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Abstract

Isotropic chiral media can be modeled in several ways. We show that when
realizing such a medium from spiral inclusions with real permittivities and
permeabilities in a periodic structure, a modified Drude-Born-Fedorov model
is obtained. This model equals the original Born model for small wave vectors,
but the strength of the chirality depends on the propagation direction. The
effective parameters are calculated by an unbiased finite scale homogenization
method, which in principle could generate any model.

1 Introduction

Chiral media are interesting from a homogenization point of view, since they are
difficult to treat rigorously with classical methods. In 1914, Lindman created an
artificial medium composed of small metal coils, all wound the same way, embedded
in a background material [16,17]. The resulting material exhibited different propa-
gation speed for left and right hand circularly polarized waves, respectively. Many
others have followed, and a similar effect exists for visible light in sugar solutions,
where the different refractive indices for left and right circular polarized light is
explained by the fact that the sugar molecules found in nature have a handedness,
which introduces a preference for left or right. For more information on chiral media
we refer to the books [13,15] and references therein.

An interesting fact about chiral materials is that there is some arbitrariness in
how to model the chirality. Essentially, three different models can be identified: the
Post, Tellegen, and Drude-Born-Fedorov model, respectively. For time-harmonic
fields, all these models can be transformed into each other, and one may ask if any
model is more natural than the others. In this contribution, we show that within
a particular framework of homogenization, the Drude-Born-Fedorov model seems
more natural than the others.

Homogenization is the science of calculating effective material parameters for
composite materials, based on knowledge of the material parameters of the compo-
nents and the microscopic structure in which the components are mixed. We refer
to the books [2,6, 10,18, 24| and references therein for a review of this huge field.
The problem with classical homogenization is that in order to formulate rigorous
mathematical results, it is assumed that the applied wavelength is infinitely large
compared to the unit cell. In this limit, the electric and magnetic fields decouple,
and it seems there can be no chiral effects.

In recent years, new formalisms which provide a framework of finite scale homog-
enization have been developed [7,19-23|. These provide a window of opportunity
to rigorously calculate chiral effects in composite media. In this paper, we use re-
sults from [23] to prove that if the permittivity and permeability of the component
materials involved have so small losses that they can be considered as real valued
parameters, only the Drude-Born-Fedorov model can be considered as a reasonable
choice. The argument is surprisingly simple, and rests on a simple symmetry relation
for Maxwell’s equations. This symmetry disappears as soon as a finite conductivity



is introduced in the material description, but reappears when the conductivity is
infinite, which is the perfect electric conductor (PEC) case.

2 Dispersion relations and band plots

It is common to model heterogeneous materials by assuming the microstructure is
periodic, since this allows a detailed analysis of the microscopic geometry based
on periodic boundary conditions for the unit cell U. Once the unit cell U has been
specified, a reciprocal unit cell U’ is also defined (the first Brillouin zone) [12]. Using
the Floquet-Bloch representation an arbitrary square integrable field E(x) can be
written |3, 9, 23],
1
P =101 )

The field E(m, k) is called the Bloch amplitude, and is U-periodic in & whereas the
field e**E(x, k) is U'-periodic in k. A typical effect when using this representation
is the transformation of the nabla operator, V. — V + ik. It is shown in |23], that
the following eigenvalue problem contains the pertinent information of the problem
when the material consists of only real, symmetric permittivity matrix e(x) and
real, symmetric permeability matrix p(a), which are both assumed U-periodic:

ke Bz, k) dk (2.1)
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where € U and k € U’. When the unit cell contains a PEC region Q (such as the
coils in Lindman’s experiment), the problem is modified so that only space vectors
outside the PEC region, € U \ €, are considered. We also require the boundary
condition that electric fields tangential to the surface of ) are zero, i.e., 1 x E=0
where 1 is the normal to d€2. The same conclusions can then be made for the PEC
case as when the entire unit cell is filled with finite material parameters €(x) and
p(x).

It is shown in [23] that the eigenvalue problem (2.2) is well posed, and the
solutions can be used as a basis in a properly defined function space for Maxwell’s
equations. The eigenvalues w,, are real, and form a nondecreasing sequence

0<wi<ws<-- (2.3)

Since k € U’ is a free parameter, the eigenvalue problem (2.2) defines w, as a
function of k, which is the dispersion relation w,, = W, (k).

For each eigenvector [En,ﬁn]T with eigenvalue w,, there is a corresponding
eigenvector [E,,, —H,|" with eigenvalue —w,,. This is shown by

(o-3oes ") (5)- (2828)
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Figure 1: Plot of a typical band structure. The eigenvalues Q,, = ac™'w,, for the
geometry in the upper left figure (normalized unit cell a U = ]0,1[> where a is
the size of the physical unit cell U) are depicted as functions of the normalized
wave vector ka in the reciprocal unit cell aU’ = |—m, 7[> in the lower left figure.
The thin grey strip is a band gap, where there are no eigenvalues regardless of the
wave vector. Thus, in this frequency interval there can exist no fixed frequency
solutions to Maxwell’s equations, and for frequencies below this band gap, only two
modes contribute to the electric field. The calculations are made with the program
described in [11], and the scaffold geometry is taken from [8]. The thickness of the
bars is 20% of the unit cell, and the permittivity in the bars is 12.96.

where we used (2.2) to arrive at the second line. This demonstrates that it is
sufficient to consider only dispersion relations corresponding to positive w,. A typical
example of dispersion relations for a specific geometry is given in Figure 1.

