or 
processes, with a realistic probability 
distribution. Secondly, the resulting differential 
equation of response quantities must be solved.  
From a design process perspective, most 
common systems can be seen as stochastic 
systems involving differential equations, 
typically linear, with random coefficients. These 
coefficients represent the properties of the 
system under investigation. They can be 
thought of as random variables or, more 

Axial points

Center point



accurately and with an increasing level of 
complexity, as random processes with a 
specified probability structure. Two different 
approaches to stochastic modeling will be 
presented in this work: Perturbation Methods 
and Monte Carlo Simulations. 

Perturbation Methods 
 
Sensitivity methods have been utilized within 
design analysis for quite some time in the area 
of optimization. One of the basic components of 
an optimization scheme is the establishment of 
derivatives, which is usually done by some kind 
of sensitivity analysis; see Bazaraa et al. [11]. 
This basic mathematical formulation has been 
applied to FEM and has been given the name 
Stochastic Finite Element Method (SFEM), that 
is a sensitivity-based FEM. Haldar and 
Mahadevan [12] present a more in-depth 
explanation of the approach. They state that the 
search for the design point in many practical 
problems converges within 10 or 20 iterations 
and that the gradient of the value function at 
each of these iterations is required. The value 
function is established through a deterministic 
analysis, and the gradient is computed with a 
sensitivity analysis. Two of the available 
approaches to sensitivity analysis are the finite 
difference and the perturbation approaches. The 
finite difference approach (forward or backward) 
utilizes a number of deterministic analyses in 
order to establish the derivatives. The number 
of analyses needed is (n+1)*m times, where n is 
the number of random variables and m is the 
number of iterations to find the solution. Thus 
when the number of design variables increases 
the total analysis times will also increase. For a 
problem with 4 design variables, the number of 
analyses will be around or above 50. Keep also 
in mind that this is needed for each response 
studied such as displacement, stress and 
weight. Thus the overall analysis time could be 
unacceptable. 
In the approach of perturbation the fact that 
basic design variables are often stochastic in 
nature means that the computed responses are 
also stochastic. To be able to estimate the 
variation of the response at every deterministic 
analysis it is strategic to express it in terms of 
the variation of each design variable at every 
deterministic analysis. This is done by simply 
applying the chain rule of differentiation to 
compute the derivatives of the structural 
response with respect to the design variable, 
which is often referred to as classical 
perturbation. The mathematical simplicity of the 
perturbation method makes it useful in a wide 
range of problems. The perturbation scheme 
consists of expanding all the random quantities 

around their respective mean values via a 
Taylor series. The larger the magnitude of the 
random fluctuations, the more terms should be 
included. As mentioned earlier, computations 
beyond the first or second order terms are 
usually not practical in engineering design 
problems. If such higher order terms were to be 
included, the mathematical computation could 
become very complicated. On the other hand 
these lower order terms restrict the applicability 
of the method to problems involving small 
randomness. 
It can be concluded that the method cannot be 
readily extended to compute the probability 
distribution function of a general response over 
the whole variable design space. Another 
drawback with the perturbation approach is that 
the source code of the problem at hand has to 
be modified. The partial derivatives of the 
response with respect to each design variable 
must be computed at each iteration of the 
overall analysis technique.   

Monte Carlo Simulation 
 
Monte Carlo Simulation (MCS) is a quite 
versatile mathematical tool capable of handling 
situations where most other methods fail. This 
computational accessibility has triggered an 
urge to develop advanced and efficient 
simulation algorithms. The usefulness of MCS 
could be described as: the next best situation to 
having the probability density function (pdf) of a 
certain random quantity is to have a 
correspondingly large population approximating 
it. The implementation of MCS consists of 
numerically simulating a population 
corresponding to the random quantities in the 
physical problem, solving the deterministic 
problem associated with each member of that 
population, and thus obtaining a population 
corresponding to the random response 
quantities. This population can then be used to 
obtain statistics of the response variables. The 
only requirement, in MCS, is that the physical 
(or mathematical) system can be described by 
its pdfs. Once the pdfs are known, the MCS can 
proceed by random sampling of points from the 
pdfs. The outcome of these random samplings, 
or trials, must be accumulated or tallied in an 
appropriate manner to produce a solution of the 
physical problem. Thus a solution can be 
formulated in terms of pdfs, and although this 
transformation may seem artificial, it allows the 
physical problem to be treated as a stochastic 
process for the purpose of simulation, and 
hence MCS can be applied to simulate the 
physical problem. The primary components of a 
Monte Carlo simulation method include the 
following:  



