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Abstract—Convex optimization is used to determine the upper
bound on G/Q for arbitrarily shaped antennas. The new for-
mulation generalizes previous bounds and can include power
dissipated in the antenna. The results are illustrated with a
numerical example for planar rectangles.

I. INTRODUCTION

Chu used the stored and radiated energies outside a sphere,
with radius a, circumscribing the antenna [1] to determine
physical bounds on the Q-factor and the directivity Q-factor
quotient, D/Q, see also [2]. The physical bounds on D/Q
were generalized to arbitrary size and shape in [3], [4], [5] for
Q� 1. Corresponding bounds on the Q-factor are investigated
in the limit of small antennas ka� 1 in [6], [7] and for finite
sizes in [8]. The bounds in [3], [4], [5], [6], [7] are similar for
the case of small dipole antennas composed of non-magnetic
materials.

In [9] optimal currents and physical bounds on D/Q are
formulated as an optimization problem using the expressions
for the stored energies by Vandenbosch [10]. The optimization
problem is solved with a Lagrangian formulation. The results
are valid for antennas composed of non-magnetic materials
and they verify the corresponding results in [3], [4], [5].

Here, convex optimization [11] is used to reformulate the
optimization problem in [9]. This generalizes the optimization
problem to include both the stored electric and magnetic
energies. Moreover, it is shown that a finite conductivity can be
included in the formulation. The convex optimization problem
is only valid for stored energies that are positive semidefinite.
This limits its validity for electrically larger structures as
shown in [9]. The theoretical results are illustrated by a
numerical example for planar structures.

II. G/Q FOR ANTENNAS

The partial gain, G(k̂, ê), is defined as

G(k̂, ê) = 4π
P (k̂, ê)

Prad + Ploss
, (1)

where P (k̂, ê) denotes the radiation intensity in the direction k̂
with polarization ê, Prad is the total radiated power, and Ploss

is the absorbed power in the antenna structure. The quality
factor, Q, is defined as

Q =
2c0kW

Prad + Ploss
, (2)

where W = max{We,Wm} denotes the maximum of the
stored electric and magnetic energies, k the wavenumber, and
c0 the speed of light in free space. Combine (1) and (2) to
express the gain Q-factor quotient as

G(k̂, ê)

Q
=

2πP (k̂, ê)

c0kW
. (3)

Use the radiation vector projected on ê, i.e.,

ê∗ · F (k̂) =

∫
V

ê∗ · J(r)ejkk̂·r dV (4)

to express the radiation intensity in the electric current density
J for the direction k̂ and polarization ê as P (k̂, ê) =
ζ0k

2

32π2 |ê∗ ·F (k̂)|2, where ζ0 denotes the free space impedance,
the superscript ∗ denotes the complex conjugate, and the time
convention ejωt is used.

Follow the approach in [9] and use the results by Vanden-
bosch [10], to write the stored electric energy as We = W̃

(e)
vac =

µ0

16πk2w
(e), where

w(e)(J) =

∫
V

∫
V

∇1 ·J1∇2 ·J∗
2

cos(kR12)

R12
− k

2

(
k2J1 ·J∗

2

−∇1 · J1∇2 · J∗
2

)
sin(kR12) dV1 dV2, (5)

and J1 = J(r1), J2 = J(r2), R12 = |r1−r2| and µ0 is the
permeability of free space. The corresponding stored magnetic
energy is Wm = W̃

(m)
vac = µ0

16πk2w
(m), where

w(m)(J) =

∫
V

∫
V

k2J1 · J∗
2

cos(kR12)

R12
− k

2

(
k2J1 · J∗

2

−∇1 · J1∇2 · J∗
2

)
sin(kR12) dV1 dV2. (6)

Expand the current density in basis functions

J(r) ≈
N∑
n=1

Jnψn(r) (7)

and introduce the matrix we with elements

w(e)
mn=

∫
V

∫
V

∇1 ·ψm1∇2 ·ψn2
cos(kR12)

R12
− k
2

(
k2ψm1 ·ψn2

−∇1 ·ψm1∇2 ·ψn2
)
sin(kR12) dV1 dV2, (8)

and similar matrices for the stored magnetic energy and the
radiated power.



It is convenient to decompose the current into its real and
imaginary parts and collect the expansion coefficients in a
column matrix, i.e.,

JT = [Re J1, ...,Re JN , Im J1, ..., Im JN ]. (9)

This gives the normalized stored electric energy as

w(e)(J) ≈
∑
mn

J∗
mw

(e)
mnJn = JT

(
we 0
0 we

)
J = JTWeJ

(10)
and similarly for the stored magnetic energy, w(m)(J) ≈
JTWmJ, and the radiated power, Prad(J) ≈ JTPJ, where
We, Wm, and P are real-valued symmetric matrices.

III. CONVEX OPTIMIZATION

We use convex optimization [11] to determine fundamental
bounds on the antenna performance and their corresponding
optimal current densities. We assume that We, Wm, and P
are positive semidefinite for sufficiently small structures, see
also [9] for examples of indefinite We. In [9], the D/Q
quotient is maximized for the case with w(e) ≥ w(m) using a
Lagrangian formulation. To instead obtain a convex optimiza-
tion problem we rewrite the quotient G/Q as a constrained
optimization problem.

We follow [9] and note that G/Q is invariant for multi-
plicative scalings J → αJ with arbitrary complex valued
α 6= 0. It is hence sufficient to consider real-valued quantities
ê∗ ·F ≈ FTJ, see (4). Moreover, maximization of P ∼ |JTF|2
can be replaced by minimization of −FTJ. This gives the
convex optimization problem

p = minJ{−FTJ}
JTWeJ ≤ 1

JTWmJ ≤ 1

(11)

if We and Wm are positive semidefinite. This is a quadrati-
cally constrained linear program (QCLP) with the upper bound
for G/Q ≤ p2. There are many alternative convex formula-
tions, e.g., the Lagrange dual or using that the maximum of
two convex functions is convex to minimize the stored energy.

The radiation efficiency can be included in the optimization
formulation. Consider for simplicity a thin metallic sheet
modeled as a resistive sheet with the constitutive relation
E = RJ s, where R = 1/(σd) is the surface resistance, d
the sheet thickness, σ the conductivity, and J s the surface
current. The absorbed power is

Ploss =

∫
V

E · J s dS = R

∫
V

|J s|2 dS ≈ RJTDJ. (12)

We can formulate many convex optimization problems that
include losses.

IV. NUMERICAL EXAMPLE

We consider antennas confined to a planar rectangle to
illustrate the physical bounds. The bound on G/Q and its
corresponding Q are depicted in Fig. 1 for rectangles with
side lengths `1 and `2 solved using CVX [12].
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Fig. 1. Upper bounds on G/Q and Q for antennas confined to planar
rectangles for k`x = {0.1, 1, 1.5, 2, 2.5, 3}.
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