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Abstract

The importance of using e�cient bases for current expansion in numerical

computations of electromagnetic �eld problems has been emphasized for sev-

eral decades. It is well known that the basis functions should approximate

the physical current (electric or magnetic) to some extent. Moreover, for e�-

ciency, it is reasonably to require that only a few basis functions are needed in

order to obtain adequate results. Bases for speci�c frequency selective surface

(FSS) element geometries has frequently been suggested, however, few papers

address general element geometries. In this paper we establish an e�cient

set of basis functions, for a general element geometry, with the �nite element

method (FEM). The Helmholtz' eigenvalue problem is solved by the FEM in

order to obtain the waveguide modes of a waveguide with the same cross sec-

tion as the considered FSS element. The transverse electric �eld of the �rst

n waveguide modes, ordered by the size of the corresponding eigenvalues, are

used for current approximation (electric or magnetic) in the method of mo-

ment (MoM) analysis of the FSS. These current modes are Fourier transformed

by FFT using the zero-padding technique. Generally, it is found that only a

few waveguide modes, typically 10, are required in order to obtain adequate

results. It is also found that obtained results agrees very well with results

obtained by Periodic Moment Method (PMM) code.

1 Introduction

Basis functions for speci�c frequency selective surface (FSS) element geometries, for
instance the tripole element [16], the ring element [8] and the square loop element [3],
has sporadically been suggested over time. However, few papers address general
element geometries. One category of general approaches, which sometimes is referred
to as the pixel approach, is based on subdomain basis functions. Subdomain bases,
for instance rooftop basis functions [13] or RWG bases [12], can easily be adapted
to complex element geometries. However, generally speaking, the main drawback
of subdomain bases is that the double in�nite Floquet mode sum corresponding to
subdomain basis functions converge very slowly, due to the small support of the
subdomain basis functions, since the small support in turn implies that the Fourier
transform of the basis function decays slowly. Another drawback of subdomain bases
is that the number of unknown current coe�cients tends to be large.

An e�cient general approach for the analysis of arbitrary shaped FSS elements
is developed at the Ohio State University [1, 6]. Although this approach is very
e�cient, it uses current modes which have support on wires, rather than on �at,
in�nitely thin elements as treated here.

A third general approach uses so called V-dipole basis functions [11] which can be
applied to centre connected and loop type elements consisting of straight segments
and rounded corners. The present approach does not obey to this limitations, since
it can handle a wide range of element geometries.

In the next section, we derive the waveguide modes, which then in the follow-
ing section are used for current approximation in several FSS con�gurations. The
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Figure 1: An example of a complex FSS element geometry.

current modes are Fourier transformed by FFT using the zero-padding technique.
The obtained results are compared with the Periodic Method of Moment (PMM)
code [2] as well as with the Oresme FSS code [11].

2 Methods

2.1 Waveguide modes

In order to obtain waveguide modes useful for current expansion, we consider a
homogeneous closed waveguide with arbitrary cross section, which is uniform along
the z-axis. The Ω region represents the waveguide cross section and Γ the boundary
of Ω, with the associated inward directed unit normal n̂, see Figure 1.

The waveguide modes are obtained from Helmholtz' eigenvalue problem. The TE
modes ful�l the natural boundary condition (Neumann condition) on the boundary
Γ as [14] {

∇2
tHz(ρ) + k2tHz(ρ) = 0 ρ ∈ Ω

n̂ · ∇Hz(ρ) = 0 ρ ∈ Γ
(2.1)

while the TM modes ful�l the Dirichlet condition at the boundary as{
∇2

tEz(ρ) + k2tEz(ρ) = 0 ρ ∈ Ω

Ez(ρ) = 0 ρ ∈ Γ
(2.2)

where Hz(ρ) and Ez(ρ) is the longitudinal magnetic and electric �eld, respectively,
and where the tangential wavenumber kt is the eigenvalue. The gradient opera-
tor transverse to the z-axis is de�ned as ∇t = ∇ − ẑ∂z. The transverse spatial
coordinates are ρ = x̂x+ ŷy.

