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To my family

“Learn from yesterday, live for today, hope for tomorrow.
e important thing is not to stop questioning.”

Albert Einstein





Populärvetenskaplig
sammanfattning

Det sägs att ögonen är själens spegel och att man genom att titta på någons ögon kan
säga något om personens sinnesstämning och hur personen mår. Forskning kring
ögonrörelser har visat att man genom att mäta ögats rörelser kan tolka hur den vi-
suella informationen som vi tar in genom ögonen har behandlats. Eftersom det är
hjärnan som styr muskulaturen runt ögat som i sin tur kontrollerar ögats rörelser,
så kan man genom att studera ögonrörelser dra slutsatser om hjärnans funktion i
de delar som styr ögats muskler. Ögonrörelser mäts idag genom att en videokamera
filmar ögat och med hjälp av bildbehandling skattas blickens position. En sådan
utrustning kallas för en eye-tracker eller ögonrörelsemätare. Idag används ögonrö-
relsemätare bland annat för att analysera relationen mellan våra ögonrörelser och
motsvarande kognitiva processer i hjärnan, till exempel då vi läser en text. För att
kunna analysera och förstå denna relation behöver den inspelade ögonrörelsesig-
nalen delas in i olika typer av ögonrörelser. De vanligaste typerna av ögonrörelser
är fixeringar, sackader, och mjuka följerörelser. Problemet med nuvarande metoder
för klassificering av ögonrörelser är att de oftast är utvecklade för att användas till
signaler som är inspelade när en person tittar på statiska bilder, vilket medför att
metoderna inte kan hantera mjuka följerörelser. Dessutom saknas standardiserade
metoder för att jämföra och utvärdera existerande metoder.

Denna avhandling handlar om att utveckla metoder för att dela upp och klas-
sificera segment av den inspelade ögonrörelsesignalen i de vanligaste typerna av
ögonrörelser oberoende av vilken typ av stimuli som har använts vid inspelning-
en. Avhandlingen behandlar även olika sätt att utvärdera metoder för klassificering
av ögonrörelser. I det första arbetet har en metod utvecklats för att klassificera sac-
kader i signaler som är inspelade när personer tittar både på bilder och rörliga vide-
oklipp. Förutom sackader, så klassificeras även så kallade post-sackadiska oscillatio-
ner (PSO), som är snabba oscillerande rörelser som följer direkt efter vissa sackader.
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vi Populärvetenskaplig sammanfattning

PSO ses ofta som en störning och om de är ögonrörelser eller inte är fortfarande
inte helt klarlagt. Denna nya metod gör det möjligt att studera sackader i signaler
som är inspelade under rörliga videoklipp, där tidigare metoder haft problem att
hitta och avgränsa sackader.

I det andra arbetet har en metod utvecklats som delar upp intervallen mellan
de detekterade sackaderna och möjliga PSO i fixeringar och mjuka följerörelser. För
att separera de två typerna av rörelser beräknas signalens spatiala utbredning och
riktning i både långa och korta tidsskalor. Metodens prestanda utvärderas med fem
olika mått som beskriver både generell och detaljerad prestanda för klassificeringen.

Ofta vid inspelning av ögonrörelser spelas signaler från båda ögonen in, men det
finns få algoritmer som drar nytta av informationen från båda ögonen. I det tred-
je arbetet har en metod utvecklats som använder signaler från båda ögonen för att
bättre kunna separera mjuka följerörelser från fixeringar. Genom att använda signa-
lerna från båda ögonen kan synkroniseringen mellan ögonen studeras och motverka
att drift under fixeringar blir felaktigt klassificerade som mjuka följerörelser. Utöver
en ny metod för klassificering av ögonrörelser föreslås i det tredje arbetet även en ny
utvärderingsmetod. Utvärderingsmetoden baseras på automatiskt detekterade rörli-
ga objekt i de videoklipp som används vid inspelningen av ögonrörelserna. Genom
att jämföra tidpunkter då ögat rör sig samstämmigt med något rörligt objektet kan
mjuk följerörelse utvärderas utan att tidskrävande manuella annoteringar behöver
användas.

I de tre första arbetena används en stationär ögonrörelsemätare med hög samp-
lingsfrekvens. I det ärde arbetet används istället en mobil ögonrörelsemätare i form
av ett par glasögon. När en mobil ögonrörelsemätare används kan personen fritt rö-
ra huvudet. I det ärde arbetet har därför en metod utvecklats för att kompensera
för huvudrörelser i den inspelade ögonrörelsesignalen. Huvudrörelserna mäts med
hjälpa av en sensor (IMU) som placeras på personens huvud och skattar dess ori-
entering. Den kompenserade ögonrörelsesignalen används sedan tillsammans med
automatiskt detekterade objekt från scenvideon för att detektera sackader, fixering-
ar, och mjuka följerörelser.

Totalt utgör de fyra delarna i avhandlingen en metodplattform för robust detek-
tering av olika typer av ögonrörelser vid dynamisk stimulus, dvs. när man tittar på
rörliga bilder eller en rörlig scen. I plattformen ingår även metoder för utvärdering
av algoritmerna som är oberoende av om en stationär eller en mobil ögonrörelse-
mätare har använts.



Abstract

is doctoral thesis has signal processing of eye-tracking data as its main theme. An
eye-tracker is a tool used for estimation of the point where one is looking. Automatic
algorithms for classification of different types of eye movements, so called events,
form the basis for relating the eye-tracking data to cognitive processes during, e.g.,
reading a text or watching a movie. e problems with the algorithms available
today are that there are few algorithms that can handle detection of events during
dynamic stimuli and that there is no standardized procedure for how to evaluate the
algorithms.

is thesis comprises an introduction and four papers describing methods for
detection of the most common types of eye movements in eye-tracking data and
strategies for evaluation of such methods. e most common types of eye move-
ments are fixations, saccades, and smooth pursuit movements. In addition to these
eye movements, the event post-saccadic oscillations, (PSO), is considered. e eye-
tracking data in this thesis are recorded using both high- and low-speed eye-trackers.

e first paper presents a method for detection of saccades and PSO. e sac-
cades are detected using the acceleration signal and three specialized criteria based
on directional information. In order to detect PSO, the interval after each saccade
is modeled and the parameters of the model are used to determine whether PSO
are present or not. e algorithm was evaluated by comparing the detection re-
sults to manual annotations and to the detection results of the most recent PSO
detection algorithm. e results show that the algorithm is in good agreement with
annotations, and has better performance than the compared algorithm.

In the second paper, a method for separation of fixations and smooth pursuit
movements is proposed. In the intervals between the detected saccades/PSO, the
algorithm uses different spatial scales of the position signal in order to separate be-
tween the two types of eye movements. e algorithm is evaluated by computing
five different performance measures, showing both general and detailed aspects of
the discrimination performance. e performance of the algorithm is compared to
the performance of a velocity and dispersion based algorithm, (I-VDT), to the per-
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viii Abstract

formance of an algorithm based on principle component analysis, (I-PCA), and to
manual annotations by two experts. e results show that the proposed algorithm
performs considerably better than the compared algorithms.

In the third paper, a method based on eye-tracking signals from both eyes is
proposed for improved separation of fixations and smooth pursuit movements. e
method utilizes directional clustering of the eye-tracking signals in combination
with binary filters taking both temporal and spatial aspects of the eye-tracking signal
into account. e performance of the method is evaluated using a novel evaluation
strategy based on automatically detected moving objects in the video stimuli. e
results show that the use of binocular information for separation of fixations and
smooth pursuit movements is advantageous in static stimuli, without impairing the
algorithm’s ability to detect smooth pursuit movements in video and moving dot
stimuli.

e three first papers in this thesis are based on eye-tracking signals recorded us-
ing a stationary eye-tracker, while the fourth paper uses eye-tracking signals recorded
using a mobile eye-tracker. In mobile eye-tracking, the user is allowed to move the
head and the body, which affects the recorded data. In the fourth paper, a method
for compensation of head movements using an inertial measurement unit, (IMU),
combined with an event detector for lower sampling rate data is proposed. e
event detection is performed by combining information from the eye-tracking sig-
nals with information about objects extracted from the scene video of the mobile
eye-tracker. e results show that by introducing head movement compensation
and information about detected objects in the scene video in the event detector,
improved classification can be achieved.

In summary, this thesis proposes an entire methodological framework for robust
event detection which performs better than previous methods when analyzing eye-
tracking signals recorded during dynamic stimuli, and also provides a methodology
for performance evaluation of event detection algorithms.



Preface

e doctoral thesis comprises an introduction and four parts describing methods
for detection of common types of eye movements in eye-tracking data and strategies
for evaluation of such methods. e four parts are based on the following papers:

[1] Linnéa Larsson, Marcus Nyström, and Martin Stridh, “Detection of saccades
and postsaccadic oscillations in the presence of smooth pursuit,” in IEEE
Transactions on Biomedical Engineering, vol. 60, no. 9, pp. 2484–2493, 2013.

[2] Linnéa Larsson, Marcus Nyström, Richard Andersson, and Martin Stridh,
“Detection of Fixations and Smooth Pursuit Movements in High-Speed Eye-
Tracking Data,” in Biomedical Signal Processing and Control, vol. 18, pp. 145–
152, April 2015.

[3] Linnéa Larsson, Marcus Nyström, Håkan Ardö, Kalle Åström, and Mar-
tin Stridh, “Smooth Pursuit Detection in Binocular Eye-Tracking Data with
Automatic Video-Based Performance Evaluation,” Submitted for publication.

[4] Linnéa Larsson, Andrea Schwaller, Marcus Nyström, and Martin Stridh,
“Head Movement Compensation and Multi-Modal Event Detection for Mo-
bile Eye-Trackers,” Submitted for publication.

In Papers I-IV, the author of this thesis designed the experiments, recorded the data,
developed and implemented the algorithms, and prepared the manuscripts. Parts
of the work have been presented at the following conferences:

[5] Linnéa Larsson, Martin Stridh, and Marcus Nyström, “Event detection in
data with static and dynamic stimuli,” 16th European Conference on Eye
Movements, Marseille, France, pp. 37, August, 2011.
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[6] Linnéa Larsson, Martin Stridh, and Marcus Nyström, “Detection of fixations
and smooth pursuit eye movements using local and global properties of the
eye-tracking signal,” Book of Abstracts of the 17th European Conference on
Eye Movements, in Lund, Sweden. Journal of Eye Movement Research, 6(3),
pp. 250, August, 2013.

[7] Linnéa Larsson, Marcus Nyström, and Martin Stridh, “Discrimination of fix-
ations and smooth pursuit eye movements in high-speed eye-tracking data,” in
Proc. 36th Annual International Conference of the IEEE Engineering inMedicine
and Biology Society (EMBC), Chicago, USA, pp. 3797–3800, August, 2014.

[8] Linnéa Larsson, Andrea Schwaller, Kenneth Holmqvist, Marcus Nyström,
and Martin Stridh, “Compensation of head movements in mobile eye-
tracking data using an inertial measurement unit,” in Proc. of the 2014 ACM
International Joint Conference on Pervasive and Ubiquitous Computing, pp.
1161–1167, Sept., 2014.
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Chapter 1

Thesis Introduction

is doctoral thesis deals with the development of methods for event detection in
eye-tracking signals, and strategies for evaluation of such methods. An eye-tracker
is a tool for estimation of where a person is looking, i.e., the point of gaze. Auto-
matic detection of different types of eye movements in the eye-tracking signal, so
called events, forms the basis for researchers that use eye-tracking to understand the
relationship between eye movements and the corresponding processes in the brain.
Eye-tracking is used in as diverse fields of research as psychology, cognitive science,
neurology, medicine, engineering, and economics, to mention some. Eye-tracking
research is thus often highly inter-disciplinary, which is also reflected in how eye-
tracking hardware and software have been developed over the years.

Eye-trackers have at the same pace as other electronics become smaller, lighter,
and cheaper, and have therefore become more easily accessible for a larger group
of researchers during recent years. Most of the hardware in today’s eye-trackers are
quite mature in the sense that they can record eye movements in various environ-
ments and for different participants. A major bottleneck for the continued progress
in eye-tracking research is the need for improved algorithms to perform the analysis
of the recorded eye-tracking signals. Especially, there is a need for analysis software
for recordings where dynamic stimuli are used. Dynamic stimuli refer to that the
objects that the user is looking at are moving either in the environment, when a
mobile eye-tracker is used, or on a computer screen in a stationary setup.

A majority of the available algorithms are developed to detect two of the most
common types of eye movements which occur when data are recorded using a sta-
tionary eye-tracker and when viewing static stimuli. Recently, however, the interest
in using dynamic stimuli has grown, both for stationary and mobile eye-tracking.
When dynamic stimuli are used, additional types of eye movements occur in the
data. e problem with many of the current algorithms is that, since they are not
developed for this purpose, they may behave unreliably or even erroneously for more
complex data.

3



4 Introduction

Event detection in eye-tracking data is associated with many challenges. One
of those is that many different types of noise and disturbances may occur in the
recorded signals which originate both from the eye-tracker and from individual dif-
ferences among the users. is variability between measurements and individuals
may create signals that are difficult to analyze. e challenge is therefore to de-
velop algorithms that are flexible enough to be used for signals that contain various
types of events and disturbances, and that can handle both different individuals
and different types of eye-trackers. An additional challenge in event detection of
eye-tracking signals is how to evaluate and compare different algorithms. In many
signal processing applications, the algorithms are evaluated by calculating the per-
formance for simulated signals. It is, however, a challenge to construct eye-tracking
signals that capture the variations and the disturbances in real signals to such an
extent that they are authentic and are useful for performance evaluation. Without a
standard procedure for how to perform the evaluation, it is also difficult to compare
the performances of algorithms from different research groups.

In the present thesis, four papers are included which in different ways deal with
event detection in eye-tracking signals. e central themes of the papers are:

I. Detection of saccades and post-saccadic oscillations in high-speed eye-tracking
data when static and dynamic stimuli are used.

II. Detection of fixations and smooth pursuit movements in high-speed eye-
tracking data when static and dynamic stimuli are used.

III. Detection of smooth pursuit movements in binocular eye-tracking signals
combined with automatic performance evaluation based on objects detected
in the stimuli videos.

IV. Compensation of head movements and multi-modal event detection in sig-
nals recorded using a mobile eye-tracker.

In the following chapters, an introduction to the eye-tracking research field is pro-
vided. In Chapter 2, an overview of the anatomy and physiology of the eye is given.
Chapter 3 contains a description of the principles of an eye-tracking system and how
the gaze of the user is estimated. e current state-of-the-art of event detection al-
gorithms is summarized in Chapter 4, and in Chapter 5 an overview of methods
for analyzing mobile eye-tracking data is given. Finally, in Chapter 6, the included
papers and the main contributions are summarized.



Chapter 2

The Human Eye

2.1 Anatomy of the eye

e sensory systems in the human body consist of sensory receptor cells that are
stimulated from internal or external sources in the body, neural pathways that trans-
fer the sensory information to the brain, and parts of the brain where the sensory
information is processed [1]. In the human body, there are several sensory systems,
e.g., the auditory for hearing, the vestibular for balance, and the visual system for vi-
sion. e visual system is the sensory system that makes it possible for us to process
visual information that we capture through our eyes [1]. It comprises the eyeball,
the muscles surrounding it, and the neural pathway transmitting the signals to the
brain. e function of the eyes in the visual system is to focus light from objects
around us to the rear part of the eyeball and convert the light to electrical signals
that are transmitted to the brain for further processing [2]. e eye is a liquid-
filled ball that is enclosed by a white surface called the sclera. An illustration of
the human eye is shown in Fig. 2.1. From the outside, parts of the sclera are seen
together with the colored iris and the black pupil. e sclera surrounds the eyeball
except for its most anterior surface which is the thin transparent and protective layer
called the cornea. e cornea is the first medium of the eye to reflect and refract
incoming light, before it passes through the pupil and further to the lens where the
light refracts once more [3]. e size of the pupil changes with the ambient light
conditions and controls the amount of light entering the eye and the lens. When
the light refracts in the lens, fine adjustments are performed before the light con-
tinues through the liquid filled globe to the rear parts of the eyeball, the retina. e
retina is a thin layer of tissue that covers most of the inner walls of the eyeball. It
is sensitive to light and consists mainly of photoreceptor cells, nerve cells, and glial
cells [4]. ere are two types of photoreceptive cells: rods and cones. ese two
types of photoreceptive cells have different functions; cones enable color vision and
high visual acuity, while the rods are important for night vision and for detection
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6 Introduction

Figure 2.1: An illustration of the anatomy of the human eye, from Wikimedia
Commons.

of motion. In the retina, there are about 100 millions of rods and 5 millions of
cones [4]. e density of cones and rods are unevenly distributed over the retina,
see Fig. 2.2. Fovea centralis is the spot on the retina where the concentration of
cones is the highest. Moving only a few millimeters outside the fovea centralis the
concentration of cones decreases and the concentration of rods increases. Since it
is only in regions with high concentrations of cones where objects can be clearly
seen, it is only when light hits the fovea that we are able to see an image with high
resolution. e rods and cones absorb the photons and convert them to electrical
signals that are transmitted via the optical nerve to the brain.

2.2 Eye Movements

e main purpose of eye movements is to direct the eyes towards the object of
interest or to keep the object of interest at the center of the fovea in order to provide
a clear vision of the object. In order for the eye to move, three pairs of muscles are
attached to each of the eyeballs. ese muscles make it possible for the eye to move,
within its orbit, vertically, horizontally, and torsionally [5]. e movements of the
eye are divided into seven functional classes, see Table 2.1. Each functional class is
described further in the following subsections.
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Figure 2.2: An illustration of the distribution of the cones and rods on the retina,
adopted from Wikimedia Commons.