Probability distribution functions (pdfs)  
The physical system must be described by a set 
of pdfs. These pdfs can originate from the basic 
distributions, for example Normal, Exponential, 
and Uniform. 
Random number generator 
Random numbers distributed on the unit interval 
must be established. These numbers are 
established by some applied sampling rule. 
Scoring (or tallying) 
The individual trials should be accumulated into 
overall scores for the responses of interest.  
Error (or variance) estimation  
An estimate of the statistical error within the 
experiment should be determined.  
Error (or variance) reduction techniques 
Methods for reducing the error in the estimated 
response should be utilized. 
One drawback of MCS is that if the analyses are 
time-consuming, the high number of analyses 
executed could be impractical if only basic 
statistics are to be extracted. Furthermore, if the 
information regarding the physical problem is 
limited the pdfs could be hard to establish 
correctly. 

Statistical evaluation of data 
established in a stochastic approach 
 
The evaluations of stochastically generated 
results are performed by statistical evaluations. 
The evaluation is generally based on the 
assumption of the central limit theorem and the 
interdependency among the studied responses. 
Graphical presentations of the results are often 
in the form of Histograms, where the responses 
are divided up into certain intervals, cumulative 
distribution functions and scatter plots (also 
called ant-hill plots) in which the responses are 
plotted versus each one of the variables 
studied. Further outcomes from the statistical 
evaluations are e.g. mean value, standard 
deviation, and correlation coefficients between 
studied variables. These basic quantities can be 
used for regression and in the establishment of 
response surfaces.  

PDA IN THE ENGINEERING DESIGN 
PROCESS 

 
In all of the different disciplines discussed above 
(design process, experimentation and design 
analysis) the fundamental criteria for success 
are a well-founded objective and thorough 
establishment of possible important variables. 
All the established variables and objectives 
should be organized by their nature: industrial 
design, engineering design and manufacturing 
etc. The variables that should be used in the 

PDA activity should be extracted and sorted into 
controllable variables, and uncontrollable 
variables (noise). Also, depending on prior 
product knowledge and information, and 
keeping in mind the different types of product 
designs mentioned above, the investigations 
could be conducted more or less in depth. 
When a variant, or derivative product is to be 
designed the design space of the significant 
product variables and the critical objectives are 
to some extent already known. If on the other 
hand a novelty or fundamentally new product is 
designed, more in-depth work, concerning 
establishment of variable to be utilized, has to 
be performed through e.g. benchmarking 
against similar products.  
Commonly complex systems are also divided up 
into subsystems that are designed in parallel 
with interface functions and relations connecting 
them. Of course this subdivision introduces 
additional uncertainties throughout the design 
process, which are recognized but not 
addressed further in this work.  