The eigenvalue problems (2.1) and (2.2) are solved by the FEM using the com-
mercial code FlexPDE 3.0. A desired number of eigenfunctions Hz(ρ) and Ez(ρ),
with corresponding eigenvalues kt, are computed. The eigenfunctions and eigenval-
ues are independent of frequency. Once the eigenmodes Hz(ρ) and Ez(ρ) are known,
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Mode #1

Figure 2: The amplitude of the �rst current mode. Notice that current lines are
drawn on the surface of the element.

the transverse electric �eld is given as

Et(ρ) ∝

{
ẑ ×∇tHz(ρ) TE modes

∇tEz(ρ) TM modes

where the symbol ∝ denotes proportional to.

2.2 Current modes

We now introduce the the magnetic current as

m(ρ) = ẑ ×Et(ρ) ∝

{
∇tHz(ρ) TE modes

ẑ ×∇tEz(ρ) TM modes
(2.3)

Hence, each eigenmode has an associated magnetic current mode, given by (2.3),
which is used for magnetic current expansion in slot arrays. For patch FSSes, the
current modes (2.3) are used for expansion of the electric current.

Generally, for elements where the width is small compared to the length, the
lowest order modes are found to be TE modes. For instance, the dominating modes
of an rectangular waveguide, where the side a is considerably larger than the height
b, are the TEm0 modes. More speci�cally, the number of TEm0 modes with lower
eigenvalue than the TM11 mode is approximately given by (a2/b2+1)1/2. The current
modes corresponding to the TEm0 modes, which are given byHz(ρ) = cosmπx/a [4],
is given by

m(ρ) ∝ x̂ sinmπx/a, m = 1, 2, . . . (2.4)
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Mode #2

Figure 3: Mode 2 for the three legged element.

according to (2.3), where a is the length of the rectangular slot, aligned along the
x-axis. Notice that these current modes are identical to them often used for thin
rectangular slots and dipoles [5].

For illustration of numerical waveguide modes, obtained by the FEM, we consider
the three legged element. The �rst three current modes are depicted in Figure 2�4.
Notice that both the amplitude, i.e., |m(ρ)|, and the current lines of the current
modes are depicted in the �gures.

2.3 FFT and the method of moments

Once the current modes are obtained by the FEM, as described in Section 2.1, the
scattering problem is solved by the spectral Galerkin method [15], i.e., a spectral
domain formulation of the method of moments. In the spectral Galerkin method
the Fourier transform of the current modes is required. Hence, the numerical rep-
resentation of the current modes in the spatial domain, obtained by the FEM, is
transformed to the spectral domain by the fast Fourier transform (FFT). The cur-
rent modes are given over a square lattice, with N×N points, in the spatial domain.
In order to obtain su�cient resolution in the spectral domain, the zero-padding tech-
nique [7] is applied. When applying zero-padding, the original N×N data points are
extended with a number of zeros forming a zero-padded array of the size M ×M ,
where M ≥ N , see Figure 5. In this paper we use the DFFT2D IMSL subroutine
to transform the zero-padded data. This subroutine is most e�cient when M is a
product of small prime factors. After applying FFT, the Fourier transformed data is
given over a rectangular grid in the spectral domain. Intermediate values, required
in the MoM procedure, are obtained by interpolation in two dimensions.
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Mode #3

Figure 4: Mode 3 for the three legged element.

The Fourier transform of the current modes can also be calculated by numerical
integration in two dimensions. Although numerical integration is straightforward, it
is considerably more time consuming, and therefore the FFT approach is preferred.