2.2.1 Fixations

A fixation is a movement when the eye is more or less still and focuses on an object.
e function of a fixation is to stabilize the image on the fovea, so that it can be
seen clearly. e small movements during a fixation can be divided into three types:
tremor, slow drift, and microsaccades [6]. Tremor is a small wave-like motion of the
eye, with an amplitude around 0.01◦ and a frequency below 150 Hz [7]. e func-
tion of tremor is still largely unknown [6]. Drift is a slow motion of the eye, which
occurs simultaneously with tremor [6]. It was for a long time believed that drift
was a random motion of the eye due to instability in the oculomotor system. Later,
it was found that drift has a compensatory role to maintain visual acuity during
fixations, when there are not sufficiently many microsaccades [6]. A microsaccade
is the fastest of the fixational eye movements and has a duration of about 25 ms [6].
Microsaccades occur around 1-2 times per second, depending on the task [8]. Even
though the amplitude of a microsaccade is lower than for a normal saccade, they
share many properties. Recently, it was found that microsaccades may be voluntary
movements when performed during natural tasks [8].
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Table 2.1: e functional classes of eye movements, inspired by [7].

Class of Eye Movement Main Function
Fixation Holds the image of a stationary object

on the fovea
Saccade Brings images of objects of interest

onto the fovea
Smooth Pursuit Holds the image of a moving target

on the fovea
Vergence Moves the eyes in opposite directions

so that the images of a single object
from the two eyes are placed or held
simultaneously on their respective fovea

Vestibular Holds images of the seen world
steady on the retina during brief
head rotations or translations

Optokinetic Holds images of the seen world
steady on the retina during
sustained head rotations

Nystagmus quick phases Resets the eyes during prolonged
rotation and directs gaze towards
the scene that will come



9

2.2.2 Saccades

e saccade is the fastest of the eye movements and its main purpose is to change
the gaze from one object of interest to the next. A typical saccade has a duration
between 30 and 80 ms and a velocity between 30◦/s and 500◦/s [9]. A relationship
exists between the duration, amplitude, and velocity of a saccade, which suggests
that larger saccades have larger velocities, and last longer [10]. e latency in the
saccadic system is around 200ms, and corresponds to the time from the onset of the
stimulus to the initiation of the eye movement. is includes the time it takes for the
central nervous system to determine whether a saccade should be initiated or not,
and, if this is the case, calculate the distance that the eye should move, and transmit
the neural pulses to the muscles that move the eyes. A common assumption is that a
saccade is a straight line between point A and point B. However, in reality, a saccade
is seldom a straight line, instead it most often has a slightly curved trajectory [11].

2.2.3 Smooth pursuit movements

A smooth pursuit is performed when the eyes track a moving object, e.g., follow a
bird that flies across the sky. A smooth pursuit movement can only be performed
when there is a moving object to follow [12]. e latency of the smooth pursuit
system is about 100 ms, which is slightly shorter than for saccades [9]. e latency
of the smooth pursuit system corresponds to the time it takes for the eye to start
moving from the onset of the target motion. A smooth pursuit movement can
broadly be divided into two stages: open-loop and closed-loop [13]. e open-
loop stage is the pre-programmed initiation stage of the smooth pursuit where the
eye accelerates in order to catch up with the moving target. e closed-loop stage
starts when the eye has caught up with the target and follows it with a velocity
similar to that of the target. In order to be able to follow the moving target in the
closed-loop stage, the velocity of the moving target is estimated and compared to the
velocity of the eye. If the velocity of the two are different, e.g., the eye lags behind
the moving target, a movement known as a catch-up saccade is performed in order
to catch up with the target again. e human eye can follow a target at velocities
up to 100◦/s [14]. e higher the velocity of the moving target, the more catch-up
saccades are needed in order for the eye to be able to follow the target. However,
most often smooth pursuit movements have velocities below 30◦/s. If the stimulus
only consists of one moving target that moves in a predictable way, the eye will be
able to follow it more accurately, with fewer catch-up saccades [7].

2.2.4 Vergence eye movements

When the two eyes point at the same object, the eyes need to be directed in slightly
different directions. is is due to the fact that the two eyes are separated by a few
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centimeters. e movements that the eyes perform when they either move towards
each other, convergence, or away from each other, divergence, are often referred to
as vergence eye movements [7]. Each eye needs to be controlled separately, in order
to keep the same object on the fovea of both eyes. is is especially important for
objects that are at a close distance. In order for the brain to be able to combine
the images of the object from the two eyes into one, the object must lie on the
corresponding spot on the retina of each eye. e maximum visual angle that the
object can be apart on the retina is called Panum’s area [7]. is means that if the
object seen from the two eyes are within this area the images are combined into one,
and if not, the object will be interpreted as two and double vision will occur [7].

2.2.5 Vestibular eye movements

e function of vestibular eye movements is to stabilize the image on the fovea
in order to sustain clear vision during head rotations [7]. Since the vestibular eye
movements respond to signals from the vestibular system, the latency for these eye
movements is shorter than for eye movements initiated by the visual system. e
latency of the system can be as short as 7− 15 ms, compared to about 200 ms for
the saccadic system. e eye movement vestibular ocular reflex, VOR, responds to
both translational and rotational head movements, which both are natural move-
ments in everyday life. e translational head movements are performed when the
head moves from left to right, up and down, or forward and backward, with the
nose pointing in the same direction. For rotational head movements, the head can
rotate around three axes: horizontally, vertically, and torsionally. Horizontal ro-
tation corresponds to shaking the head, vertical rotation corresponds to nodding,
and torsional rotation corresponds to lying the head against one of the shoulders.
e size of the compensatory eye movements that are needed to keep the image on
the fovea during these head movements is larger for closer objects than for distant
objects.

2.2.6 Optokinetic and Nystagmus quick phase

Optokinetic eye movements are similar to vestibular eye movements in the sense
that they are initiated in order to keep the image on the fovea and compensate for
head movements. Optokinetic eye movements respond to sustained head rotations,
e.g., when sitting in a spinning chair. In order for the eye not to get stuck in the
outer part of the eye socket in the opposite direction of the rotation and not be
able to make any movements during sustained head rotations, the eye needs to
quickly move in the same direction as the rotation, referred to as the quick phase of
nystagmus [7].



Chapter 3

The Eye-Tracker

Originally, an eye-tracker referred to an equipment that was used to measure the
orientation of the eye, while a gaze-tracker was used to estimate where a person
was looking. Over time, these two terms have been used interchangeably, and in
the following the term eye-tracker is used to refer to the equipment that tracks the
movements of the eyes and that estimates the direction and position of gaze. Over
the last 100 years, several different types of measurement techniques have evolved.
is chapter gives an overview of different types of eye-trackers, with the emphasis
on the most widely used eye-tracker today, video-oculography.

3.1 Video-oculography (VOG)

e type of eye-tracker that is most commonly used today is camera-based and is re-
ferred to as video-oculography (VOG). ere are three main types of VOG-systems:
tower mounted, remote, and mobile [9]. e tower mounted and the remote sys-
tems are stationary setups where the user typically sits in front of a computer screen,
or a larger monitor, while a mobile eye-tracker is a wearable setup which can be used
in a setting outside the laboratory. e technology behind a video-based eye-tracker
can be divided into two subparts: eye detection and gaze estimation. In the eye de-
tection part, the eye is detected and tracked in the images captured by the camera,
and in the gaze estimation part, the direction of the gaze is estimated.

3.1.1 Eye detection

With very few exceptions, VOG-systems consist of one or several cameras that
record the eye and one or several infrared light sources directed towards the eye.
Since the light is infrared, it is not visible to the human eye and will therefore not
distract the user [15]. e infrared light sources give rise to reflections in the eye, re-
ferred to as Purkinje images. e first Purkinje image, is the reflection in the cornea,

11
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Figure 3.1: An illustration of the four Purkinje images.

and is therefore called the corneal reflection (CR). In the eye, there are four changes
in medium that may reflect the incoming light and give rise to Purkinje images. An
illustration of these four reflections is shown in Fig. 3.1. To detect and track the eye
in the image captured by the camera is a challenging task, e.g., due to occlusion of
the eye, the degree of openness of the eye, variation in size, reflections, viewing an-
gle, head pose, eye color, light conditions, and variation in eye shape [15]. Several
methods have been proposed in order to overcome these challenges. e methods
are divided into three main categories: shape-based, appearance-based, and hybrid
methods. e shape-based methods use either models that rely on local features
or contours of the eye. A wide range of models have been used, from simple el-
liptic models to more complex models that take both the shape of the eye and the
structure that surrounds it into account. e more simple methods are not robust
to changes in light and focus of the camera, and to occlusion, i.e., periods when
the user closes the eyelid. On the other hand, the more complex models suffer
from being computationally demanding, in need of high resolution images with
high contrast, sensitive to changes in pose, and also to occlusion of the eye [15].
e appearance-based methods are based on templates that detect and track the eye
based on the distribution of color or responses from a filter bank that enhance de-
sired features in the image. e weaknesses of appearance-based methods are that
they are not invariant to scale and rotation of the eye, and since a template is used,
it is difficult to capture all variations of human eyes. e hybrid models combine
shape-based methods with the appearance-based methods in order to overcome the
limitations of each method. One such method uses part-based modeling, which
attempts to build a general model out of smaller parts of the image [15]. One lim-
itation with this type of method is that a specific model needs to be built for each
person [15].
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3.1.2 Gaze Estimation

e goal of the gaze estimation part of the eye-tracker is to convert the informa-
tion extracted from the image of the eye into a gaze direction or the position of
gaze [15]. Most gaze estimation methods are based on features, which means that
they extract features such as the contours of the eye and the pupil, and different
reflections in the surfaces of the eye and based on these features calculates the di-
rection of gaze [15]. Feature-based methods can be divided into two main cate-
gories: interpolation-based methods and model-based methods. Characteristic for
the interpolation-based methods is that the extracted features from the image are
mapped to gaze coordinates by a mapping function that most often is a paramet-
ric function, e.g., a polynomial function. Other nonparametric functions may also
be used, e.g., a neural network [16]. In the interpolation-based methods, the gaze
position is explicitly calculated without previous calculation of the direction of the
gaze. e model-based methods are based on a geometric model of the eye and
the objects that are being viewed, and the gaze direction is estimated based on the
features extracted from the image of the eye. e position of gaze, referred to the
point-of-regard (POR), is estimated as the intersection between the gaze direction
and the nearest viewed object, e.g., the monitor.

e simplest VOG eye-tracker is based on one camera and one light source.
e idea behind this type of setup is that when the eye moves the pupil moves with
it. Instead of measuring the movement of the eye directly, it is indirectly measured
by the motion of the pupil in the recorded image. is setup assumes that the
CR does not move much when the eye moves, and because of that, the CR can
be used as a reference position in the recorded image. us, when the user looks
in different directions, the relationship between the CR and the pupil changes. By
asking the user to look at a number of predefined positions on a monitor, referred to
as calibration points, a relationship between the relative positions of the CR and the
pupil, and the positions on the monitor can be established. is setup works well
when the head is fixated, e.g., for the tower mounted setup. In order to be able to
perform gaze estimation in front of a computer screen when the head is allowed to
move, e.g., when using a remote system setup, the number of light sources and/or
the number of cameras needs to be increased. By using a setup with one camera
and multiple light sources the setup is made invariant to head pose, e.g., by placing
four IR-light sources on the corners of the monitor that the test person is facing,
and by calculating the projection of the light sources on the surface of the cornea,
the gaze can be estimated [17]. e method is head pose invariant, but sensitive to
changes in depth, i.e., if the distance between the user and the monitor changes.

In the setup with one camera and multiple light sources, there is often a trade
off between a wide angle camera that allows for large head movements and an image
of the eye with high enough resolution and contrast in order to be able to detect
and track the eye in the image. In order to solve this problem multiple cameras
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and multiple light sources can be used. In a multiple camera setup, one wide angle
camera and one narrow angle camera that is directed towards the eye may be used.
When using multiple cameras, the cameras need to be calibrated in order to avoid
problems when matching images from the two cameras to each other, and in ad-
dition, it is more data to process. For a complete review of eye detection and gaze
estimation methods, see [15].

3.1.3 Types of VOG systems and their data

Tower mounted eye-trackers
A tower mounted eye-tracker, see Fig. 3.2a, consists of a pillar where the user places
the head. At the top of the pillar a camera and an infrared light source pointing
downwards are attached. e camera films the eye through a mirror, which is placed
in front of the user’s eyes. e camera is typically a high speed camera with a frame
rate of 1000 – 2000 frames/s. e infrared light source which is directed via the
mirror towards the eye, gives rise to the CR. In the image of the eye, captured by
the camera, the CR and the pupil are detected, see Fig. 3.2b. e tower mounted
eye-tracker requires that the head of the user is fixated in order to record data with
high quality.

Because of its size and that the setup requires the user to have the head fixated,
a tower mounted eye-tracker is typically used for laboratory experiments. A typical
setup is that the tower mounted eye-tracker is placed in front of a computer screen
where the stimuli are presented to the user. Eye-tracking data recorded from a tower
mounted eye-tracker are shown in Fig. 3.3, where the user is reading a text.

Remote eye-trackers
In a remote eye-tracking system, illustrated in Fig. 3.4a, the camera or cameras are
attached below a computer screen. In contrast to the tower mounted eye-tracking
system where the image from the camera covers only the eye, the image from a re-
mote camera covers larger parts of the face, see Fig. 3.4b. Since the user has the
freedom to move, although within a limited range, the eye detection methods need
to be more robust to larger movements of the eyes between frames, than the meth-
ods in the tower mounted eye-tracking system. e cameras in a remote system
can either be integrated in the computer monitor or be a separate device that can
be mounted on any monitor or laptop. Remote eye-trackers are available in many
forms, from a low cost web-camera solution that samples at 25 Hz, to fully inte-
grated systems with sampling frequencies up to 1000 Hz.

Since the user is able to move during the recordings, remote eye-trackers are
very popular. But the freedom for the user to move during the recording comes at
the cost of less precise and less accurate data compared to data recorded with the
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(a) (b)

Figure 3.2: (a) An example of a tower mounted VOG-system. (b) An image of an
eye captured with the camera of the system in (a), where the detected pupil and
CR are marked with a white and a black cross.

Figure 3.3: Eye-tracking data from a person reading a text. e data is recorded
with a tower mounted system.
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(a) (b)

Figure 3.4: (a) An example of a remote VOG-system. (b) An image of the eyes cap-
tured with a remote VOG-system, where the detected pupils and CRs are marked
with crosses.

(a) (b)

Figure 3.5: (a) An example of a mobile VOG-system. (b) An image of an eye
captured with the camera of the system in (a), where six CRs are visible in a circle
around the pupil.

tower mounted eye-tracker. Examples of research where a remote eye-tracker has
been used are infant studies [18] and recordings of school children [19], where a
tower mounted eye-tracker often is not applicable.

Mobile eye-trackers
Both tower mounted systems and remote systems are used in laboratory experiments
where a participant is seated in front of a computer screen. e third type of system
is a mobile system, see Fig. 3.5a, where the eye-tracking equipment is attached
to a helmet, a cap, or a pair of glasses. e mobile eye-tracking system typically
consists of a camera that records the eye, some versions have one camera for each
eye, and one camera, referred to as the scene camera, that captures the scene that
the user is exploring. e camera(s) that films the eye can be placed either on the
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Figure 3.6: Data point from a mobile eye-tracker that is mapped onto the scene
video. Here the gaze is indicated with a red dot.

head of the user filming the eye through a mirror, or be integrated on the inside of
the frame of a pair of glasses filming the eye directly. In Fig. 3.5b, an example of
an image of the eye captured with a mobile eye-tracking camera is shown. Since
the camera is placed on the user, the eye movements are recorded in relation to
the movements of the head, referred to as eye-in-head motion. In order to record
eye movements in relation to a world coordinate system, referred to as eye-in-space
motion, the position of the head and the body needs to be measured with either
external equipment or through the scene camera. An overview of such methods is
given in Chapter 5. In many mobile eye-tracking systems, the recorded eye-in-head
signal is given in the coordinate system of the scene camera, and the gaze is marked
with a cross or a dot in the scene camera video, an example is shown in Fig. 3.6.
e sampling frequency of the recorded eye-tracking signal presently ranges from
25 Hz up to 100 Hz.

e flexibility of mobile eye-trackers opens up for experiments outside the lab-
oratory when studying, e.g., decision making in the supermarket [20] or eye move-
ments during sports activities [21].
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3.2 Other methods

3.2.1 Electro-oculography (EOG)

In the eye, there is a potential difference between the positive frontal part, the
cornea, and the negative rear part, the retina, referred to as the corneo-retinal po-
tential [22]. is potential difference of about 1mV is utilized in the electro-
oculography (EOG) method. Assuming that the difference in the corneo-retinal
potential is stable, the eye can be modeled as a dipole. When the eye moves, e.g.,
from left to right, the orientation of the dipole changes and causes a change in the
electric field. e change in the electric field is measured by placing electrodes at
both sides of the eyes, and one additional electrode as reference. e measured po-
tential is small and is in the range of 15-200µV [22]. One of the advantages of using
the EOG is that eye movements can be measured when the eyes are closed, and one
disadvantages is that the measurements may be disturbed by noise from the action
potentials of the surrounding muscles which are several magnitudes larger than the
potential difference caused by the movements of the eyes.