UTILIZATION OF PDA IN 
CONCEPTUAL DESIGN 

 
The objective within the conceptual design 
phase is to generate a concept that is only 
designed to the concretization level of a 
principle solution. When designing variants of 
existing products, the conceptual solutions are 
already established and the conceptual design 
phase, in the terms mentioned above, has a 
subordinated importance and is sometimes 
omitted in such projects. When dealing with 
products with new solution principles, on the 
other hand, the conceptual design phase is of 
utmost importance, since decisions made early 
in the design process often become increasingly 
expensive to modify in later phases of the 
design process. The problem, however, in early 
design phases is the lack of in-depth 
information. One part of the conceptual design 
phase, and also throughout the later phases, is 
to establish and refine the information as the 
project progresses. Thus, the PDA conducted in 
the conceptual design phase should support the 
activity of establishing information that is used 
to resolve the most promising concept of those 
that are evaluated. PDA should be performed 
with the objective to explore and enhance the 
information that can be investigated with design 
analysis methods. Although, the information 
available about variables studied might be 
inadequate for stochastic modeling, it could be 
suitable for fractional factorial or other statistical 
design layouts. Therefore the proposed 
methodology for the utilization of PDA in the 
conceptual design phase is based on factorial 



and fractional factorial experiments. Also, 
adequate modeling of geometry, material and 
load conditions, among other things, must be 
done to facilitate simplified and fast analyses 
while nevertheless resulting in relevant 
responses. Fractional design layouts can also 
be utilized to compare different concepts with 
each other where concepts are seen as a 
variable with a discrete number of levels. 
A design problem with three beams, displayed 
in Figure 4, will be used to exemplify the 
possibility of sorting out vital variables. The 
overall objective in the project is to keep the 
displacement of point 1, in Figure 4, lower than 
5 mm. A screening 142 −

IV  fractional design is 
used to plan 16 FEA with the software ANSYS. 
The analyses are performed as linear static 
analyses with linear steel material properties. 
The geometry is modeled with beam elements 
with rectangular cross sections with thickness of 
0.5e-3 m. The units in Figure 4 are all in 
standard SI units (m and N). Beam 2 is fully 
constrained at the right and the constraint at 
beam 1 is varied over the analyses. Also the 
placement of horizontal force (Fx) is varied over 
the analyses. 
 

 
 

 
Figure 4. Outline of the example within the 
conceptual design phase.  
 
The objective of the evaluation is to sort out the 
significant variables from the eight selected 
regarding the displacement of point 1. The 
variable levels (variables A through H) are listed 
in Table 2. 

Table 2. Variables utilized in the example. 
 Name Low 

level 
High 
level 

A L 1 0.4 m 0.5 m 
B L 2 0.3 m 0.4 m 
C L 3 0.3 m 0.4 m 
D Cross section beam 1 

height x width 
0.03 m 0.04 m 

E Cross section beam 2 
height x width 

0.03 m 0.04 m 

F BC of beam 1 
(constraints) 

All ux, uy, uz 

G Fx (10kN) beam 2 beam 1 
H Angle α 0 5º 

 
The response evaluated is the total 
displacement of point 1 in Figure 4. The main 
effect plot for the displacement response is 
displayed in Figure 5, where the average 
response is indicated with the dashed line.  
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Figure 5. Plot of means for the total 
displacement of point 1. 
 
From Figure 5 it can be seen that the 
displacement response clearly varies for the 
variables D, E and F, i.e. the cross sections of 
beams 1 and 2 and the BC of beam 1. To 
investigate the result further, the pareto plot of 
effects for the displacement response is 
established is displayed in Figure 6.  
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Figure 6. Pareto plot for the total displacement 
of point 1. 
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The effects that expand above or below the two 
dashed lines are said to be significant. The main 
effects of variables D (l8), E (l7), F (l14) and 
possibly also the AdxBHxCGxEF (l9) interaction 
effect are found significant. The interaction 
effect confounds different two-factor effects, but 
since both variables E and F are significant this 
interaction effect are most likely to be 
dependent on these two variables. Further, 
variable F are said to have a positive effect, 
which means that a shift from the lower level to 
the higher level of variable F results in an 
increase in the response, see Figure 7. 
Variables D and E have a negative effect and 
thus will influence the result in the negative 
direction. A Cube plot consisting of the 
significant variables is displayed in Figure 7. In 
each corner of the cube is the average of the 
two analyses performed at this variable 
configuration presented (units in mm). The cube 
plot displayed in Figure 7 illustrate the fact that 
the response is more dependent on the change 
of variable F than on variables D and E. It can 
also be seen that the effect of variable E is 
greater when F is at its higher level, which is 
due to the established interaction effect 
displayed in Figure 6. 
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E
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Figure 7. Cube plot for variables D, E and F. 