3 Calculation of effective material parameters

In [22,23], it is shown that a periodic heterogeneous material can be replaced by
a homogeneous, effective material when the wavelength is large enough. More pre-
cisely, the condition can be written as

m—1

0 Telifea -1 +1 &y

for non-magnetic media, where )\ is the vacuum wavelength, ¢ is the permittivity of
vacuum, and a is the length of the unit cell. Note that this does not require the unit
cell to be infinitely small compared to the vacuum wavelength. For a fixed k € U’,
the effective material parameters can be expressed in terms of the mean values of



the eigenvectors corresponding to the four eigenvalues with smallest absolute value.
These are the dispersion relations W, (k) which go to zero as k — 0 in Figure 1,
and are termed acoustic modes in [23]. The relation defining the parameters is

N () - (& ) () o

where (D) denotes the mean value of the Bloch amplitude of the electric flux density
over the unit cell U etc. The explicit formula for the effective material parameters
in terms of the acoustic modes is [23]

<<6-En>><<e-ﬁ:n>*)
4 Tr T o\ *x
(eeﬁ Eeff> -y (- Hy)) \(p- Hy) (3.3)
Ceff Hest — <€ : En>* : <En> + <H ’ Hn>* ’ <H7l>

where the numerator should be understood as a dyadic product. The parameters & .4
and (.g model the possible direct coupling between electric and magnetic fields in
the constitutive relation. Denoting the normalization factor by 1/((e - E,)" - (E,) +
(w-H,)" - (H,)) = A,, we obtain for each of the matrices €.z, €4, Cof, and frog,

€otf = ;An (e-E,) (e E,)" (3.4)
ot = i:lAn (€ E,) (u-H,)' (3.5)
Cor = ZA (n-H,)(e- E,)" (3.6)
Hop = ZA (w-H,)(n-H,) (3.7)

—~

We now utilize the property that if [En, ﬁn]T is an eigenvector, then [En, —-H,|is
also an eigenvector. This means

:ZAn<<e-En> (- H,) + (e B (- <—ﬁn>>*) =0 (38)

and the same result applies to {.g. Thus, only €.s and pg can be nonzero for a
composite material using only real valued component materials (and possibly some
PEC inclusion).

We end this section by pointing out that the arguments presented above to
prove that £ .4 = (.5 = 0 break down when the component materials are lossy. The



‘ Tellegen Post Drude-Born-Fedorov
D=|ecE+CH epE+iEB e(E+ PV x E)
B=|purH—-CE pp(H—-i(E) pu(H+ BV x H)

Table 1: Three different possible descriptions of isotropic chiral media |13, pp.
15-16].

generalization of the eigenvalue problem (2.2) to include a conductivity is

(w7 TN @) = (6 ) (&) oo

where the electric conductivity matrix o (x) is a nonnegative matrix. The introduc-
tion of this matrix into the operator directly influences the fundamental properties
of the eigenvalue problem, so that the eigenvalues w,, are no longer real. As is shown
in [14], the imaginary part of the eigenvalues is always nonpositive, Im(w,) < 0.
This implies that if [En,ﬁn]T is an eigenvector, it is no longer guaranteed that
[E,,—H,|" is an eigenvector.

This means that for lossy component materials, there can very well be a coupling
term between electric and magnetic fields in the effective constitutive relations.
However, this coupling is expected to be weak for small losses.

4 Different constitutive relations for chiral media

There are three major models that have been used to model isotropic chiral materi-
als, as given in Table 1. For time-harmonic fields in source free regions, the different
models can be transformed into each other. If sources are present they may need to
be transformed too.

The results in the preceding section implies that the coupling terms between
electric and magnetic fields in the Tellegen and Post descriptions must necessarily
be zero for the effective material computed by the formula (3.3). This leaves the
Drude-Born-Fedorov model as the natural choice for describing chiral materials.

This model has some problems. Since it involves spatial derivatives in the con-
stitutive relation, it is a nonlocal relation. This means special care has to be taken
when using the formulation in a scattering problem, where the proper boundary
conditions must be applied. Some of these problems are treated in, e.g., [1,13].

Applying the Floquet-Bloch transformation to the electric part of the Drude-
Born-Fedorov model implies

D =¢(E+B(V +ik) x E) (4.1)
with the mean value over the unit cell U

(D) = (I + Gikx) (E) (4.2)



since the mean value of any derivative of a periodic field is zero, (V x E) = 0. This
implies that chiral effects should appear as a gyrotropic tensor

0 —i 0
Pikx =plk[ i 0 0 (4.3)
0 0 O
where it was assumed that the wave vector is in the z direction, k = |k|2. This

matrix is seen to be hermitian symmetric for real 3, which implies there is no loss
due to this term, corresponding well to the fact that our composite material is built
of lossless components. The same procedure applies to the magnetic fields.