3.2.2 Scleral search coils

One of the most accurate and precise methods for measurement of eye movements
is the scleral search coil method [22]. e coils consist of a lens, where a magnetic or
an optical object is placed [23]. Robinson [24], was the first to introduce magnetic
wires in the coils. e user was placed in two magnetic fields that were perpendicular
to each other and when the eye moves, a current is induced in the coil. e voltage
between the coils caused by this current is the measurement of the eye movement.
Even though the scleral search coils have high spatial and temporal resolutions, it
is a very invasive method which is highly uncomfortable for the user [25]. Often
the user can only wear the coils for maximally 30 minutes, even when anesthesia is
used, which limits the maximal time of the experiment [25].

3.2.3 Dual-Purkinje-image eye-tracker (DPI)

e first dual-Purkinje-image eye-tracker, DPI, was introduced in [26], and later
updated in [27]. An infrared light source is directed towards the eye and both
the first and the fourth Purkinje images are tracked [26]. When the eye rotates,
the first Purkinje image moves in the same direction as the eye, while the fourth
Purkinje image moves in the opposite direction in relation to the optical axis. By
measuring the difference between the two reflections, the movements of the eye can
be determined. e DPI is known to be an eye-tracker with a low noise level, even
though the recorded signals contain wobbling patterns in the beginning and in the
end of saccades. ese wobbling patterns in the signal are hypothesized to occur
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since the attachment of the lens is elastic and the fast rotations of the eye cause the
lens to wobble in relation to the eyeball [28].
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Chapter 4

Event Detection

e purpose of an event detection algorithm in the context of eye-tracking is to
discriminate between the different types of eye movements and other types of events
in the recorded eye-tracking signal. e different types of eye movements have
different functions and are controlled by different parts of the brain. By performing
event detection in a recorded eye-tracking signal, the different eye movements are
separated from each other, which allows researchers to study the cognitive function
of each type of eye movement separately. One such example is in reading research
where eye-tracking has a long history. In reading studies, the length, direction, and
number of saccades, and the duration of fixations, are examples of characteristics
that are used to interpret and quantify how someone is reading a text [29]. Similarly,
the characteristics of smooth pursuit movements reflect the functionality in several
different parts of the brain and can therefore be used as an indicator of disease [7].

is chapter covers the most common types of events that are detected in eye-
tracking signals. An overview of existing event detection algorithms is provided
together with a summary of performance evaluation strategies.

4.1 Events

Since eye-tracking signals do not only consist of different types of eye movements,
but also blinks and noise from different sources, an event detection algorithm also
needs to consider such events. is section describes the different types of events
that appear in eye-tracking signals.

4.1.1 Eye movements

e most obvious types of events are the “true” eye movements. Out of the seven
functional classes of eye movements presented in Table 2.1, fixations, saccades, and
smooth pursuit movements are the ones that most often are considered by event de-
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Figure 4.1: Example of saccades, fixations, and PSO. (a) Position over time, (b)
velocity over time, (c) position in the spatial domain, and (d) PSO and fixation
zoomed in.

tection algorithms. In Figs. 4.1 – 4.2, eye-tracking signals with indicated fixations,
saccades, and smooth pursuit movements are shown.

4.1.2 Postsaccadic Oscillations (PSO)

Rapid oscillatory movements that may occur immediately after the saccade, are re-
ferred to as postsaccadic oscillations, (PSO). Similar movements have in the lit-
erature been referred to as dynamic overshoot [30, 31], and postsaccadic ring-
ing [32]. Postsaccadic oscillations refer in this thesis to all rapid movements in the
eye-tracking signals that occur directly after the saccade. e amplitudes of PSO
range from 0.25◦ up to over 1◦ and there are large individual differences in both
the amplitude and occurrence of PSO [33, 34].

e characteristics of the eye-tracking data originating from different recording
systems may vary depending on the measurement principle, sampling frequency,
and internal filters of the system. e appearances of most types of eye movements
are the same, but the appearance of PSO is different for different recording sys-
tems. is fact has made researchers to start questioning whether PSO represent
eye movements or are artifacts from the eye-tracker. PSO have been reported from
search coil systems [31], DPI eye trackers [28] and VOG-systems [33, 32]. In [28],
simultaneous recordings with search coils and a Dual Purkinje Image eye-tracker
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Figure 4.2: Example of smooth pursuit movements. (a) Position over time, (b)
velocity over time, and (c) position in the spatial domain.

showed PSO in data recorded when using the DPI, but not in the data from the
search coils. erefore, Deubel and Bridgeman [28] concluded that PSO originate
from lens wobbling and not from rotations of the eye. Recent research suggests that
it is the pupil that is moving inside the iris, causing the PSO in data from video
based eye-trackers [33]. Regardless of the origin of PSO, and their consequences
for perception, the question of whether PSO should be classified as belonging to
saccades, as belonging to fixations, or simply be removed from the recorded data
remains unsolved. Examples of PSO recorded with a VOG-system are shown in
Fig. 4.1.

4.1.3 Blinks

When recording eye movements using a VOG-system the signal is interrupted each
time the user closes the eyelids. In order to not confuse blinks with other types of
eye movements, it is important to detect the blinks properly. An example of an eye-
tracking signal, recorded using a stationary VOG-system, where a blink is indicated,
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Figure 4.3: Example of the appearance of a blink. (a) Eye-tracking signal over
time, where the blink is indicated as coordinates (0,0), corresponding to that the
participant has closed the eye completely. (b) Appearance of a blink in the xy-
plane. e segment of the signal corresponding to the signal shown in (a) is marked
in black.

is shown in Fig. 4.3. In this specific VOG-system, the eye-tracking signal is set to
zero when the eyelid is completely closed, and the drift-like movements before and
after the actual blink correspond to that the eyelid is partly open.

4.1.4 Noise and Artifacts

Noise and artifacts in the eye-tracking signal may originate from several different
sources and may have different appearances. Typically, the source of the noise is
that the pupil or the CR are not correctly detected in the image of the eye. is
may be caused by droopy eyelids, make-up, reflections in the sclera, reflections in
glasses, light conditions, or movements of the users which cannot be handled by the
eye-detection algorithm [9]. e resulting noise and artifacts in the eye-tracking
signal have different appearances depending on type of problem and type of eye-
tracker. A typical appearance of these types of artifacts, when using a VOG-system,
is different types of spikes, referred to as one- and two-samples spikes [35]. An
example of a signal that contains artifacts when the participant performs a smooth
pursuit movement is shown in Fig. 4.4. In order to detect and remove noise, several
filters and algorithms have been proposed [36, 37]. A survey of filters for real-time
applications is given in [38].
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Figure 4.4: Example of the appearance of noise and artifacts in a recorded eye-
tracking signal. (a) In the xy-plane, and in (b) over time.
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4.2 Event detection algorithms

As mentioned above, the purpose of an event detection algorithm is to segment the
eye-tracking signal into different types of events. Depending on whether a station-
ary or mobile eye-tracker was used to record the signals, the subsequent analysis
may differ. Four different approaches are considered in this thesis, and are listed
below:

• e first approach, shown in Fig. 4.5, is event detection for stationary eye-
tracking setups which record the eye-in-space signal. e eye-in-space signal
is either recorded using the tower mounted system where the head of the par-
ticipant is fixated or the remote eye-tracker where the camera has a stationary
position.

• e second approach, shown in Fig. 4.6a, may be used for event detection
in mobile eye-tracking signals. Most types of mobile eye-trackers record eye
movements in relation to movements of the head and body, i.e., the eye-in-
head signal. In this approach, the eye-in-head signal is used directly in the
event detection algorithm. Since the eye-in-head signal is influenced by head
and body movements, these movements limit the number of event types that
can be separated in the eye-in-head signal. Most often the event detection
algorithm separates between saccades [39] and the intervals between the sac-
cades [40], which may include fixations, smooth pursuit movements, VOR,
and OKN. Since the eye-in-head signal may differ from the eye-in-space sig-
nal, not all algorithms used in the first approach are applicable.

• In the third approach, shown in Fig. 4.6b, the eye-in-head signal recorded
with the mobile eye-tracker is combined with a positioning system, e.g., a
motion capture system. Another option is that the integrated scene camera
of the mobile eye-tracker is utilized for compensation of the head and body
movements. By combining the eye-in-head signal with a system that esti-
mates the position and orientation of the user, the eye-in-space signal is esti-
mated. For the estimated eye-in-space signal, an event detection algorithm,
similar to the ones used in the first approach can be applied.

• e fourth approach, shown in Fig. 4.6c, may be used for mobile eye-tracking
signals. In this approach, the eye-in-head signal is mapped onto the image
from the scene camera. e signal is segmented either by manually annotat-
ing whether the frame belongs to a fixation or not, or an automatic process
where objects in the scene video are detected and related to the gaze. In this
approach only fixations are considered.
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Figure 4.5: Event detection in eye-tracking signals recorded with a stationary
setup.
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Figure 4.6: ree types of approaches to perform event detection in mobile VOG-
systems. A grey block indicates that the method is described in Chapter 5.
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Figure 4.7: Number of event detection algorithms in the end of 2010. Each group
of dot(s) indicates an algorithm and the color of the dot(s) the types of events that
are detected by that algorithm. Dark blue dot indicates saccades, turquoise dot in-
dicates fixations, and yellow dot indicates smooth pursuit movements. Algorithms
that are systematically evaluated are shown in black.

In this section, the event detection algorithms used in approaches 1–3 are described,
and in Chapter 5, methods for compensation of head and body movements in the
third approach and methods for analyzing the eye-tracking data using the scene
camera in the fourth approach, are presented.

Historically, event detection algorithms have been divided into two categories:
dispersion-based and velocity-based algorithms [51]. In recent years, several event
detection algorithm have been developed that are a combination of both categories
or additional features have been included, which makes this type of categorization
less attractive. erefore, in the following section, the algorithms are divided based
on whether they are developed for static stimuli or dynamic stimuli. is catego-
rization focuses on the functionality of the algorithms rather than their internal
structure. In Figs. 4.7 – 4.8, the number of algorithms published until the end of
year 2010 and end of year 2015 respectively, are shown. e four sections in the
figures show if the stimuli were static-artificial, static-natural, dynamic-artificial, or
dynamic-natural. In Figs. 4.7 – 4.8, the algorithms that are systematically evalu-
ated, in terms of either using manual annotations, simulations, or a comparison
to existing algorithms, are emphasized in black. Note, that even though the total
number of systematically evaluated algorithms has increased, only two new algo-
rithms for dynamic-natural stimuli have been published since 2010 and only one
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Figure 4.8: Number of event detection algorithms in the end of 2015. Each group
of dot(s) indicates an algorithm and the color of the dot(s) the types of events that
are detected by that algorithm. Dark blue dot indicates saccades, turquoise dot in-
dicates fixations, and yellow dot indicates smooth pursuit movements. Algorithms
that are systematically evaluated are shown in black.

of them considers smooth pursuit movements.

4.2.1 Static stimuli

e very first automatic event detection algorithms were based on a few thresholds.
One of the first is the dispersion based algorithm [50], later referred to as the I-DT
algorithm [51]. e I-DT algorithm has two parameters: a dispersion threshold and
the length of a time window in which the dispersion is calculated. e length of the
time window is often set to the minimum duration of a fixation, which is around
100-200 ms [51, 50]. e dispersion is calculated within the window and if the
dispersion is below the dispersion threshold, the window is extended one sample to
the right until the dispersion threshold is exceeded. en all, but the last sample are
labelled as a fixation and a new window with the initial length starts with the last
unlabelled sample. e dispersion is again calculated, and if the dispersion exceeds
the dispersion threshold the first sample in the window is labelled as a saccade. e
window is moved one sample and the procedure continues until all samples are
labelled. Several different metrics have been used for calculation of the dispersion,
see [69] for an overview. e performance of the I-DT algorithm has recently been
evaluated in [70].
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e original algorithm that has inspired many subsequent algorithms uses a ve-
locity threshold, and is referred to as the I-VT algorithm [51]. Since a high velocity
is typical for saccades whereas a low velocity is typical for fixations, the I-VT al-
gorithm has mainly been used for separation between saccades and fixations. e
velocity is calculated as the difference between samples, i.e., the sample-to-sample
velocity, and all samples that have velocities higher than the threshold are classi-
fied as saccade samples and all samples that have velocities lower than the threshold
are classified as being fixation samples [51]. e velocity threshold has in the lit-
erature varied from 5◦/s up to 300◦/s [48] depending on the sampling frequency,
which eye-tracker that has been used, and if a filter was used when the velocity was
calculated.

e I-VT algorithm was further developed by using the mean velocity over five
samples instead of using the sample-to-sample velocity, which made the velocity
signal smoothed [46]. is algorithm calculated the velocity signal over a complete
trial and by estimating the standard deviation of the velocity signal using a me-
dian estimator, the velocity threshold was calculated as a multiple of the estimated
standard deviation of the velocity signal. e calculated velocity thresholds for the
x- and y- directions were inserted into the formula of an ellipse and all samples
outside the ellipse in the xy-plane were classified as saccades and all samples inside
the ellipse were classified as fixations [46]. is algorithm was developed to better
adapt to different levels of noise between different participants and trials without
the need for manual adjustments of the velocity threshold. Originally, the algo-
rithm was proposed for microsaccade detection, but has also been used for normal
saccades. A further development of the algorithm in [46] was performed in [41],
where the algorithm is also velocity based. e velocity signal was calculated using
a Savitzky-Golay filter [71], which is a polynomial filter that smoothens the velocity
signal more than the moving average filter used in [46]. e algorithm is iterative,
and in the first step, the algorithm finds the peaks of the saccades. For each peak,
a local velocity threshold is calculated based on the mean and standard deviation
of the noise in the previous inter-saccadic interval. e onset and offset of the sac-
cade is found by iteratively and sample-wise evaluating the velocity against a local
velocity threshold. In the next step, PSO are detected if the velocity exceed two
separate velocity thresholds during a constant time window placed immediately af-
ter the detected saccade [41]. is algorithm was developed for adaptation of the
thresholds to different noise levels and is the first algorithm to detect PSO, (referred
to as glissades in [41]), as a separate event.

In [47], the I-VT algorithm was extended to detect saccades by using a constant
false alarm rate procedure. e thresholds were continuously updated based on the
observed data, which made the detection algorithm less sensitive to noise.

Another method which was developed to minimize the number of settings was
proposed in [60]. e algorithm combines the position signal, the velocity signal,
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and the acceleration signal and uses k-means clustering to separate saccades from
fixations. e algorithm is iterative and both local and global clustering is per-
formed. e number of clusters is automatically calculated from the data, but the
user has to set the thresholds for the minimum duration of fixations and for the
minimum duration of saccades.

e continuous Wavelet transform has been used to detect blinks, saccades,
and fixations in EOG data [55], also referred to as CWT-SD. e algorithm was
developed to identify everyday tasks from the eye movement pattern, e.g., read-
ing a text, scrolling a web page, and writing a text. By calculating the continuous
wavelet coefficients for the recorded eye-tracking signal, the saccades were detected
by comparing one of the coefficients to a threshold. e fixations were detected
using a dispersion threshold and the blinks using another threshold based on the
wavelet coefficients.

e Wavelet transform has also been used to detect microsaccades [68]. During
fixational eye movements, the microsaccades can be viewed as singularities in the
recorded data. By using the continuous wavelet transform these singularities can be
found and by investigating the signal surrounding the singularity using principle
component analysis, the microsaccades can be characterized. e method can also
be used for normal saccades without adjusting the parameters [68].

One of the first stochastic algorithms that has been applied to eye-tracking sig-
nals is the Hidden Markov Model, referred to as I-HMM [51]. e method is
based on two states where the first is for fixations and the second is for saccades.
e method is based on that fixations have low velocities and that saccades have
high velocities. e model uses one probability to stay in the same state and one
probability to make a transition to the other state. e parameters of the I-HMM
are derived from training data, e.g., where manually annotated data are used, before
classification is performed.

A stochastic algorithm that uses Bayesian statistics to discriminate between sac-
cades, fixations, and blinks is proposed in [65]. e algorithm was developed for
real-time analysis of EOG-data. e algorithm uses two features: e normalized
derivate of consecutive samples and the difference between the maximum and the
minimum of the derivative of the vertical eye-tracking signal. e intrinsic pa-
rameters of the algorithm are set during an unsupervised training procedure in the
beginning of the data sequence using the Expectation-Maximization algorithm for
Gaussian mixture models [65]. e thresholds for maximum and minimum dura-
tions of blinks and saccades still have to be predefined.

Another approach where three serially connected artificial neural networks were
used for detection of saccades, micro-saccades, fixations, and blinks was proposed
in [64]. Within two windows, one for the position signal and one for the veloc-
ity signal, seven features were calculated for each window which together formed a
feature vector that was fed into the first neural network. First, blinks where sepa-
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rated from the other types of movements, i.e., saccades and fixations. In the second
stage of the network, the fixations where separated from the saccades and in the
last stage the saccades where distinguished from microsaccades. In the evaluation
of this algorithm, a very large database was used with 1392 participants.

In [66], the I-DT algorithm was extended to C-DT, and instead of using the
dispersion measure to distinguish between fixations and saccades, the variances in
the x- and y-position signals were evaluated. is algorithm is based on the as-
sumption that the variances in x and y are of similar magnitude and independent
of each other during a fixation. is assumption is evaluated by calculating the
covariance and the statistical F-test for equal variance [66].

A completely nonparametric method was proposed in [56]. e method uses
gap statistics [72] in order to calculate both the velocity threshold to separate non-
saccadic data from saccades and the duration threshold for fixations.