 
The information, regarding the total 
displacement of point 1, extracted from these 
sixteen analyses is that cross sections of beams 
1 and 2 have to be studied further. The 
influence of the boundary condition applied on 
beam 1 is also important. 
Generally the information gained from Fractional 
factorial designed analyses has to be 
incorporated into the decision-making 
procedures in the overall concept evaluation 
along with other criteria on the product to be, 
not analyzed with PDA to facilitate concept 
selection. 

UTILIZATION OF PDA IN 
EMBODIMENT DESIGN 

 
In the embodiment design phase the concept 
that was selected in the conceptual design 
phase are designed further. In the factorial or 

fractional factorial design layouts, utilized in the 
conceptual design phase, in which the variables 
are evaluated at two levels, the implicit 
assumption is that the effect of the factors on 
the dependent variable of interest is linear. 
Hence it is impossible to test whether or not 
there is a non-linear (e.g., quadratic) component 
in the interactions among the variables. A so-
called center-point run could be conducted to 
estimate whether the nature of the response is 
curve-linear or not, which is relevant for the later 
best-solution search in the detail design phase. 
In the current example is the influence of the 
boundary conditions at beam 1 investigated and 
a decision to fully constrain both beams are 
made. The effects of the cross sections of 
beams 1 and 2 are studied further with fractional 
analyses and RSM. First are four factorial 
designed FE analyses with variables D and E at 
two levels in which the other variables are all, 
except variable C, taken at their lower levels. 
Variable C is taken at its higher level. The 
displacement response (displacement in mm) 
for point 1 from these four analyses is displayed 
in the circles in Figure 8. A fifth analysis 
performed at the center location for both 
variables D and E, displayed with the lower red 
triangle in Figure 8. The displacement response 
displayed Figure 8 is reasonably close to linear 
and a first order RSM is adopted for the 
investigation of design space of the variables. 
From the initial factorial designed analyses are 
three additional analyses performed, displayed 
with green dots. The variable levels for these 
analyses are established by calculation of the 
steepest descent. The direction of the steepest 
descent is indicated with the dashed line in 
Figure 8. At variable configuration (D=55 mm 
and E=45 mm) the total displacement is below 
the objective of 5 mm. To investigate the 
behavior of the displacement response in the 
neighborhood of these variable levels are five 
additional analyses, similar to the first five 
analyses, performed. 
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Figure 8. Result of the RSM analyses. 
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From the RSM analysis the design space of the 
two variables was searched in a systematic 
manner and a variable configuration that fulfilled 
the requirement on the displacement of point 1 
was established.  

UTILIZATION OF PDA  
IN DETAIL DESIGN 

 
The objective within the detail phase is to 
finalize the product, which should fulfill the 
established requirements for the product. 
Obviously most design analyses are performed 
within the detail design phase, since at this 
phase much information regarding the input 
variables is available in terms of value levels, 
tolerances or variations. 
The products designed should in some sense 
be best solutions but at the same time not be 
sensitive to variations in the variables, 
especially the noise variables. An optimal 
variables setting can be established with 
traditional optimization techniques. However, in 
engineering design additional information 
regarding the sensitivity of the best solution is of 
greater importance. Obviously DOE techniques 
such as factorial, fractional designs and RSM 
techniques can produce some of this 
information, but when the level of requested 
accuracy in the result is high the utilization of 
stochastic techniques is preferable. Within the 
stochastic approaches the perturbation 
approach requires access to analysis software, 
or the source codes for such software, that is 
able to extract the adequate derivatives of the 
response functions. This is, however, often not 
available when a general complex analysis is to 
be evaluated. Since it is simple to execute MCS 
trials and to evaluate and display the results, the 
MCS is proposed within PDA for these complex 
and detailed analysis situations in the detail 
design phase. Further MCS can be applied to 
most engineering analyses. Consider again the 
example outlined in Figure 4. The beam is in 
exceptional situations supposed to crash into an 
obstacle. The sensitivity to variations in the 
variables displayed in Figure 9 is studied. An 
MCS was performed with 100 trials where all 
stochastic variables are considered normally 
distributed and the variable names are given 
along with their average value and standard 
deviation (average, standard deviation) in SI 
units. Stochastic variables included in the 
analyses, regarding the three quadratic beams, 
are; a total of twelve thicknesses (5E-4, 5E-5), 
three Young’s modulus (2.1E11, 1.5E10), three 
yield stresses (250E6, 15E6) and three 
densities (7850, 100). The cross height and 
width of beam 1 is (0.06, 0,002) and the height 
and width of beam 2 is (0.04, 0.002). For beam 

