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Abstract— The performance of small antennas is constrained by the electrical size of the
antenna structure. Here, convex optimization is used to analyze small antennas. It is shown that
stored electric and magnetic energies, radiated power, and radiated field expressed in the current
density can by combined to form convex optimization problems for many interesting antenna
cases. The solution of the optimization problem determines physical bounds on the antenna
performance.

Fundamental limitations on small antennas were first studied more than 60 years ago by Wheeler
[14] and Chu [2], see also [9, 13]. The approach by Chu is based on mode expansions of the fields
outside the smallest circumscribing sphere [2] and explicit calculations of the stored electric and
magnetic energies and the radiated power to determine the Q-factor. This approach has dominated
the research but is unfortunately restricted to canonical geometries such as spheres. The analysis
was generalized to arbitrarily shaped antennas by a reformulation of the antenna problem into a
scattering problem and utilizing the forward scattering sum rule [4, 5], see also [6, 10, 12, 15] for
alternative approaches.

In this presentation, the analysis is generalized to many new and important antenna problems
using convex optimization [1,8]. The results are based on formulations of the antenna problems as
convex optimizations problems, where we use that the stored electric and magnetic energies, and
radiated power are positive semi-definite quadratic forms in the current density. We use the explicit
expressions by Vanderbosch [11] for the stored energies, see also [7] for an alternative derivation
and interpretation. Moreover, the presented results are for current densities in free space.

Following the notation in [8] and expand the current density, J , in local basis functions as in
the method of moments (MoM), and let

We ≈ JHXeJ stored electric energy

Wm ≈ JHXmJ stored magnetic energy

Pr ≈ JHRrJ radiated power

ê∗ · F (k̂) ≈ FHJ far field in the k̂ direction and the ê polarization,

(1)

where J is a column matrix with the expansion coefficients for J and the superscripts ∗ and H

denote the complex conjugate and Hermitian transpose, respectively. The quality factor is defined
as a weighted quotient between the stored energy and the radiated power [2, 9, 13]

Q =
2ωmax{We,Wm}

Pr
≈ 2ωmax{JHXeJ,J

HXmJ}
JHRrJ

. (2)

Similarly, the partial directivity is a weighted quotient between the radiation intensity in the di-
rection k̂ and polarization ê and the radiated power, i.e.,

D(k̂, ê) =
β|ê∗ · F (k̂)|2

Pr
≈ β|FHJ|2

JHRrJ
, (3)

where β is a normalization constant. To form convex optimization problems, we first consider the
partial directivity Q-factor quotient

D(k̂, ê)

Q
≤ max

J

D(k̂, ê)

Q
= max

J

β|ê∗ · F (k̂)|2

2ωmax{We,Wm}
≈ max

J

β|FHJ|2

2ωmax{JHXeJ,JHXmJ}
. (4)
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The quotient is invariant for a multiplicative scaling J → αJ showing that it is sufficient to consider
|FHJ|2 = 1 or Re{FHJ} = 1, see [6]. This gives the convex optimization problem

minimize max{JHXeJ,J
HXmJ}

subject to Re{FHJ} = 1
(5)

where the constant 1 is used for simplicity. Convex optimization problems can be solved with
e.g., the matlab toolbox CVX [3], see [8]. The main advantage with the formulation as a convex
optimization problem is that we can easily extend the D/Q problem (5) to other problems. By
e.g., adding a constraint on the radiated power Pr, we get the convex optimization problem

minimize max{JHXeJ,J
HXmJ}

subject to Re{FHJ} = 1

JHRrJ ≤ βD−1
0 ,

(6)

that can be interpreted as a constraint on the partial directivity D(k̂, ê) ≥ D0. The formulation (6)
can be used to analyze the minimum Q for superdirective antennas. We can also add other con-
straints that determines bounds on antennas that have a specified radiated field or are integrated
in passive (metallic and/or dielectric) structures [8].
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