Most of the algorithms that have been developed for event detection in eye-
tracking signals have been monocular, i.e., they use only the signal from one eye.
One exception is the BIT-algorithm, Binocular-Individual reshold [54], which
is a velocity-based algorithm that separates fixations from saccades by using the
minimum determinant covariance estimator and control chart procedures. It is a
parameter-free algorithm that explores the relationships between the left and right
eye and between the horizontal and vertical directions [54].

Another approach to make use of the binocular signals is to calculate the average
between the signals from the two eyes, i.e., the average of the two x-signals and the
average of the two y-signals, separately [73]. By calculating the average between the
two eye-tracking signals, the noise level may be reduced.

In [46], and later in [74], the binocular nature of microsaccades was explicitly
used by only considering saccades that are, with a maximum time lag, detected in
both signals.

4.2.2 Dynamic stimuli

A common denominator for the algorithms that are presented in this subsection
is that they can be used for eye-tracking signals recorded during dynamic stimuli.
Furthermore, the algorithms can be categorized into algorithms that identify fixa-
tions and saccades in the presence of smooth pursuit movements and those that also
detect smooth pursuit movements.

Saccades and fixations in presence of smooth pursuit
In the early 90s, Sauter et. al. [45] proposed an algorithm for detection of saccades
in signals that also contained smooth pursuit movements. e algorithm used a
Kalman filter that compared the predicted and the calculated velocities [45]. e
idea was that during smooth pursuit movements, the velocity is predictable, and
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during saccades, it is not, and by calculating the difference between the predicted
and the present velocities, the saccades could be detected.

Also in [58], an algorithm was developed to accurately detect saccades in data
that contain smooth pursuit movements. e algorithm contained three steps.
First, the eye-tracking signal was median filtered in order to remove the veloc-
ity component of the smooth pursuit movement signal, and in the second step,
a template of a saccade was moved across the velocity compensated signal for cross-
correlation calculation between the template and the signal. e samples with high
correlation to the template were marked as candidate saccades and the others as can-
didate fixations. In the third step, the samples marked as candidate saccades were
grouped together and the duration of the candidate saccade and time between two
candidate saccades were investigated in order for the samples to be considered as
actual saccades.

In [59], a particle filter was used to detect saccades with varying amplitudes.
A particle filter is a Bayesian state estimator that is a powerful tool to describe a
non-linear and non-Gaussian system [59]. e algorithm suppresses the velocity
component that is related to the smooth pursuit movement and was therefore able to
detect blinks, micro-saccades, and saccades performed during both smooth pursuit
movements and free viewing of static images.

e I-VT algorithm has been extended in various ways for different purposes,
either to only detect fixations or to only detect saccades or to detect both of them.
For eye-tracking signals recorded with a mobile eye-tracker, when the user can move
head and body freely, the I-VT algorithm was extended to also include a threshold
for the minimum fixation duration [40]. e algorithm was used to detect fixations,
which in their work included smooth pursuit movements, OKN, and VOR.

In order to robustly detect saccades in signals recorded using a mobile eye-
tracker while walking, an algorithm was proposed in [39]. eir algorithm used
a combination of the position, velocity, and acceleration signals in order to detect
the saccades.

An algorithm solely based on the acceleration signal was proposed in [49], and
later modified to be a real-time and adaptive algorithm for separating saccades from
other nonsaccadic components [44]. e algorithm is based on that the distribu-
tion of the acceleration signal of non-saccadic movements have zero mean and that
saccadic components belong to a distribution with non-zero mean. e accelera-
tion threshold is based on this assumption and is updated for every sample with a
window of 200 ms duration. When the acceleration signal exceeds the threshold,
the onset of the saccade is found and in order to determine the offset, both the
position signal and the acceleration signal are used [44].
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Smooth pursuit movements

e Kalman filter proposed in [45], was later extended in [75] to detect saccades,
fixations, and smooth pursuit movements. A Chi-square test was used to classify the
samples that are above the threshold as saccades and the samples that are below the
threshold as fixations. In a following step, the intervals detected as neither saccades
nor fixations were considered to be smooth pursuit movements.

In the original implementation of the I-VT algorithm, only saccades and fix-
ations were detected. Extensions have been proposed where also smooth pursuit
movements are included in the I-VT algorithm [43, 63, 42]. A common feature of
these extensions is that the saccades are detected using a velocity threshold and that
an additional threshold is used for separation between fixations and smooth pursuit
movements. One such implementation was made in [43] where a velocity threshold
was combined with principle component analysis for separation between saccades
and smooth pursuit movements. e algorithm was developed for data where both
humans and monkeys watched dynamic stimuli. In [63], the I-VT algorithm was
extended for detection of smooth pursuit movements using an additional velocity
threshold, (I-VVT), a dispersion threshold [42], (I-VDT), and by analysis of the
movement pattern [52], (I-VMP). In a comparison between the three algorithms,
the I-VDT algorithm showed the most robust results for detection of smooth pur-
suit movements [63].

In order to detect smooth pursuit movements, a set of signal measures were in-
troduced [76], and later extended to include, e.g., velocity, variance of the position
signal, range, and slope [61]. ese measures were calculated in several consecu-
tive windows and a k-nearest neighbor classifier was used to detect smooth pursuit
movements [61]. An upper and a lower threshold for each measure were found by
evaluating the signal measures for a manually annotated part of the database.

Bayesian detection theory has also been used for detection of saccades, fixations,
and smooth pursuit movements in a real-time algorithm proposed in [62]. e al-
gorithm uses the velocity to separate between saccades and fixations and the total
positional movement within a time window for detection of smooth pursuit move-
ments. e thresholds are calculated automatically during a training period using
the Expectation and Maximization-algorithm, similar to [65].

In order to detect saccades, fixations, smooth pursuit movements, and VORs,
an extended version of the I-HMM algorithm was proposed in [53]. A two di-
mensional Hidden Markov Model was used, which included both the velocity of
the eye-tracking signal and the velocity of the recorded head movements. e algo-
rithm was developed to be used for mobile eye-tracking data, when also the head
movements are available.

An algorithm that is based on the same idea as the I-HMM is the algorithm
in [57]. It uses a Bayesian mixture model to separate between saccades and fixa-
tions and a principle component based algorithm to later separate between fixations
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and smooth pursuit movements. e algorithm has been used for low-speed data
recorded during driving sessions [57].

4.3 Performance evaluation

ere are a number of conceptually different approaches that have been used for
performance evaluation of event detection algorithms. In this section, the most
commonly used methods are presented, and their respective advantages and draw-
backs are discussed.

4.3.1 Properties of detected events

One of the most commonly used methods for performance evaluation of event
detection algorithms is to calculate a set of established properties of the detected
events, e.g., duration, amplitude, and peak velocity [41, 60, 77]. is method is
useful when manual annotations of the signals are not available and when the stim-
uli is not artificial, i.e., when texts, images, or video clips are used. By comparing
the distributions of the calculated properties to well-established values from the
literature, the overall performance of the detection algorithm can be investigated.
In [77], the plotted distribution of the fixation durations showed that the applied
algorithm did not give satisfying results. e main drawback of plotting distribu-
tions is that each detected event is not compared to the corresponding true one.
And, even when the distribution looks as expected, the accuracy of the detections
on a sample-to-sample level is not evaluated.

4.3.2 Stimuli-based

When artificial stimuli is used, e.g., a dot is moving across the screen, the coordi-
nates and the time when the dot is shown are known. If the participant is instructed
to follow the movement of the dot, the detected event can be compared to the pre-
sented stimuli in order to evaluate the performance of the event detection algorithm.
is type of performance evaluation assumes that the participant follows the given
instructions, but even if this is true, not only the performance of the algorithm is
evaluated but also the participant’s ability to actually follow the movements of the
dot. In Fig. 4.9, the eye-tracking signal is plotted together with the corresponding
position of the stimuli. Note that the number of fixations in the eye-tracking signal
is not equal to the number of plateaus in the stimuli signal. Using this evaluation
strategy, only the types of eye movements that are triggered by stimuli can be evalu-
ated, i.e., saccades, fixations and smooth pursuit movements. Other types of events
in the eye-tracking signal, e.g., blinks, PSO, catch-up saccades and microsaccades,
cannot be evaluated. Since it takes some time for the human visual system to react
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Figure 4.9: Eye-tracking signal compared to the corresponding stimuli. e num-
ber of fixations and saccades are not the same as in the stimuli. e arrows show
examples of corrective saccades that are not initiated by the stimuli, and the bars
at the bottom show the latency between stimuli and the initiation of the saccades.
For readability only the x-coordinate is shown.

on visual stimulation, e.g., the latency to launch a saccade or latency before initiat-
ing smooth tracking of an object during smooth pursuit movements, a time window
after or around the time when the presented stimuli is shown is often investigated.
If the corresponding event appears within this time window, it is considered to be
correct [65]. Due to this time window, and depending on the length of it, the onsets
and offsets are difficult to evaluate accurately. Despite this, performance measures
such as sensitivity, specificity, accuracy, and recall are typically calculated in order
to evaluate the performance of algorithms.

In order to improve the above described method of using the stimuli, a set of
scores was proposed for evaluation of saccades and fixations [48]. Seven scores were
calculated in order to evaluate the performances of the compared algorithms. Four
of the scores were well-known parameters of the detected events: average number of
fixations, average fixation duration, average number of saccades, and average saccade
amplitude. In addition, three scores reflecting the user’s ability to follow the stimuli
were calculated: the ratio between the number of samples detected as fixations and
the number of samples when fixation points are shown in the stimuli, the distance
between the center of the fixation point in the stimuli and the corresponding center
point of the detected fixation samples, and finally, the sum of total detected am-
plitudes of the saccades is compared to the sum of the total distance the dot in the
stimuli has moved. e seven scores were compared to their respective ideal score.
e closer to the ideal score, the better the performance of the detection algorithm.
In [63], the scores were extended to work also when smooth pursuit movements
are present in the eye-tracking signal. ree additional scores were proposed for
smooth pursuit movements: the average difference in distance between the smooth
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pursuit movement and the corresponding moving dot in the stimuli, the difference
in speed between the detected smooth pursuit movement and the corresponding
moving dot in the stimuli, and the ratio between the total length of the detected
smooth pursuit movements and the total length of the smooth pursuit stimuli. In
addition, a score was introduced to reflect the amount of detected smooth pursuit
samples that were incorrectly detected as fixations. is score was calculated as the
ratio between the number of samples detected as smooth pursuit movement when
the stimuli were not moving and the total number of fixation samples in the stimuli.

4.3.3 Manual annotations

In order to evaluate the performance of an event detection algorithm more accu-
rately, manual annotations may be an alternative. Many of the most recently de-
veloped algorithms have been evaluated using manual annotations [56, 58, 64, 65,
62, 57]. Although the use of manual annotations is an accurate method for eval-
uation of an event detection algorithm, it is also time consuming, subjective, and
cumbersome to perform. e reasons for using manual annotations may be that
the participants do not fully follow the stimuli [62], events are not trigged by the
stimuli [65, 64], or the stimuli is not artificial, i.e., texts, images, or video clips, are
used. It is common to use more than one expert to perform manual annotations of
the same data set [40, 56, 57]. ere are several ways to deal with more than one
expert. Either the results based on each of them are presented [56], or if a detec-
tion made by the algorithm agrees with one of them it is counted as correct [40],
or all samples were the experts do not agree are removed in order to only evaluate
the samples where all experts are in agreement [57]. Another option is to calculate
the inter-rater agreement on parts of the data, and if it is sufficiently high, only one
of the experts is used for the complete dataset. Having more than one expert may
become complicated if the agreement between them is low. On the other hand,
removing samples where the experts do not agree may lead to that the most com-
plicated patterns of events, which may also be the most interesting parts of the data
to evaluate, are removed.

4.3.4 Simulations of eye-tracking signals

In many signal processing areas it is common to perform simulations of signals and
evaluate the performance of algorithms based on these simulations. However, it is a
challenge to construct simulated eye-tracking signals with authentic structure, vari-
ation, disturbance patterns, and measurement system dependent properties which
make them useful for performance evaluation purposes. Some attempts have been
made: In order to evaluate an algorithm for the detection of microsaccades, data
were simulated by averaging 100 microsaccade from recorded eye-tracking data. In-
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tervals between the microsaccades were simulated with white Gaussian noise sent
into an AR-process [67]. Others have used recorded eye-tracking signals and added
Gaussian noise with different variances to the signals in order to evaluate the algo-
rithm’s sensitivity to different levels of noise [59, 56]. In [47], the author argues
that simulated signals are better for performance evaluation of algorithms than sub-
jective and time consuming manual annotations, and therefore that algorithm is
only evaluated on simulated signals.

4.4 Available databases and algorithms

In order to be able to compare results between eye-tracking laboratories, there are a
number of research groups that share their recorded data. For a complete overview
of eye-tracking databases and the corresponding image and video stimuli, see [78,
79]. Although there is a large number of available databases, there are only few
datasets that are recorded for the purpose to evaluate event detection algorithms.
One such dataset is described in [62], where both the eye-tracking signals and the
annotations of events are provided.

ere are also a number of researchers who share their algorithms, either di-
rectly on their own webpages or as supplementary material on the journal’s web-
page [48, 63, 67, 59, 65, 56, 62, 80, 43, 66, 60, 41, 54]. In 2012, the Eye Move-
ment Researchers’ Association (EMRA) was founded with the aim to be a platform
for sharing, e.g., open-access tools and datasets, see www.eye-movements.org.
A summary of the available algorithms and databases for the algorithms presented
in this chapter is given in Table 4.1.

www.eye-movements.org
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Table 4.1: Summary of available databases and algorithms that are described in
this chapter.

Component Year Algorithm Database Eye movements
Berg et. al [43] 2009 ✓ ✓ Saccade, Fixation,

Smooth pursuit
Dorr et. al [42] 2010 ✓ ✓ Saccade, Fixation,

Smooth pursuit
Nyström et. al [41] 2010 ✓ Saccade, Fixation,
Komogortsev et. al [48] 2010 ✓ Saccade, Fixation
van der Lans et. al [54] 2011 ✓ Saccade, Fixation
Veneri et. al [66] 2011 ✓ Fixation
Mould et. al [56] 2012 ✓ Fixation
Komogortsev et. al [63] 2013 ✓ Saccade, Fixation

Smooth pursuit
Otero-Millan et. al [67] 2014 ✓ Microsaccade
König et. al [60] 2014 ✓ Saccade,Fixation
Daye et. al [59] 2014 ✓ Saccade
Toivanen et. al [60] 2015 ✓ Saccade, Fixation
Santini et. al [62] 2016 ✓ ✓ Saccade, Fixation

Smooth pursuit
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Chapter 5

Analysis ofMobile Eye-Tracking
Data

When performing eye-tracking in real world situations using a mobile eye-tracker,
tracking of only the eyes is sometimes not enough in order to be able to adequately
analyze the recorded data. As described in Section 3.1.3, the signals are most often
recorded in relation to the coordinate system of the head. ree different approaches
for analyzing mobile eye-tracking data have been used: In the first approach, the
event detection algorithm is applied to the recorded signal directly, and disregarding
the fact that there may be significant influence of head and body movements in the
signal, see Fig.4.6a. In the second approach, the recorded signal is converted to
a world coordinate system through compensation of head and body movements
before an event detection algorithm similar to the ones described in Chapter 4 is
used, see Fig. 4.6b. Finally, in the third approach, the recorded eye-tracking data
are analyzed via detected objects in the scene video, see Fig. 4.6c. In this chapter
the two latter approaches are described in detail.

5.1 Systems to track head- and body movements

One approach to analyze eye-tracking signals when the user moves freely is to ex-
press the recorded signal in a world coordinate system by performing compensa-
tion of head and body movements. In this section, the most common strategies
that have been proposed for compensation of head and body movements in mobile
eye-tracking data are described.

5.1.1 Magnetic field tracking system

A magnetic tracking system consists of a fixed transmitter and one or several re-
ceivers mounted on the object or person to be tracked. e transmitter emits a
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pulsed magnetic field, and if the receivers are in the area of the magnetic field,
the three dimensional position and rotations (6DOF) of the receiver(s) are mea-
sured [81]. A magnetic field tracker has been used in combination with an eye-
tracker to study VOR movements [81], and to study the coordination of head,
hand, and eye movements in natural tasks [82]. In both studies, a receiver was
placed on top of the head of the test person in order to record head movements at
the same time as a mobile eye-tracker recorded eye movements. e accuracies of the
measurements of positions and rotations are high from the magnetic tracking sys-
tem. e main drawback, however, is that the strength of the magnetic field rapidly
decreases with distance from the transmitter, which makes the tracking range of the
system limited to relatively small volumes [83].

Another type of magnetic field tracker was used in [84], where one search coil
was used to track movements of the eye and another coil was used to track the head
in order to study the latency and gain of the VOR. Measurements using coils are
known to have a low level of noise and of being accurate, but a disadvantage is
that the user must be in the center of the magnetic field and that the coils can only
measure rotations and not larger positional changes of the head [81].

5.1.2 Optical tracking system

An optical motion tracking system is in many aspect similar to a magnetic field
tracking system. e system consists of a static transmitter that sends beams of
laser, that scans a volume. e receiver, an IR-sensor, is placed on the object that
is tracked which registers the laser beams. Optical systems often give accurate mea-
surements with high spatial resolution, but they suffer from line-of-sight problems,
which occur when the sensor is occluded [83]. e optical system LaserBird has
been used in combination with an eye-tracker in a driving simulator [57].

5.1.3 Computer vision based tracking

Since the majority of mobile eye-trackers today are equipped with a scene cam-
era, the use of computer vision techniques is the most commonly used strategy to
estimate head and body movements. ese methods can be divided into two cat-
egories, outside-in and inside-out [85]. Outside-in methods use external cameras,
e.g., a motion capture system, to track the position of the eye-tracker or the position
of the test person, while inside-out methods use the scene camera of the eye-tracker.
In general outside-in methods, e.g., a motion capture system, are more expensive
than the inside-out methods. Both types of methods are used to estimate the POR,
in three dimensions.