3 Results

3.1 The dipole element

In this section we consider the thin dipole element, i.e., dipole elements with small
width compared to its length. The well known sine and cosine base commonly
used for these elements [5] and the FEM current modes of the present approach
are identical, see (2.4). Hence, the dipole element is a good element to consider
when verifying the Fourier transform of the FEM current modes, since this Fourier
transform can be expressed in closed form. In Figure 6 the transmission coe�cient of
a symmetric biplanar FSS structure, consisting of two slot arrays, is depicted. The
slots are arranged in a square lattice, tilted 45◦, with the side 17.25 mm. The two
arrays are separated by a 7.0 mm thick loss-less dielectric spacer with the dielectric
constant ε = 1.10. Loss-less dielectric skins with the thickness 0.5 mm are located
outside the slot arrays, see Figure 6. Three curves are depicted in the �gure. The
solid curve is computed by using ordinary cosine and sine basis functions [5], while
the dashed curves are computed by the present FEM/FFT approach using a zero-
padded FFT grid of 512× 512 and 1024× 1024 points, respectively. Three current
modes are used and the two FEM/FFT approach curves are computed with an
resolution of N = 200, see Figure 5. Moreover, (2 × 5 + 1)2 Floquet waves are
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Figure 5: The technique of zero-padding is applied in order to increase the resolu-
tion in the spectral domain.

included. From the �gure it is concluded that a zero-padded FFT grid of 512× 512
points is not su�cient. However, it is found that 1024 × 1024 points are su�cient
in general.

3.2 The three legged element

In this section we consider the tripole element, or in other words, the three legged
element. We compute the transmission coe�cient of an array of tripoles arranged
in an equilateral lattice, see Figure 7. The transmission for this tripole array has
been measured by other authors [16] for parallel polarization, and for the angles of
incidence θ = 45◦ and φ = 90◦. Here, θ is measured from the normal of the FSS such
that θ = 0◦ corresponds to normal incidence. Furthermore, the angle φ is measured
from the x-axis toward the y-axis, see Figure 7.

We calculate the transmission according to Section 2 with 3 current modes, see
Figure 2�4. Hence, the matrix in the linear system of equations, for the induced
surface current, has the size 3× 3. The e�ect of including more basis functions has
been investigated, but no signi�cant change of the results was found. However, if
a larger frequency band is considered, e.g., a frequency band including the second
resonance, more basis functions have to be included in order to get adequate results.
Moreover, 332 Floquet modes are included (truncation over a square). This trunca-
tion is determined by adding Floquet modes until the result does not change. The
result is depicted in Figure 8.

3.3 The four legged element

As a third example we consider the four legged element, i.e., the crossed dipole.
From a computional point of view, this element is interesting to consider because
there must be a connector mode supporting current �ow from one arm to the other,
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Figure 6: The transmission coe�cient of a biplanar FSS structure. The slot ele-
ments are linear dipoles with the length 15.1 mm. Three curves are depicted in the
�gure. The solid curve is computed by using ordinary cosine and sine basis func-
tions, while the dashed curves are computed by the present FEM/FFT approach
using a zero-padded FFT grid of 512× 512 and 1024× 1024 points, respectively.

in order to approximate the current at the second resonance [9], denoted f2 in
Figure 9. It has also been shown that the standard sine and cosine functions yield
extremely slow convergence of the solution [10]. We consider an array of crossed
dipoles arranged in a square lattice, tilted 45◦, with the side 17.25 mm. The length
of the dipole arms is 15.1 mm, while the width is 0.44 mm. Pelton and Munk have
reported measured results for this con�guration [9]. Figure 9 depicts the re�ection
coe�cient for parallel polarization. The angle of incidence is 60◦.

4 Conclusions

In this paper waveguide modes obtained by the FEM were successfully used for
surface current expansion in frequency selective surfaces. The commercial avail-
able code FlexPDE solved the Helmholtz' eigenvalue problem and saved a requested
number of modes in text �les. These current modes were then used in the MoM pro-
cedure in order to solve for the induced surface current, by means of the well known
spectral Galerkin method [15]. It was found that for standard element geometries,
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Figure 7: The equilateral triangular lattice. The length and width of the tripole
arms are L = 2.5 and W = 0.15 mm, respectively.

e.g., the dipole, the FEM current modes were similar to the modes used by other
authors. The FEM current modes have successfully been applied to a variety of FSS
con�gurations, slot as well as dipole elements, and to both single and dual layer
structures, including dielectric layers. The results have been compared to results
obtained by the PMM and Oresme code, with excellent agreement.
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