5 Results for a specific microstructure

As a numerical demonstration, spiral inclusions have been implemented in the pro-
gram described in [11] as depicted in Figure 2. The effective material parameters
are computed according to (3.3), and we attempt to fit the following model to the
data:

(D) = (1 — kk + Biikx) (E) (5.1)
(B) = u(I — kk + Boikx) (H) (5.2)

i.e., an extended Drude-Born-Fedorov model where we allow different (-factors in
the electric and magnetic relations, respectively. Note that we must subtract kk
from the three-dimensional identity matrix, since the effective permittivity computed
from (3.3) cannot have components in the k-direction [23].

The parameters € and (3, are extracted from the computed €4 using the formulas

 _ @ (5.3)
b = % (5.4)

where tr(e.g) denotes the trace of the matrix €.z. It is easy to verify that these
formulas are exact if our model (5.1) is true, and since the computations for each
fixed k are independent, the computed parameters ¢ and (; will in general depend
on k. The same procedure is applied to calculate the relevant ;1 and (3, parameters
from p g

In Figure 2, we plot the geometry of the unit cell, along with the reconstructed
parameters €, 31, i, 32, and the approximate relative error in the effective material
matrices using these parameters, i.e.,

‘ |l €ct '

where €. is the original effective permittivity calculated using (3.3), and €4 is the
permittivity calculated using the model (5.1) with the identified parameters ¢ and
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Figure 2: Spiral geometry and the effective €, u, 31 and (5 parameters as computed
by (5.3) and (5.4). Only the real part of the parameters is plotted, the imaginary
part is at least a factor 3 - 1075 less than the real part for each parameter and
can be considered as numerical noise. The approximate relative errors d. and ¢, as
defined in (5.5) are also plotted. On the horizontal axis are different values of the
normalized wave vector ka within the reciprocal unit cell. In the graph for 3; and
B2, the peaks at ka = (m,0,0) have been truncated, the top value is 0.78 for both
curves. The resolution of the unit cell is 128 x 128 x 128 pixels, and the results are
close to identical if the resolution 64 x 64 x 64 is used instead. The material in the
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spirals is nonmagnetic with a permittivity of 100.




f1 calculated from (5.3) and (5.4). The matrix norm used is the largest singular
value norm, and the corresponding error J,, for the permeability is also shown. It is
seen that the error is below 2.5% except for ka close to (7, 0,0) and (7,7, 0). The
error is almost entirely due to the structure not being completely isotropic, since
the spirals are slightly asymmetric. If we measure only the error concerning the
chirality, 7.e., the fit of the imaginary parts of €.s and .4, the approximate relative
error level drops to below 3-107% for all k.

Studying the results in Figure 2, it is clearly seen that the factors §; and [y are
in general not equal. In particular, we see that for small wave vectors we have

61— Bo#0 and [y — 0 when |k|—0 (5.6)

where the value 3 is in the order of 0.04a, and depends on in which direction the
origin is approached. This does not mean that the constitutive relation is multival-
ued or even anisotropic at k = 0, since the factor ; should be multiplied by ik x
which decreases to zero as |k| — 0. At k = 0 only the parameters € and x contribute
to the constitutive relation, and these do not depend on the direction the origin is
approached in. We also notice a substantial increase in 3; and 3, as ka = (7,0, 0) is
approached, with peak values at 3; = Py = 0.78a. Due to symmetry, this behavior
repeats for ka = (0,7,0) and (0,0, 7).

To summarize, not even the Drude-Born-Fedorov model seems to be fully suitable
for modeling this microstructure. For small ka, .e., when the applied wavelength
is very long compared to the unit cell, we rather have

(D) = e({E) + poik x (E)) (5.7)

—~

(B) = yu (H) (5.8)

where 3y depends on the direction of k, being minimal along the principal directions
of the unit cell and maximal along the diagonal. This looks more like Born’s original
model |4,5|. The dependence of 3, on direction does not contradict the isotropy of
the unit cell geometry, since as soon as k # 0, there is a preferred direction in the
material which is not necessarily aligned with the periodicity. Isotropy for k # 0
may be recovered in a random medium.

6 Conclusions

We have demonstrated that when using only real permittivities and permeabilities,
there can be no coupling between electric and magnetic fields in the effective material
parameters, even in the case of finite scale difference. The argument used is based
on a particular symmetry due to the lossless medium, and breaks down as soon as
we introduce a finite conductivity in the problem. However, it can be expected that
the possible coupling due to small losses is weak.

Allowing for spatial dispersion, a chiral effect may appear as a gyrotropic part of
the effective material tensor. According to the homogenization formalism used here,
a lossless isotropic chiral material seems to be best modeled with a modified Drude-
Born-Fedorov model. For small wave vectors, this model couples the circulation of



the electric field to the electric polarization but leaves the magnetic field without
the corresponding coupling, which is Born’s original model [4,5]. The strength
of the coupling in this low frequency limit depends on the propagation direction,
being minimal along the principal directions of the unit cell, and maximal along the
diagonal. Isotropy may be recovered in a random mixture, since then all directions
are equal, even for finite wave vectors.
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