Motion capture systems and external cameras have in different ways been com-
bined with an eye-tracker to estimate the POR in three dimensions [86, 87, 88, 89,
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90]. A real-time gaze tracking system that consisted of a mobile eye-tracker and a
motion capture system was proposed in [87] for estimation of gaze when users were
looking at large displays and allowing free movements of the head and body. A
method for calibration of the eye-tracker together with the motion capture system
was proposed in [86] for estimation of gaze when the user performs tasks with free
head and body movements.

In order to automatically analyze gaze in 3D on objects that are grasped, 3D
gaze coordinates were estimated by placing markers on objects in the environment,
and on the hand of the user. e markers were tracked in the motion capture system
and the movements of the eyes were tracked using an eye-tracker. e object that
had the shortest Euclidean distance to the gaze point was assumed to be looked
at [88]. e advantage of this approach is that it can be used also for objects that
are moving.

A geometry-based method to measure gaze orientation in space was proposed
in [89]. e position of the head-in-space signal was measured with the motion
capture system, and the camera of a mobile eye-tracker directed towards the eye
was used to film the pupil. e mapping between the pupil position in that image
and the world coordinate system was performed using a non-linear constrained op-
timization method during a calibration procedure [89]. e method also corrected
for positional changes of the helmet, which the eye-tracker is attached to.

An external camera can also be used to capture information about the environ-
ment and use the information to build a 3D map of it [90]. e computer vision
technique SLAM, Simultaneous Localization And Mapping, was used to localize
the test person within this map and at the same time estimate the position and ori-
entation of the body and head of the test person. e 3D-map can then be used for
visualization of the gaze in three dimensions.

With the goal to be able to estimate the gaze orientation and gaze coordinate
in space without any external equipment but the scene camera of the mobile eye-
tracker and possibly an additional attached camera, several computer vision meth-
ods have been proposed [53, 91, 92, 85, 93]. One of the early methods used an
omnidirectional vision sensor to capture a larger view of the environment that was
in front of the user [53]. A video camera pointing upwards was placed on the user’s
head. By combining this video camera with a mirror, a circular image of the envi-
ronment that surrounded the user was captured. Based on the captured images of
the omnidirectional vision sensor, the method was able to estimate the rotational
head movements but had difficulties to estimate translational head movements.

A completely different approach was proposed in [85], were markers referred to
as fiducial augmented reality markers were placed in the environment of the record-
ing. Every marker is unique in order to be able to differentiate between them. e
markers were detected in the image of the scene camera and their rotation and trans-
formation were calculated. In addition, the experimental setup was geometrically
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3D modeled, which approximated the positions of the objects of interest together
with the markers. By combining the markers from the 3D model with the mark-
ers detected in the scene camera, the position of the objects in the scene could be
calculated. e data from the eye-tracker were mapped into the 3D model and the
gaze could be analyzed in relation to the objects [85].

A method that uses only the integrated scene camera of the mobile eye-tracker
was proposed in [91], for estimation of the 3D POR as well as the position and
orientation of the user’s head. is approach matched objects between key frames
and a triangulation technique was used to estimate the position and orientation of
the camera, i.e., the orientation of the head.

In [92], the authors succeeded to compensate for the ego-motion of the user and
analyze the eye movements without estimating the 3D POR. e ego-motion was
compensated for by estimating the motion of the scene camera between two frames.
e previous frame was used as a matched filter for the next frame, and by calculat-
ing the cross-correlation between the two frames using phase correlation [94], the
ego-motion was estimated. One limitation of the method was that it assumed that
the world was static, i.e., that there were no moving objects in the surroundings of
the person being eye-tracked [92].

In order to estimate the 3D POR and at the same time model the surroundings
without any extra equipment, a computer vision technique known as SLAM, was
proposed in [93]. e method uses feature points extracted from the scene camera of
the mobile eye-tracker to build a 3D map of the surroundings. At the same time, the
method also localizes the user in the reconstructed map and estimates the position
of the user’s head. By using triangulation of the extracted feature points the head
position and direction can be estimated, similar as used in [91]. By continuously
building a model of the 3D environment that the user is moving in, this 3D map
can later be used to visualize the gaze in three dimensions.

5.1.4 Intertial sensor system

An inertial sensor, e.g., an inertial measurement unit (IMU), typically consists of a
gyroscope, an accelerometer, and a magnetometer. IMUs have been used to esti-
mate the orientation of the head during interaction with computer screens and head
mounted displays [95, 83, 96]. e reasons to why inertial sensor systems generally
are not that popular, are due to that gyroscopes suffer from drift when used during
longer periods of time, accelerometers are stable over time but are less precise, and
magnetometers are very noisy and very sensitive to magnetic and electrical inter-
ference [95]. Recently, methods have evolved that combine the signals from the
gyroscope, accelerometer, and the magnetometer, into a drift free estimation of the
orientation over longer time periods [95, 97]. For an overview of these methods,
see [97].
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Figure 5.1: An example of a frame from the scene video of a mobile eye-tracker.
e gaze is indicated with a red circle and the AOI is indicated with a red square.

In combination with eye-tracking, an accelerometer was used to estimate the
direction of the driver’s head and relate it to the gaze direction when driving a
truck [98]. To estimate translations, and also positions, of the user using only an
IMU is a difficult task. In [99], a monocular camera was combined with an IMU
to estimate indoor position.

5.2 Analyzing mobile eye-tracking data through the
scene video

Another approach for analysis of mobile eye-tracking data is to map the eye-tracking
data directly onto the recorded scene video and either manually or automatically
detect objects and areas of interest. e most common approach for analysis of
mobile eye-tracking data is to manually annotate the gaze data mapped onto the
scene video. e annotation is most often performed by defining one or several
area-of-interests, AOIs, and by calculating the time in each AOI, referred to as the
dwell time. Examples of available open-source solutions are ELAN [100] and Dy-
nAOI [101]. Commercial eye-tracking companies, e.g., Tobii and SMI, have their
own analysis software customized for their data. An example of a frame captured by
a scene camera of a mobile eye-tracker where both the gaze and an AOI are marked,
is shown in Fig. 5.1.

In order to automatize the analysis process of mobile eye-tracking data, several
methods that use object recognition techniques have been proposed [102, 103, 104,
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105, 106]. In [103], the software JVideoGazer was proposed, where the user selects
objects that should be tracked in the scene video, by “roping” the objects with a
lasso. e software automatically tracks the objects throughout the scene video and
in a final step the positions of the tracked objects are compared to the coordinates
of the gaze. is semi-automated process was 9 times faster to process the eye-
tracking data compared to manually annotate the same set of eye-tracking data. An
extension of the JVideoGazer, the GazeVideoAnalyser, was proposed in [106]. e
GazeVideoAnalyser uses the same manual object selection procedure, but in the
extended version, several object recognition techniques are implemented in order
to cope with variations in the environment during the recording process.

Another similar approach was proposed in [104], where a trained object recog-
nition algorithm was used to track static and dynamic objects in the scene video. A
region of interest around the gaze coordinate in each frame was analyzed, and com-
pared to the images of the objects in the training database. e training database was
built by letting an additional user walk around and look at interesting objects [104].
e approach was later enhanced by letting an expert look at one of the scene videos
and click on objects that should be used in the training database [105]. e region-
of-interest was defined and key points were calculated both for the region-of-interest
and for the objects in the training database. e key points of the region-of-interest
and the objects in the training database were compared and a score was calculated of
how well the images overlapped. If the score exceeded a predefined threshold, they
were considered as a match. If the gaze was close to an object over several frames,
these samples were grouped together into a fixation. A threshold for the minimum
fixation duration was applied as well as a smoothing filter that decreased the num-
ber of short false positives [105]. Special care was also taken to faces and human
bodies, which were separately identified in order to detect when the user looked at
persons or faces.



Chapter 6

Summary of the Included
Papers

Summary of the main contributions

e four papers in this thesis address different aspects of how to perform robust
event detection in different types of eye-tracking data. In total, the content of the
four papers constitutes a complete framework for how to perform event detection
in eye-tracking data recorded during dynamic stimuli and for how to evaluate the
performance of such event detection algorithms. ree complete algorithms are
proposed:

• By combining the first two papers, I and II, a complete event detection al-
gorithm for eye-tracking signals recorded with a tower mounted eye-tracker
with a high sampling frequency is proposed which is able to detect the three
most common types of eye movements, i.e., saccades, fixations, and smooth
pursuit movements. In addition, PSO are detected which gives the user a
choice of where to include them, or to exclude them completely. e novelty
of this algorithm is that it can divide the data into these four types of events
also when videos are used as stimuli and that its performance is validated to
manual annotations. is means that properties of fixations and smooth pur-
suit movements can be analyzed separately, and that measures that previously
have been used for fixations recorded during static stimuli, e.g., durations and
number of fixations, now also can be applied when watching video stimuli.

• By combining Paper I and Paper III, an even better algorithm with the same
purpose as above is achieved which in addition utilizes binocular signals in or-
der to further improve the detection performance. e requirement that both
eyes need to move in a synchronized manner during smooth pursuit move-
ments reduces the number of false smooth pursuit detections when viewing
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Table 6.1: Summary of the content in each paper.

Component I II III IV
Tower eye-tracker ✓ ✓ ✓
Mobile eye-tracker ✓
Monocular ✓ ✓ ✓
Binocular ✓
Fixation ✓ ✓ ✓
Saccade ✓ ✓
Smooth pursuit ✓ ✓ ✓
PSO ✓
Objects (for evaluation) ✓
Objects (event detection) ✓
Manual annotations ✓ ✓
Dynamic stimuli ✓ ✓ ✓ ✓
Static stimuli ✓ ✓ ✓ ✓

static stimuli.

• In the last part, paper IV, a complete algorithm for detection of the three
most common types of eye movements in data recorded using a mobile eye-
tracker with low sampling rate is presented. e algorithm is evaluated for
mobile eye-tracking data recorded for participants that are free to move their
head, but not the body. e method includes an IMU-based head move-
ment compensation stage and utilizes both the eye-tracking signals as well as
information about video objects extracted from the scene camera when seg-
menting the signal into events. e results show that the proposed method
performs better than the compared ones.

In addition to these contributions, paper II contains an extensive performance
evaluation, comparing not only algorithms but also five different performance eval-
uation strategies. Paper III proposes a completely new strategy for performance
evaluation which is based on automatic detection of moving objects in the video
stimuli to which the detected events are compared. In Table 6.1, a summary of the
contents of the four papers is presented.
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Table 6.2: Cohen’s kappa for the proposed algorithm and the algorithm in [41].
(Paper I)

Image Video Moving dot
Proposed algorithm 0.814 0.822 0.756
Algorithm in [41] 0.512 0.398 0.232

Paper I: Detection of Saccades and Postsaccadic
Oscillations in the Presence of Smooth Pursuit

A novel algorithm for detection of saccades and PSO is designed, implemented,
and evaluated. e algorithm detects these two types of eye movements regardless of
whether the stimuli are static or dynamic. A database with eye-tracking signals when
users viewed both static and dynamic stimuli was recorded using a high-speed tower
mounted eye-tracker. e stimuli contain images, text, video clips, and dots moving
in different directions and with different speeds. e first step in the proposed
algorithm is the preprocessing stage, where blinks and disturbances originating from
the recording are removed. In the second step, the acceleration signal is derived
from the eye-tracking data and the saccades are detected. e acceleration signal
is used since it is easier to discriminate between smooth pursuit movements and
saccades in the acceleration signal compared to when the velocity signal is used. For
detailed detection of the onset and offset of each saccade, three specialized criteria
based on directional information in the position signal are used. In the third step,
the PSO are detected. e detection is performed by modeling the position signal
directly after each saccade using an all-pole model. e estimated parameters of the
model determine whether the requirements for being a postsaccadic oscillation are
satisfied.

e proposed method was evaluated by comparing the results of the algorithm
to manual annotations and to the detection results of an adaptive velocity based
algorithm [41]. Cohen’s kappa, which measures the inter-observer agreement, was
calculated between the results of the algorithm and the annotations. e results
show that the detected events are in good agreement with the annotations and that
the proposed algorithm outperforms the algorithm in [41]. e values for Cohen’s
kappa are shown in Table 6.2.

e paper discusses PSO and their appearance in the data. e detailed mech-
anisms behind PSO are still an unsolved problem, but PSO remain to appear in
the data and need to be accounted for in a systematic way. e algorithm in Paper
I allows the user to decide whether PSO should be classified as belonging to the
saccades, as belonging to the fixations, as being their own event, or if they should
simply be removed from the recorded data. is choice is crucial for important
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measures such as duration of fixations and amplitudes of saccades.

Paper II: Detection of Fixations and Smooth Pursuit
Movements in High-Speed Eye-Tracking Data

A novel algorithm for separation of fixations and smooth pursuit movements in
high-speed eye-tracking data is proposed. e algorithm uses the inter-saccadic in-
tervals between saccades and PSO, e.g., resulting from the algorithm in Paper I.
In contrast to most of the previously proposed algorithms for detection of smooth
pursuit movements, the proposed algorithm calculates characteristics of the signal
at several spatial scales. In the first stage, characteristics on a sample-to-sample level
are determined and the signal is segmented based on the local uniformity in the di-
rection. In the second stage, four parameters are calculated for each segment. e
four parameters are: dispersion, consistency in direction, positional displacement,
and the range of the signal in the segment. Based on the four parameters, the seg-
ments are classified into three categories. In the final stage, fixations and smooth
pursuit movements are discriminated by merging the categorized segments based
on their properties. e advantage of using several spatial scales instead of only the
sample-to-sample level is that the global characteristics of the signal can be taken
into account. e algorithm is evaluated by computing five different performance
measures that capture both general and specific aspects of the segmentation into
fixations and smooth pursuit movements. e performance measures are: event
properties, distribution of different types of events, sensitivity and specificity anal-
ysis, Cohen’s kappa analysis, and scores evaluation. In this work, the detections of
the proposed algorithm are compared to the detections of a velocity and dispersion
based algorithm (I-VDT), to the detections of an algorithm based on principle com-
ponent analysis, (I-PCA), and to annotations by two experts. e resulting Cohen’s
kappa are shown in Table 6.3, with Expert 1 as reference, and in Table 6.4, with Ex-
pert 2 as reference. e results show that the proposed algorithm outperforms the
I-VDT algorithm and the I-PCA algorithm, but the inter-rater agreement between
the two experts is even higher.

e paper discusses possibilities and challenges when separating fixations and
smooth pursuit movements in high-speed eye-tracking data. e proposed algo-
rithm makes it possible to separately investigate fixation and smooth pursuit prop-
erties. Together with the algorithm proposed in Paper I, it constitutes a complete
event detector for eye-tracking signals recorded during dynamic stimuli. In addi-
tion, Paper II extensively discusses and compares different strategies for performance
evaluation of event detection algorithms.
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Table 6.3: Cohen’s kappa when Expert 1 is compared to the proposed algorithm,
the I-VDT, and Expert 2. (Paper II)

Image Video Moving dot
Proposed algorithm 0.620 0.671 0.446
I-VDT 0.524 0.180 0.098
I-PCA 0.475 0.113 0.083
Expert 2 0.806 0.784 0.573

Table 6.4: Cohen’s kappa when Expert 2 is compared to the proposed algorithm,
the I-VDT, and Expert 1. (Paper II)

Image Video Moving dot
Proposed algorithm 0.667 0.530 0.412
I-VDT 0.537 0.127 0.050
I-PCA 0.501 0.074 0.052
Expert 1 0.834 0.779 0.550

Paper III: Smooth Pursuit Detection in Binocular
Eye-Tracking Data with Automatic Video-Based
Performance Evaluation

Today, an increasing number of researchers record binocular eye-tracking signals
from participants viewing moving stimuli. Since the majority of event detection
algorithms are developed for monocular eye-tracking signals and often do not con-
sider smooth pursuit movements, the additional information from using both eyes
are not exploited in current event detection algorithms. e purpose of this study
was to develop an event detection algorithm that uses binocular eye-tracking signals
for improved detection of fixations and smooth pursuit movements. In this paper,
the algorithm presented in Paper I is used for the detection of inter-saccadic in-
tervals in binocular eye-tracking signals recorded during image-, moving dot-, and
video- stimuli. e video stimuli contained clips with both stationary and mov-
ing cameras. e inter-saccadic intervals from both eyes are separately verified to
have high enough signal quality by calculating and evaluating the high-frequency
content in each interval. All intervals that pass the quality test, are included in a
directional clustering procedure where samples with similar direction are clustered
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Table 6.5: Results for the eye-tracking signals recorded with image stimuli for the
test database (development database). (Paper III)

Algorithm % smooth % correct % incorrect % fixation
pursuit smooth pursuit smooth pursuit

Proposed (Bin) 1.7 (4.1) 0.0 (0.0) 1.7 (4.1) 98.3 (95.9)
Proposed (Mono R) 6.9 (7.5) 0.0 (0.0) 6.9 (7.5) 93.1 (92.5)
Proposed (Mono L) 8.8 (7.7) 0.0 (0.0) 8.8 (7.7) 91.2 (92.3)
Algorithm in Paper II 4.5 (5.7) 0.0 (0.0) 4.5 (5.7) 95.5 (94.3)

together. In order to evaluate the temporal aspect of the directional clustering, a set
of binary filters are applied to the resulting clustered samples. e binary filters are
designed to either emphasize properties of fixations or properties of smooth pursuit
movements. e output signals from the binary filters are added together and fixa-
tions and smooth pursuit movements are detected based on the sign of the summed
signal.

e advantages of this method compared to the one in Paper II are that it is
designed to imitate how we visually inspect the data and that it also is able to dis-
criminate vergence from smooth pursuit movements if binocular data are available.