3 is the width taken as (0.04, 0.003). The thirty-
seventh and last variable that was modeled as a 
normal distributed variable was the friction 
coefficient (0.3, 0.01) in the model.  
 
 

 
 
 
 
Figure 9 General layout of the impact example. 
 
The geometry is modeled with first order shell 
elements and the material properties are 
modeled with a piecewise linear plasticity 
formulation. For each of the hundred trials 
requested responses can be extracted and 
displayed. The displacement in y-direction of 
point 1 is displayed in Figure 10 for all trials.  
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Figure 10 Displacement in y-direction of point 1. 

The scatter plot of the displacement in y-
direction of point 1 versus the angle α3 of the 
obstacle is displayed in Figure 11. 
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Figure 11 Scatter plot of the displacement in y-
direction of point 1 versus angle α3. 
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As can be seen in Figure 11 the displacement in 
y-direction of point 1 show dependency on the 
angle α3. If the beam is hitting the obstacle with 
positive angles of α3 the displacement in y-
direction of point 1 are generally negative. The 
response can also be expressed in the 
statistical values of the average response, 0.02 
m, and the standard deviation, 0.06 m2. 
These analyses (trials) conducted with MCS 
could be utilized for correlation of computer 
analysis (virtual prototype testing) and physical 
testing, in which the general trends in the 
response clouds are equally important as each 
single experiment. When the response clouds of 
both the analyses and the tests have the same 
basic shape, it can be concluded that the 
correlations between the physical test and the 
design analysis model that mimics the physics 
are good. Assume that the above situation is 
investigated, without the knowledge presented 
in Figure 11, with one single analysis and a 
single physical test at zero hitting angle. In the 
computer analysis this is easy to establish, but 
in the physical test it can be harder to establish. 
If the angle is off the zero location, which is 
more likely to be the case than that it is actually 
zero, the results will differ. However, if PDA is 
performed together with a number of tests any 
difference in results between the design 
analysis and the physical test can be 
investigated and explained with a high level of 
confidence, which is not possible without having 
a reasonable number of responses. 

CONCLUSION 
 
In this paper is the use of statistical and 
stochastic methods within PDA outlined. The 
benefits as well as the drawbacks of different 
methods and approaches are discussed, and 
the value of introducing the PDA activity within 
different phases of the design process has been 
outlined mainly in terms of statistics. The 
subject of combining PDA and other problem 
solving techniques within the engineering 
design process has been addressed only briefly. 
This is, however, an important and vital part of 
the ongoing research on PDA and will be 
presented in future publications. 
Although the current work discusses the topic of 
PDA within mechanical design, the general 
ideas can be applied in other areas of 
engineering design, such as electrical or 
chemical engineering design, wherever design 
analysis can be performed. The conclusion of 
the current work is that with increasing 
computational capabilities and enhanced 
mathematical formulations the proposed 
methodology will increase the probability for the 
designer or analysts to make appropriate 

decisions throughout the entire engineering 
design process. 
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