In order to evaluate the proposed algorithm, a novel evaluation strategy based
on automatically detected objects in the stimuli is developed. A model, referred to as
the video-gaze model, is proposed where intervals where the gaze is moving close to
and in similar direction as the automatically detected moving objects are labelled as
video-gaze movements. In the evaluation, the video-gaze movements are compared
to the smooth pursuit movements detected by the proposed algorithm. e results
of the evaluation are shown in Tables 6.5 – 6.6 for the proposed algorithm for both
binocular and monocular mode. For comparison, the corresponding results of the
algorithm in Paper II are also shown. e results show that it is advantageous to use
binocular information to decrease the false detections of smooth pursuit movements
in image stimuli without impairing the algorithm’s ability to detect smooth pursuit
movements in moving dot and video stimuli.

e novel evaluation strategy presented in this paper is the first automatic eval-
uation strategy for eye-tracking signals recorded with real video clips where the po-
sitions of the objects are not known or predefined beforehand by the experimenter.
e advantages of using an automatic evaluation procedure is that time consuming
and subjective manual annotations can be avoided. In addition, a larger number of
signals can be used in the evaluation of the algorithm’s performance. e drawback
is that the evaluation is less detailed than, e.g., sensitivity and specificity analysis
based on manual annotations.
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Table 6.6: Results for the eye-tracking signals recorded with moving dot stimuli
for the test database (development database). (Paper III)

Algorithm % smooth % correct % incorrect % fixation
pursuit smooth pursuit smooth pursuit

Proposed (Bin) 83.1 (77.6) 80.4 (74.7) 2.7 (2.8) 16.9 (22.4)
Proposed (Mono R) 85.4 (79.9) 82.2 (76.7) 3.2 (3.2) 14.6 (20.1)
Proposed (Mono L) 85.1 (80.5) 82.0 (77.0) 3.1 (3.5) 14.9 (19.5)
Algorithm in Paper II 80.6 (73.4) 77.9 (70.8) 2.6 (2.6) 19.4 (26.6)

Paper IV: Head Movement Compensation and Multi-
Modal Event Detection for Mobile Eye-Trackers

e aim of this study was to develop a multi-modal method for the detection of
saccades, fixations, and smooth pursuit movements in eye-tracking data recorded
using a mobile eye-tracker. e method includes compensation of head movements
using an IMU and an event detection algorithm based on eye-tracking signals com-
bined with information extracted from the scene video. Eye-tracking signals were
recorded using a mobile eye-tracker and the orientation of the head was recorded
using an IMU mounted on top of the mobile eye-tracker when participants were
seated on a chair in front of a large screen. Participants were allowed to move their
heads freely, but not change position in the room. Four experimental tasks were
performed, which consisted of only eye movements (EM), only head movements
(HM), and two parts with a combination of eye and head movements. e last two
parts included artificial stimuli (EHM) and natural static stimuli (NS). e first
step of the proposed method deals with compensation of head movements in the
eye-tracking signal using the recorded orientation of the head. Objects in the scene
camera were detected and their coordinates were head movement compensated in
order to be expressed in the same coordinate system as the head movement com-
pensated eye-tracking signals. In this multi-modal event detection algorithm, the
saccades were detected using a combination of the velocity signal, the acceleration
signal, the slope, and the amplitude of the eye-tracking signal. e eye-tracking sig-
nal of each inter-saccadic interval was compared to the trajectories of the detected
objects of the scene camera image, and if any object moved in a similar direction
and speed as the eye-tracking signal in the inter-saccadic interval, that object was
selected. e selected object was used in the subsequent fixation and smooth pur-
suit detection. First the eye-tracking signal and the selected object trajectory were
clustered based on their respective sample-to-sample directions. e binary filters
presented in Paper III were optimized for the low sampling rate of the mobile eye-
tracking signals, and applied to both coordinates of the eye-tracking signal and to
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those of the selected object. e outputs when applying the filters to both types
of signals were combined and the sign of the combined signal was used in order
to segment the signal into fixations and smooth pursuit movements. Since smooth
pursuit movements cannot be performed without a moving object, the presence
of a selected object was utilized in the event detection algorithm in order to sup-
port the detection of smooth pursuit movements that move similar to the selected
object. Correspondingly, smooth pursuit movements that were detected when no
moving object was present were disqualified. In order to evaluate the performance
of the IMU-based head movement compensation method, standard deviations of
the inter-saccadic intervals for the compensated eye-tracking signal were compared
to the standard deviations of the corresponding uncompensated signal intervals and
to the standard deviations resulting from an alternative video-based head movement
compensation strategy, see Table 6.7. e results show that all three experimental
parts benefitted from the head movement compensation, and that the results of the
IMU and the video-based methods were comparable for this type of data.

e event detection algorithm was evaluated by comparing the detection results
to those of the built-in algorithm in the mobile eye-tracker and to the detections
by the I-VDT algorithm. e average balanced accuracies of the three algorithms
are shown in Table 6.8, together with the results of the proposed algorithm when
disregarding information about moving objects. e results in Table 6.8 show that
the proposed algorithm performs considerably better than the compared algorithms
and that it is beneficial to include information in the event detection algorithm
about moving objects detected in the scene video. In summary, Paper IV shows
that by compensating for head movements using an IMU and by using information
extracted from the scene video in the event detection algorithm, the performance
of the event detector could be improved.

is paper discusses the challenges in event detection in eye-tracking signals
recorded using a mobile eye-tracker with dynamic stimuli. e proposed method
strives to use information from additional sources, such as the scene camera and
the IMU, in order to improve the event detector’s performance. A limitation of
the proposed method is that it only allows head movements but not translational
changes of the body position.
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Table 6.7: Standard deviations of the gaze positions in inter-saccade intervals for
three parts of the experiment. Uncompensated data are compared to compensated
data both using an IMU data and using head movements extracted from the scene
video.

Not compensated Compensated
IMU Video

σEx (◦) σEy (
◦) σGx (◦) σGy (

◦) σGV x (◦) σGV y (
◦)

EM 0.16 (0.16) 0.18 (0.19) 0.09 (0.09) 0.12 (0.14) 0.10 (0.09) 0.13 (0.14)
EHM 0.81 (0.84) 0.69 (0.71) 0.14 (0.14) 0.17 (0.18) 0.18 (0.18) 0.20 (0.21)
HM 8.99 (8.73) 7.49 (6.54) 3.31 (3.11) 3.33 (2.93) 3.43 (2.96) 3.43 (2.70)

Table 6.8: Results of the average balanced accuracy for the proposed multi-
modal algorithm, the proposed algorithm without selection of objects, the I-VDT-
algorithm, and the built-in-algorithm of the mobile eye-tracker.

Algorithm Average balanced
accuracy

Proposed multi-modal 0.90
Proposed (no objects) 0.88
I-VDT 0.85
Built-in-algorithm 0.75
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Detection of Saccades and
Postsaccadic Oscillations in the Presence of

Smooth Pursuit

Abstract

A novel algorithm for detection of saccades and postsaccadic oscillations in the presence of
smooth pursuit movements is proposed. e method combines saccade detection in the
acceleration domain with specialized on- and offset criteria for saccades and postsaccadic
oscillations. e performance of the algorithm is evaluated by comparing the detection
results to those of an existing velocity based adaptive algorithm and a manually annotated
database. e results show that there is a good agreement between the events detected by the
proposed algorithm and those in the annotated database with Cohen’s kappa around 0.8 for
both a development and a test database. In conclusion, the proposed algorithm accurately
detects saccades and postsaccadic oscillations as well as intervals of disturbances.
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1 Introduction

Measurement of eye movements is important for basic research in visual attention,
perception, and cognition, as well as for clinical applications investigating the func-
tionality of the brain or to diagnose physiological disorders, such as Alzheimer’s [1],
HIV-1 infected patients with eye movement dysfunction [2], and schizophrenia [3].
e interest in eye-tracking is also increasing in applied fields with strong commer-
cial interests, e.g., web page navigation, online shopping, and interaction with com-
puters. An important new development in the field is that eye movement studies
are starting to use more realistic dynamic scenes as stimuli, e.g., short videos, com-
pared to earlier when mainly static images were used. Since the tools for analyzing
eye movement signals are mainly developed for static images, the use of dynamic
scenes requires a new set of algorithms for segmentation of recorded signals into eye
movement events. In order to be able to draw correct conclusions about the under-
lying processes in the brain or to be able to control a computer, reliable algorithms
for detection and classification of eye movements are crucial.

When studying eye movements, mainly three movements are identified: e
slow period when the eye is more or less still and visual information is taken in is
referred to as a fixation, which is characterized by low positional dispersion, low
velocity, and a duration of about 200 – 300 ms [4]. When the eye is shifting from
one position to another, the movement is referred to as a saccade, which is a very
rapid movement with typical velocities ranging from 30◦/s to 500◦/s and durations
ranging from 30 ms to 80 ms [4]. Very little visual information is gathered during
saccades [5]. ese two eye movements are the most common ones when observ-
ing static objects. When the observed objects are moving, e.g., when watching a
dynamic scene, other eye movements may occur that are related to the movement
in the scene. One such eye movement is the smooth pursuit, which occurs when the
eye has a moving target to follow [5]. e velocity of a smooth pursuit movement
depends on the speed of the moving target, but is typically below 30◦/s [4], even
though the velocity can be as high as 100◦/s [6]. However, for targets with veloc-
ities higher than 30◦/s, the eye movements typically consist of both saccades and
smooth pursuit movements. In order for the eye to be able to accurately follow the
target, catch-up saccades are required since the pursuit gain falls below one [5].

In addition to these three eye movements, we investigate in this paper the oscil-
latory behavior that may occur at the end of a saccade. In [7], three different types
of movements in connection to the saccade were categorized: dynamic overshoot,
which is a fast movement with velocities of 10 – 100◦/s, glissadic overshoot which
is a slow drifting movement with velocities of 2 – 20◦/s, and static overshoot, which
is a corrective saccade that starts 200 ms after the primary saccade. In this paper,
we are interested in detecting all types of high-velocity transients that may occur at
the end of the saccade, e.g., overshoot/undershoot, oscillatory behavior and imme-
diate changes in direction compared to the preceding saccade. All of these types of



74 PAPER I

movements are referred here to as postsaccadic oscillations (PSO).
Algorithms for detection of eye movements can broadly be divided into two

groups: dispersion based and velocity/acceleration based algorithms. Algorithms
based on dispersion are mainly used for signals with a lower sampling frequency
(<200 Hz), while the velocity/acceleration based methods are used for signals with
a higher sampling frequency (>200 Hz) [4]. In recent years, algorithms used for
detection of eye movements have developed from solely using a preset threshold
of dispersion or velocity/acceleration [8], towards adaptive algorithms where the
thresholds are estimated from the signals [9, 10, 11, 12]. By using an adaptive
threshold, individual differences between participants and trials can be taken into
account, and the algorithm becomes less dependent on the user’s ability to cor-
rectly set the thresholds. e majority of the adaptive algorithms referred to above
are velocity-based and were developed for detection of eye movements when the
stimulus is static and the signals thus do not contain any smooth pursuit move-
ments. However, in signals where the stimulus is dynamic, it is important to also
consider the smooth pursuit movements in the detection algorithm, since their pres-
ence may otherwise render the detection of the other eye movements difficult. e
major problem is that the velocity of a fast smooth pursuit movement overlaps with
the velocity range of a slow saccade [13, 11], making it difficult to set a velocity
threshold for discrimination between these two types of eye movements [14].

In order to reliably detect saccades in signals where smooth pursuit movements
are present, the acceleration signal has been used since the acceleration of saccades
is higher than that of smooth pursuit movements [11]. A real-time algorithm where
the acceleration signal is employed for detection of saccades is found in the com-
mercial EyeLink algorithm. In order for a saccade to be detected, a combination of
thresholds for changes in position, velocity, and acceleration has to be satisfied [15].
Another real-time algorithm that uses the acceleration signal is the adaptive algo-
rithm proposed in [11]. In order for the algorithm to detect the beginning of the
saccade, the acceleration of each sample is compared to a threshold computed from
the preceding 200 samples. For the determination of the end of the saccade, a
combination of the acceleration threshold and the end of the monotonicity in the
position signal for the saccade is employed [11].

Today, there are very few algorithms that include the detection of PSO. A ve-
locity based adaptive algorithm for detection of PSO in signals recorded for partic-
ipants viewing static stimuli was proposed in [9]. As pointed out by the authors,
it is important for an algorithm to be consistent to whether the PSO are included
in the saccades, in the fixations, or are marked as a separate type of eye movement.
is choice is crucial for calculation of durations of fixations and amplitudes of sac-
cades. While the origin of PSO in pupil-based eye-trackers remains unclear, they
have been reported to occur in 48% and 59% of the saccades for participants per-
forming reading and scene perception, respectively [9]. Postsaccadic oscillations
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have been reported in data recorded with Dual Purkinje eye-trackers (DPIs), but
were not found in simultaneous recordings with scleral search coils [16]. is sug-
gests that PSO in data recorded by a DPI result from motion of the lens relative
to the eyeball rather than motion of the eye in its orbit. To our knowledge, the
occurrence and the properties of PSO when viewing a dynamic scene have not been
investigated.

In order to objectively evaluate the performance of a detection algorithm for
eye movements, the actual movement of the eye needs to be available. Strategies
to estimate the actual movement of the eye includes to let an expert annotate the
signals [4], generate simulated signals [17], or use the stimuli as a reference to the
actual eye movement [18]. When evaluating the performance of a detection al-
gorithm for PSO, the only option is to manually annotate the signals, since the
occurrence of PSO seems to be involuntary and idiosyncratic [19].

e purpose of this paper is threefold: First, we propose a robust algorithm
for the detection of saccades and PSO in signals recorded when viewing static as
well as dynamic scenes, where the intrinsic structure is motivated by underlying
physiological properties of the saccades and PSO. Second, a mathematical model
for describing the properties of PSO is proposed. ird, a framework for evaluation
and comparison of different detection algorithms is proposed, including a Graphical
User Interface (GUI) for presentation of the outputs of detection algorithms and
for annotation of signals. e paper is outlined as follows: e proposed algorithm
and the evaluation procedure are presented in Sec. 2. A description of the database
with eye movement signals is given in Sec. 3. e results are presented in Sec. 4,
and finally, the algorithm and its potential are discussed in Sec. 5.

Figure 1: e overall structure of the algorithm.
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Figure 2: An example of blink detection. In (a), the vertical saccade-like move-
ment in the y-coordinate in the beginning and in the end of the blink. e black
line is showing the blink and the grey line the fixation (F) before and after the blink.
In (b), the detection of a blink in the x−coordinate (dashed) and y−coordinate
(solid) over time. Onset and offset of the blink is marked with dashed-dotted ver-
tical lines, and the black line indicates the blink and the grey line the fixation (F)
before and after the blink.

2 Methods

e proposed method comprises three different stages: preprocessing, saccade de-
tection, and PSO detection. An overview of the method is shown in Fig. 1. In the
first stage, disturbances originating from the recording process are removed. In the
second stage, the saccades are detected using criteria reflecting their physiological
characteristics, and finally, in the third stage, the detection of PSO is performed.

2.1 Preprocessing

In the preprocessing stage, three different types of disturbances are excluded from
the dataset: screen outliers, blinks, and one-sample spikes. All samples correspond-
ing to positions outside a margin of 1.5◦ added to the geometry of the stimulus
screen are marked as disturbances. During blinks, when the eyelid is closed, the
eye-tracker cannot detect the pupil and therefore the eye-tracker used in this study
sets the x- and y- coordinates to (0, 0). By detecting these zeros in the position
signal, the blinks are detected. However, in the beginning and end of a blink, the
eyelid is not completely closed and the pupil can therefore partly be detected. In
the position signal, vertical saccade-like movements therefore appear at the start and
end of the blink, see Fig. 2a. In order to remove as much as possible of the erro-
neous coordinates caused by the blink, the on- and offsets of the blink are defined
as the first local minimum in the y- coordinate, before and after the detected zeros,
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see the vertical dash-dotted lines in Fig. 2b. In this work, the blink duration was
limited to 700 ms. Notice that also during other disturbances than blinks when the
eye-tracker for some reason cannot detect the pupil, the x- and y- coordinates are
set to (0, 0). ese disturbances are treated in the same way as blinks and all such
samples are marked as disturbances. A common type of disturbance in video-based
eye-tracking is that the corneal reflection is not correctly detected in the image of the
eye which will result in a rapid positional change of one sample in an unexpected di-
rection and back again. is type of artifact is referred to as a one-sample spike [20].
In order to remove one-sample spikes, a median filter of length 3 can be used [20].
However, in order to remove one-sample spikes but avoid suppressing PSO as well
as small variations during fixations, an amplitude and a velocity criteria, of which
both need to be satisfied, are used to activate the filter. e amplitude threshold,
amin, requires a minimum amplitude of the removed one-sample spike. e value
of the parameter amin is given in Table 3, which lists the settings of all intrinsic
parameters in the proposed algorithm. e velocity criteria is based on that, since
PSO always occurs directly after saccades, the sample-to-sample velocities before
PSO are larger than those during PSO. erefore, the sample-to-sample velocities
before a one-sample spike must be lower than those during a one-sample spike. An
example of the suppression of one-sample spikes in a signal from the database used
in this paper is shown in Fig. 3.

time (s)

y
-c
o
o
rd

in
a
te

(◦
)

5.65 5.7 5.75 5.8 5.85

21.3

22.2

23

23.9

24.7

25.6

Figure 3: Example of removal of one-sample spikes, where the dashed line is the
unfiltered signal and the solid line is the signal after the one-sample spike suppres-
sion.
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2.2 Saccade detection

e first type of eye movement to be detected after the preprocessing stage is the
saccade. e detection of saccades is divided into two steps which are shown in the
lower left block of Fig. 1.

Identification of approximate saccadic intervals
Since saccades, in contrast to both fixations and smooth pursuit movements, are
fast eye movements with high acceleration, they are detected in the acceleration
domain. e angular velocities, vx and vy, are computed by filtering the position
signals, x(n) and y(n), using the filter,

h(n) =
1

20

[
−1 −1 −1 −1 0 1 1 1 1

]
which is a modified version of the difference and smoothening filter proposed in [10]
for signals sampled at 250 Hz. In order for the filter to operate at the same period
of time and to give similar effect on signals sampled at 500 Hz, the length of the
filter was doubled and the filter coefficients were scaled. e angular accelerations,
ax and ay, are calculated by applying the same filter to the velocities. In the ac-
celeration signal, approximate saccadic intervals, which are segments that include
both saccades and possible PSO, are detected. e method used for delineation
of such intervals is based on the method for detection of microsaccades proposed
in [10]. Since the nature of saccades and microsaccades are similar in many aspects,
(cf. [21]), the method can be used also for saccade detection. For each of the x-
and y- components, the individual acceleration threshold is based on the standard
deviations, σx and σy, of the acceleration distributions. e thresholds are defined
as, ηx = λσx and ηy = λσy, where λ is a constant that decides how many stan-
dard deviations that separates saccades and possible PSO from the rest of the eye
movements. Two index vectors indicating the approximate saccadic intervals in the
x- and y- components, Ix(n) and Iy(n), are created such that

Ix(n) =

{
1, |ax(n)| > ηx ∀n
0, otherwise

Iy(n) =

{
1, |ay(n)| > ηy ∀n
0, otherwise

where ones indicate saccades or possible PSO and zeros reflect other types of eye
movements or disturbances. e index vectors Ix(n) and Iy(n) are merged into
one index vector.

I ′(n) =

{
1, Ix(n) = 1 | Iy(n) = 1
0, otherwise



79

 

 

time (ms)

I′(n)

Iy(n)

a
y
(◦
/
s2

)

Ix(n)

a
x
(◦
/
s2

)

860 870 880 890 900 910 920 930 940

×104

×104

0
1

-6
-4
-2
0
2
4

-10

-5

0

5

Figure 4: Example of two consecutive approximate saccadic intervals for the x-
and y- components of the acceleration signal, respectively. Below each component,
the index vectors Ix(n) and Iy(n), are shown. e bottom panel shows the index
vector, I ′(n), for the two final approximate saccadic intervals.

Every group of consecutive ones comprises an approximate saccadic interval. Since
two saccades cannot appear closer than a certain time, tmin, which is the time corre-
sponding to the minimum duration of a fixation, two approximate saccadic intervals
that occur closer than tmin are merged and the zeros between are converted to ones.
Finally, an approximate saccadic interval must have a duration larger than T ms in
order to be valid. e x- and y- components of the acceleration signal for two ap-
proximate saccadic intervals are together with the index vectors Ix(n) and Iy(n),
shown in Fig. 4.

Saccadic onset and offset detection

In the second part of the saccade detection, the exact onsets and offsets of the sac-
cades are identified. For each approximate saccadic interval, i, the detection starts
by determining the sample of maximum velocity, ki. From sample ki, the search
for the exact onset and offset is performed using three criteria (a) − (c). ese
criteria are evaluated from sample ki in the forward direction for the offset search,
and in the backward direction for the onset search. In both directions, each criteria
is compared to a predefined threshold. e exact onset and offset are set when at
least one of the criteria is satisfied for a sufficient number of consecutive samples.
e criteria are:
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Figure 5: An illustration of the calculation of the directions, α(n) and change in
directions, ϵ(n), n = 1,2,3, for the transition from a saccade (black) to a fixation
(grey). In the lower right corner the thresholds, β for the change in sample-to-
sample direction and, δ, for the deviation from the main direction, are shown.

(a) Deviation from the main direction. Although a saccade often is slightly curved,
an inherent physical property of saccades is that they do not deviate much
from their main direction. In order to use this ballistic behavior to find the
on- and offsets of the saccade, the sample-to-sample direction, α(n), is em-
ployed. e sample-to-sample direction, α(n), is the angle to the x-axis of
the vector between consecutive samples and is defined as

α(n) = arctan (
dy(n)

dx(n)
) (1)

where dx(n) and dy(n) are the x- and y- components of the sample-to-
sample velocity, respectively, i.e., dx(n) = x(n + 1) − x(n) and dy(n) =
y(n + 1) − y(n). An illustration of the calculation of α(n) is shown in
Fig. 5. e main direction, γ, is calculated as the average sample-to-sample
direction of three consecutive samples centered around sample ki, i.e., γ =
1
3(α(ki − 1)+α(ki) +α(ki +1)). In each direction, starting from sample
ki, the saccade begins/ends if |α(n)− γ| > δ for K = tK · Fs consecutive
samples, where tK is the threshold for the maximum duration of deviation
from the main direction. Of the K samples exceeding the threshold, the
onset/offset is set to the sample closest to ki, see Fig. 6 for an example.

(b) Inconsistent sample-to-sample direction. Due to the ballistic behavior of a sac-
cade, it cannot abruptly change its direction from one sample to the next.
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Figure 6: An example of the principle for the on- and offset detection for criteria a).
Left: the velocity where ki is marked. Right: deviation from the main direction,
where the onset and offset are marked with (o), which in each direction is the
sample closest to the ki of the consecutive samples that have exceed the threshold
δ.

e change in sample-to-sample direction, ϵ(n), is calculated between con-
secutive samples in each approximate saccadic interval, and is defined as
ϵ(n) = α(n) − α(n − 1), see Fig. 5. If the change in direction is larger
than β,

|ϵ(n)| > β (2)

forN = tN ·Fs consecutive samples, where tN is the threshold for the max-
imum duration of inconsistent sample-to-sample direction. e onset/offset
is set to the sample most distant from ki of the N samples that exceed the
threshold.

(c) Distance between directional changes. e distance between significant direc-
tional changes is measured as the Euclidean distance between samples satisfy-
ing |ϵ(n)| > β. us, the number of such distances is lower than the number
of samples. is third criterion exploits the fact that these distances are decay-
ing when moving away from the center of the saccade and into the fixation.
e onset and offset are reached when the eye is moving shorter distances
before changing direction compared to the corresponding average distance
in the intersaccadic intervals, ν. In detail, whenM consecutive distances are
shorter than ν, the onset/offset is set to the position of the outermost such
distance counted from sample ki. e average distance between directional
changes in the intersaccadic intervals, ν, is individually set for each recording
and is calculated in a similar way as the distance between directional changes
in the approximate saccadic intervals. However, the intersaccadic intervals
may not only contain fixations, but also smooth pursuit movements. ere-
fore, a piecewise linear model of the signal is subtracted before the calculation
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Table 1: An overview of the properties and criteria for detection of saccades and
PSO.

Eye Physiological Mathematical Criteria

movement property property in the algorithm

saccade fast movement acceleration acceleration threshold
velocity velocity threshold

saccade ballistic uniform direction onset/offset criteria:
(a) deviation from the main direction
(b) inconsistent sample-to-sample direction
(c) distance between directional changes

PSO instability decreasing pole model and placement
oscillation of the poles

of the average distance between directional changes. A block length of 100
ms was deemed sufficient for representation of the smooth pursuit move-
ments while not interfering significantly to the calculation of ν. e residual
positions x′(n) and y′(n) are used to calculate the residual direction α′(n)
as

α′(n) = arctan (
d′y(n)

d′x(n)
) (3)

where d′x(n) and d′y(n) are the x- and y- components of the residual velocity,
respectively, i.e., d′x(n) = x′(n+1)−x′(n) and d′y(n) = y′(n+1)−y′(n).
Next, the positions where the change in residual direction ϵ′(n), is larger than
β is found,

|ϵ′(n)| > β (4)

where ϵ′(n) = α′(n) − α′(n − 1), and the Euclidean distances between
these positions are calculated. In order to robustly estimate ν, the value of
the 90th percentile of these Euclidean distances is chosen.

In addition to criteria (b) and (c), the sample-to-sample velocity needs to be lower
than 20% of the peak velocity for the current saccade to begin/end. e physio-
logical motivations for the criteria used for saccade delineation are summarized in
Table 1.
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Figure 7: An example of the principle for detection of PSO. In (a) the interval used
for detection of PSO in the x−coordinate is shown. In (b) the interval is zoomed in
and the signal g(n) (solid) and its corresponding impulse response ĝp(n) (dashed),
with normalized RMSE = 0.07, are shown. In (c) the signal and its corresponding
decaying component f(n) and −f(n) (dashed-dotted), are shown. In (d) the
amplitude Ap and An are shown together with g(n).

2.3 PSO detection

In the third part of the algorithm, the PSO are detected. Postsaccadic oscillations
can physiologically be described as instabilities or oscillatory movements that may
occur at the end of a saccade. e durations of PSO are in previous research shown
to be between 10 to 35 ms [9]. In order to mathematically describe this property,
an all-pole model is employed. e model, g(n), n = 0, 1,..., L − 1, where L =
tL · 10−3Fs and Fs is the sampling frequency of the signal, is applied directly
after the saccade offset. e x- and y- components of the interval are modeled
separately, see Fig. 7a for an example of such interval. In order for the all-pole model
to be meaningful, it is required that the signal is decaying. erefore, in order to
not include the beginning of a possible smooth pursuit movement in the signal to
be modeled, a variable interval length L, corresponding to tL ms, is considered.
Initially tL is set to 40 ms. If the oscillation is not ended before tL = 40 ms,
determined by different signs of the slopes fitted to the samples within 8 ms before
and after the interval end, the initial interval length is extended to tL = 60 ms.
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Starting from tL, the interval is shortened in order to only include the entirety of
the PSO by performing the following steps: A first order polynomial is fitted from
the end of g(n) and to the left. In detail, one polynomial is fitted to g(L − 3)
and g(L− 1); the slope of the polynomial is denoted the reference slope. Another
first order polynomial is fitted to g(L− 4) and g(L− 3); this slope is denoted the
test slope. e test slope is compared to the reference slope, and if the difference
between the two slopes is less than θ the reference slope is extended one sample to
the left, and the test slope is moved one sample to the left. e slopes are compared
until the difference between them is larger than θ, indicating the beginning of a
linear behavior in the end of g(n). e entire reference slope interval is replaced by
a constant level, corresponding to the level in the beginning of the replaced interval.
In addition, in order for g(n) to end at zero, g(L− 1) is subtracted from g(n), as
illustrated in Fig. 7b. e following all-pole system function is employed,

Gp(z) =
b0

1 +
∑p

k=1 ap(k)z
−p

(5)

where p is the order of the model, ap(k) are the coefficients of the model, and b0 is
a scaling factor. In order to estimate the coefficients ap(k) and the scaling factor b0,
Prony’s method is used [22]. e correlation function rg(k) of g(n) is calculated
as:

rg(k) =

L−1∑
n=0

g(n)g(n− k) (6)

By solving the following normal equations, the coefficients ap(k), are calculated:

p∑
l=1

ap(l)rg(k − l) = −rg(k), k = 1, ..., p (7)

In order to determine which order p of the model that best fits g(n), the coeffi-
cients of the model are calculated for p = 1, 2, 3, 4. For each p, the root mean
square error (RMSE) between g(n) and the impulse response of the model, ĝp(n),
is calculated and normalized with the maximum absolute amplitude of the signal in
the interval. e normalized RMSE for each order p is compared to the normalized
RMSE for p = 1. If a higher order improves the normalized RMSE for p = 1 by
5% or more and the normalized RMSE is lower than 0.15, that order is used. If the
normalized RMSE is larger than or equal to 0.15, the signal is shifted in time and
the start of the modeling interval is iteratively moved one sample forward until the
normalized RMSE is lower than 0.15. If none of the normalized RMSE satisfies
this requirement, the model with the lowest normalized RMSE is employed. e
poles of the polynomial for the selected order are calculated and for each pole the
distance to the origin, r, indicates how quickly the signal decays to zero. A value of
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r close to zero indicates a fast decay while a value close to one indicates a slow decay.
In order to summarize the distances from the poles to origin for models with p > 1,
the maximum value, rmax, is used. In order for the signal to be identified as PSO,
ĝp(n) must have rmax < rth and a maximum absolute amplitudeA > Amin. e
offsets of the PSO are determined by using the function f(n) = Arnmax, which de-
scribes the decaying component of the modeled signal, see Fig. 7c. e difference
between ĝp(n) and f(n) is calculated as

u(n) =

{
ĝp(n)− f(n), if

∑
ĝp(n) < 0

ĝp(n)− (−f(n)), if
∑
ĝp(n) > 0

e offsets of the PSO are defined as the first sample where u(n) < ξ during
R = tR · Fs consecutive samples. In order to not detect very slow movements,
the following ratio between the amplitude and the duration of the PSO are calcu-
lated,

s =
An +Ap

tg
(8)

where An is the maximum absolute amplitude of the negative part of g(n), Ap is
the maximum amplitude of the positive part of g(n), and tg is the duration of the
detected PSO, see Fig. 7d. All PSO that have s < 0.4·103

2Fs
are discarded. If PSO

are detected in both the x- and y- components, the offset is set to the index that
corresponds to the latest offset.

2.4 Performance evaluation

In order to evaluate the performance of the algorithm in terms of sensitivity and
specificity, (cf. [23]), a manually annotated database is used as a reference. e sen-
sitivity describes the algorithm’s ability to correctly classify each type of eye move-
ment and a value close to one is desired. For each type of eye movement i, where i
= {S = Saccade, PSO = Postsaccadic oscillations,D = Disturbances, SF = Smooth
pursuit/Fixation}, the sensitivityi is calculated as

sensitivityi =
TPi

TPi + FNi
(9)

where true positives, TPi, is the number of correctly classified samples for eye move-
ment type i, and the false negatives, FNi, is the number of samples that should
have been classified as eye movement type i, but have incorrectly been classified as
another type of eye movement.

e specificityi describes the algorithm’s ability to only find the samples of eye
movement type i and a value close to one is desired. For each type of eye movement
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i, the specificityi was calculated as

specificityi =
TNi

TNi + FPi
(10)

where true negatives, TNi, is the number of samples that the algorithm correctly
classified as another type of eye movement than i. e false positives, FPi, is the
number of samples that the algorithm falsely classified as eye movement type i.

e comparison between the manual annotation and the detections of the al-
gorithm is summarized by Cohen’s kappa [24], κ,

κ =
Po − Pe

1− Pe
, κ ∈ [0, 1] (11)

where Po is the observed proportion of agreement between the output of the algo-
rithm and the manual annotation, and Pe is the proportion of agreement expected
by chance between the output of the algorithm and the manual annotation. For a
detailed description on the calculation of Po and Pe, see [25]. A value of κ close
to one is desired, and indicates that there is an overall good agreement between the
algorithm and the manual annotation.

e proposed algorithm is also compared to the adaptive velocity based algo-
rithm described in [9]. is algorithm was chosen because it is one of few algo-
rithms that is able to detect PSO and is freely available. In addition, it outper-
formed two of the most commonly used algorithms today: the identification by
velocity threshold (I-VT) algorithm and the identification by dispersion threshold
(I-DT) algorithm [9]. In order to be able to compare different algorithms which
may detect different numbers and lengths of each type of eye movement, the entire
performance evaluation is based on the classification of each sample.

3 Experiment and database

e eye-tracking signals used in this paper were collected in an experiment where 33
participants, students and personnel from Lund University, took part. e mean
age of the participants was 31.2 ± 9.9 (M ± SD) years. In the experiment, two
computers were used, one for showing the stimuli and one for controlling the eye-
tracker. Stimuli were presented using Matlab R2009b and Psychophysics toolbox
(version 3.0.8, Revision 1591), on a Samsung Syncmaster 931c TFT LCD 19 inch
(380x300 mm) monitor, with a screen refresh rate of 60 Hz and a resolution of
1024x768 pixels. e computer controlling the eye-tracker was running iView X
(version 2.4.19). e signals were recorded binocularly with the iView X Hi-Speed
1250 eye-tracker from SensoMotoric Instruments (Berlin, Germany), at a sampling
frequency of 500 Hz. e viewing distance from the eye-tracker to the screen was
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Figure 8: An example of the different types of stimuli used in the experiment.
Upper left: Image, upper right: Text, lower left: moving dot and lower right: a
frame of a video clip.

670 mm. At the start of the experiment, a calibration procedure was performed
for each participant. e calibration procedure contained a nine-target binocu-
lar calibration in iViewX followed by four targets used to validate the accuracy of
the calibration. e average accuracy across participants and validation targets was
0.41◦ and 0.41◦ for the x- and y- components, respectively.

e experiment contained five blocks with different types of stimuli: images,
texts, moving dots, short video clips, and a scrolling text. Examples of the stimuli
are shown in Fig. 8, and a summary of the content in the different blocks is shown
in Table 2. Each block contained a number of trials with the same type of stimuli.
Both the block order and the internal trial order within the block were randomized
for each participant. Before the next trial started, the participants were instructed
to fixate at a centrally located cross. Before a new block started, the participants
were given detailed written instructions on the screen about the next task. ese
instructions were: to freely view an image for 10 s, to read a text at your own speed,
and to follow moving dots and moving objects for video clips.

e database used in this paper is a subset of the complete database recorded
during the described experiment. From now on, in this paper, the database refers
to the signals recorded from participants viewing images, moving dots, and video
clips. ese trials are marked with bold font in Table 2. Of the 33 participants
that were included in the experiment, 31 were used; two participants were excluded
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Table 2: A summary of the experiment. In this paper the stimuli marked in bold
font are used.

Blocks Content Annotated/Total
Image photographs 14/155

with nature motives
Text texts -
Moving dot one black dot on white 11/62

background in 8 directions
(0, ±π

4 ,±π
2
,±3π

4 ,π)
4 speeds (5, 10, 20, 30◦/s)

sinusoid -
blinking static dots -

Video clip real-world videos with moving 9/186
objects, e.g, road with traffic

and a roller coaster
Scrolling text vertical scrolling text -

due to saving problems during the recording process. Only signals recorded from
the right eye were used in the analysis. e database was divided into two parts by
splitting the participants into two equally large groups; one part for development
and one part for testing of the algorithm.

A subset of the signals from both the development part and the test part of
the database was annotated manually by a domain expert (author MN). In order
to facilitate the annotation process, a GUI was developed in Matlab, showing the
x- and y- coordinates over time, the velocity over time, the vertical diameter of
the pupil over time, the coordinates in the xy- space, and a zoomed in version
of the last manually annotated event in the xy- space. ese representations were
judged sufficient for the expert to reliably detect the eye movements. e expert
classified each sample into six different types of events: fixations, saccades, PSO,
smooth pursuit movements, blinks, and undefined events. An undefined event is
when a sample does not conform to any of the other eye movements. e manual
annotation was performed without knowing beforehand which type of stimulus
that was used. In order to ensure that a representative set of signals were used both
for development and for evaluation of the algorithm, the manual annotation set
was chosen with respect to the quality of the signals; half of the selected signals for
each type of stimuli had a lower quality and the other half had a higher quality. In
order to determine the quality of the signals, the percentage of data loss and the
average distance between directional changes in the intersaccadic intervals, ν, were
computed. e term data loss contained both the amount of blinks and the amount
of samples with unreasonable high velocities and accelerations. e blink detection
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Figure 9: Two examples of the detection of saccades and PSO, where (a) – (b) are
showing the x- and y- components over time and (c) – (d) are showing the xy-
domain for the two examples. e thicker black line marks the saccades, the thiner
black line the PSO, the vertical dash-dotted line the on- and offsets of the saccades,
the solid vertical black line the offsets of the PSO and the grey line corresponds to
the fixations, F1 and F2, before and after the saccade in each case.

described in the preprocessing part was used. A signal was judged to have a high
quality when both the amount of data loss and ν were lower than respective median
of the two measures and the opposite was true for signals exhibiting lower qualities.

4 Results

e settings of all intrinsic algorithm parameters, given in Table 3, were used in
the entire results section. All intrinsic parameters were adjusted using only the
development part of the database. Two examples of the detection of saccades and
PSO for two different types of PSO recorded during image stimuli are shown in
Fig. 9, in both the time and the xy- domain.
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Table 3: e settings for the intrinsic parameters in the proposed algorithm for
all types of stimuli. Note that the ◦ notation in the cases of δ and β refers to an
angle in the image plane on the stimulus screen while it in all other cases represent
degrees of visual angle.

Parameter Value Description
Preprocessing
amin 0.3◦ Min. amplitude for a one-sample spike
Saccade detection
tmin 20 ms Min. time between two saccades
T 6 ms Min. duration of a saccade
λ 6 No. standard deviations for ηx and ηy
δ 60◦ Max. allowable deviation from the main direction
tK 6 ms Max. duration of deviation from the main direction
β 40◦ Largest allowable change in intra-saccadic direction
tN 8 ms Max. duration of inconsistent sample-to-sample direction
M 2 No. distances below ν

θ 1.7 Min. difference between ref. slope and test slope
PSO detection
rth 0.89500/Fs Max. distance from origin to a pole
tL 40 ms Initial length of the interval for PSO modeling
Amin 0.2◦ Min. amplitude for PSO
ξ 0.08◦ Min. value of the difference between

the decaying component and the modeled signal
tR 6 ms Max. duration of ξ
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4.1 Evaluation of the algorithm

In order to evaluate the performance of the proposed algorithm, the eye movements
detected by the algorithm are compared to the manually annotated eye movements
and to those detected by the velocity based adaptive algorithm described in [9]. Six
properties of the detected saccades and PSO are presented in Tables 4 – 6, for the
annotated part of the database. For comparison, the corresponding values for the
entire development part of the database are shown in brackets. e durations of the
saccades detected by the proposed algorithm are in agreement with the durations
of those detected by the expert, while the saccades detected by the algorithm in [9]
are in general longer, 40 – 50 ms compared to 23 – 29 ms for the expert. e issue
with longer durations of the detected saccades is mentioned in [9]. e durations
of the PSO detected by the proposed algorithm are in general slightly longer than
those detected by the expert and the durations of the PSO detected by the algorithm
in [9] are longer than those detected by both the expert and the proposed algorithm.
Around 85% of all saccades detected by the expert have PSO for image and video
stimuli. For moving dot stimuli, the expert detects 65% saccades with PSO. e
proposed algorithm detects close to equally many PSO as the expert. e algorithm
in [9] detects a lower number of saccades and in addition also fewer PSO for all types
of stimuli compared to the expert.

e sensitivities and specificities for the detection of saccades, PSO, distur-
bances, and periods of smooth pursuit movements and/or fixations are shown in
Table 7. Disturbances include everything that is not detected as eye movements, i.e.,
blinks, screen outliers, and one-sample spikes. e eye movements included in the
category of smooth pursuit movements and/or fixations correspond to samples that
the algorithm does not count as saccades, PSO or disturbances. e performance of
the saccade detection for the two algorithms are equally good with specificity above
0.93 and sensitivity above 0.80, for all stimuli. However, it should be noted in Ta-

Table 4: Mean values for the properties of the detected saccades and PSO for the
Expert, the proposed algorithm, and the algorithm described in [9], for images. In
brackets, the corresponding value for the entire development part of the database
is shown.

Measure Expert Prop. Alg. Alg. in [9]
Saccade duration (ms) 28.7 28.1 (29) 50 (49.1)
Saccade peak velocity (◦/s) 404 394 (316) 383 (327)
PSO duration (ms) 20.4 24.6 (25.8) 25.8 (23.7)
% of saccades with PSO 84.5 83.9 (77.4) 69.2 (62.7)
Number detected saccades 283 286 (2310) 266 (2073)
Number detected PSO 239 240 (1789) 184 (1300)
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Table 5: Mean values for the properties of the detected saccades and PSO for
the Expert, the proposed algorithm, and the algorithm described in [9], for video
stimuli. In brackets, the corresponding value for the entire development part of
the database is shown.

Measure Expert Prop. Alg. Alg. in [9]
Saccade duration (ms) 23.9 26.6 (26.4) 40.2 (43.1)
Saccade peak velocity (◦/s) 335 316 (281) 321 (299)
PSO duration (ms) 21.2 23.4 (24.9) 24 (23.7)
% of saccades with PSO 85.7 78.7 (74.2) 82.9 (61.1)
Number detected saccades 84 89 (7231) 76 (6016)
Number detected PSO 72 70 (5362) 63 (3675)

Table 6: Mean values for the properties of the detected saccades and PSO for the
Expert, the proposed algorithm, and the algorithm described in [9], for moving
dot stimuli. In brackets, the corresponding value for the entire development part
of the database is shown.

Measure Expert Prop. Alg. Alg. in [9]
Saccade duration (ms) 23.5 25 (28.2) 43.4 (43.5)
Saccade peak velocity (◦/s) 265 163 (200) 174 (206)
PSO duration (ms) 14.7 20.6 (23.8) 24 (22.8)
% of saccades with PSO 62.1 54.5 (66) 41.7 (39.1)
Number detected saccades 29 33 (106) 24 (87)
Number detected PSO 18 18 (70) 10 (34)

bles 4 – 6, that the durations of the saccades differ between the two algorithms and
the similarities in sensitivities and specificities are due to that the proposed algo-
rithm detects a larger and more correct number of saccades with shorter durations
in contrast to the algorithm in [9] that detects a lower number of saccades with
longer durations.

For the detection of PSO, there is a larger difference between the two compared
algorithms, where the proposed algorithm outperforms the algorithm in [9]. e
values of the sensitivity are 0.73 – 0.76 for the proposed algorithm compared to
0.14 – 0.37 for the algorithm in [9]. Both algorithms have equally high specifici-
ties, with values in the range of 0.96 – 0.99. e lower level of the sensitivity for
the two algorithms indicates that there are too few samples that are detected as PSO
compared to the annotation. Since the two algorithms have different strategies for
detection of disturbances, the sensitivities and specificities for the two algorithms
differ. e proposed algorithm detects the disturbances with high specificity, 0.99,
and a slightly lower sensitivity, 0.67 – 0.89, than the algorithm in [9], with speci-
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Table 7: Sensitivity and specificity for the proposed algorithm (Prop.) and the
algorithm in [9].

Image Video Moving dot

Prop. Alg. [9] Prop. Alg. [9] Prop. Alg. [9]
SensitivityS 0.838 0.907 0.893 0.89 0.815 0.801
SpecificityS 0.984 0.926 0.983 0.963 0.982 0.968
SensitivityPSO 0.758 0.244 0.753 0.369 0.727 0.144
SpecificityPSO 0.973 0.957 0.986 0.973 0.989 0.987
SensitivityD 0.882 0.965 0.892 1 0.667 1
SpecificityD 0.992 0.846 0.999 0.809 0.999 0.665
SensitivitySF 0.955 0.739 0.973 0.751 0.978 0.614
SpecificitySF 0.885 0.978 0.895 0.971 0.828 0.949

Table 8: Cohens kappa for the proposed algorithm and the algorithm in [9] for
the development part of the database.

Image Video Moving dot
Proposed algorithm 0.814 0.822 0.756
Algorithm in [9] 0.512 0.398 0.232

Table 9: Cohens kappa for the proposed algorithm and the algorithm in [9] for
the test part of the database.

Image Video Moving dot
Proposed algorithm 0.745 0.804 0.736
Algorithm in [9] 0.484 0.336 0.288

ficity 0.67 – 0.85 and sensitivity 0.97 – 1. e algorithm in [9] puts in general
more uncertain samples in the disturbance category. ese different strategies for
detection of disturbances also affect which samples that become marked as smooth
pursuit movements and/or fixations.

In order to summarize the general performance of the two detection algorithms
for all types of eye movements, Cohen’s kappa, κ, which measures the inter-observer
agreement, is computed as described in Section 2.4. e κ for the two algorithms
summarized for all types of stimuli are shown in Table 8. In general, κ for the
proposed algorithm is considerably larger thanκ for the algorithm in [9]. In order to
validate the results from the development part of the database, κ was also computed
for the test part of the database, see Table 9. e results for the test part of the
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Table 10: Percentage (%) of use for each criterion in the saccade on- and offset
detection.

Image Video Moving dot
Saccade onset
(a) Deviation from the main direction 75.3 76.3 69.9
(b) Inconsistent sample-to-sample direction 21.3 19 24.3
(c) Distance between directional changes 3.25 4.78 5.65
Saccade offset
(a) Deviation from the main direction 63.4 67.2 66
(b) Inconsistent sample-to-sample direction 23.8 16.7 15.1
(c) Distance between directional changes 12.8 16.2 18.9

database are comparable with the results for the development part of the database.

4.2 Evaluation of parameter settings

e parameter settings shown in Table 3 are chosen according to known physiolog-
ical limitations of eye movements, visual inspection of detection results using the
development part of the database, and previous literature. Table 10 shows how of-
ten the criteria (a) – (c) are employed in the detection of the saccadic on- and offsets.
As shown in Table 10, all the suggested criteria are used for the detection of both
on- and offsets of the saccades. e criterion deviation from the main direction is
the most commonly used criterion, (63 – 76%), for the detection of both on- and
offsets. e least used criterion is the distance between directional changes.

5 Discussion

An algorithm for detection of saccades and PSO in eye-tracking signals was pro-
posed. e proposed algorithm has been tested on signals recorded during both
static and dynamic stimuli, where the latter contained smooth pursuit movements.
Its performance was evaluated in comparison to manually annotated eye movements
and an adaptive velocity based algorithm, described in [9].

e performance of the saccade detection was in terms of sensitivity and speci-
ficity generally similar to the algorithm in [9]. However, the durations and the
number of saccades differed between the two algorithms. e lower number of sac-
cades using the algorithm in [9] can be explained by the presence of smooth pursuit
movements in the signal, which increases the velocity threshold such that small sac-
cades are missed. e reason for the longer durations for the algorithm in [9] is that
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it solely uses a velocity threshold, and searches for a local minima in the velocity be-
fore and after the peak, while the proposed algorithm uses a combination of several
criteria, for the detection of the on- and offsets of the saccades.

e appearance of PSO is highly dependent on the type of eye-tracker that is
used [16], and PSO have therefore been treated unsystematically, or not at all by
most algorithms. Explicitly detecting and modeling of PSO, as is described in this
work, leaves the user with several options: e PSO can be: 1) included in the
saccades, 2) included in the subsequent eye movements, 3) classified as its own type
of eye movement, 4) discarded because of its unknown perceptual and cognitive
consequences, or 5) substituted by a simplified first order all-pole model in order to
suppress the PSO. Different options may be suitable for different types of research
and are all supported by the proposed method.

ere was a large difference in the performance of the detection of PSO between
the two compared algorithms. e two algorithms use two completely different
strategies for the detection of the PSO, where the proposed algorithm uses an all-
pole model, while the algorithm in [9] uses an adaptive velocity threshold. By
using a model, the proposed algorithm was, in addition to perform more accurate
offsets detection of the PSO, also able to identify different types of PSO that was
not possible when only using the velocity signal. According to the properties of the
detected PSO in Tables 4 – 6, there appears to be no difference in duration between
PSO measured during image and video stimuli in this database.

e quality of the signals used for evaluation of the proposed algorithm has
been measured. Signals with both higher and lower quality have been used both for
the development and testing of the algorithm. It has, however, not been evaluated
if there is a difference in performance for signals with different level of quality.

e algorithm was also tested for the same database downsampled to 250 Hz
with a similar/slightly degraded performance (Cohen’s kappa = 0.78, 0.76 and 0.70
for image, video, and moving dot stimuli) and for text reading data (ten cases of in
total 395 s) sampled at 1250 Hz where the performance was in good agreement with
the performance when running the same data downsampled to 500 Hz (Cohen’s
kappa = 0.80).

e proposed algorithm is intended for offline use. Since the velocity filter is
not causal and the proposed algorithm performs segmentation of the signals before
the final classification, it is not suitable for real-time applications.

e eye movements detected by the proposed algorithm is compared to manual
annotation performed by an expert. By using the annotated eye movements, the
performance of the algorithm was quantitatively evaluated. Since the annotation
is performed on a sample to sample basis, the exact performance of the detection
algorithm can be evaluated in contrast to previously used evaluation methods where,
e.g., statistics of amplitudes, durations or number of detected events have been
calculated and evaluated [12, 9]. By using a combination of the measures and values
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in Tables 4 – 8, the performance of the algorithm can be evaluated at different
scales, from the exact on- and offsets of individual events to Cohen’s kappa which
summarizes all sensitivities and specificities over the entire annotated part of the
database.

6 Conclusions

In this work, an algorithm for event detection and eye movement classification
based on eye-tracking signals is proposed. In summary, the proposed algorithm
provides more accurate on- and offsets estimation of the saccades, outperforms a
previously suggested estimation method for PSO, and in addition allows modeling
of the PSO. Furthermore, a methodological framework for objective testing of event
detection algorithms applied to eye-tracking signals have been developed, including
a large partly annotated, database recorded during both static and dynamic stimuli,
a graphical user interface for easy annotation and viewing of eye movement events,
and an evaluation procedure which summarizes the overall performance into one
Cohen’s kappa value.
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Detection of Fixations and
Smooth Pursuit Movements in High-Speed

Eye-Tracking Data

Abstract

A novel algorithm for the detection of fixations and smooth pursuit movements in high-
speed eye-tracking data is proposed, which uses a three-stage procedure to divide the in-
tersaccadic intervals into a sequence of fixation and smooth pursuit events. e first stage
performs a preliminary segmentation while the latter two stages evaluate the characteristics
of each such segment and reorganize the preliminary segments into fixations and smooth
pursuit events. Five different performance measures are calculated to investigate different
aspects of the algorithm’s behavior. e algorithm is compared to the current state-of-the-
art (I–VDT and the algorithm in Berg et al., 2009), as well as to annotations by two experts.
e proposed algorithm performs considerably better (average Cohen’s kappa 0.42) than
the I–VDT algorithm (average Cohen’s kappa 0.20) and the algorithm in Berg et al. (2009)
(average Cohen’s kappa 0.16), when compared to the experts’ annotations.
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1 Introduction

Measurement of eye movements is an important tool in basic research in, e.g., vi-
sual attention, perception, cognition, and medicine. In studies of visual attention
and perception, eye movements are used to investigate, e.g., how the focus of our
attention is chosen depending on the content of an image [1], how objects are iden-
tified [2], and how decisions are made [3]. In medicine, eye tracking is employed in
studies investigating the functionality of the brain, e.g., in patients with schizophre-
nia [4].

Until recently, the majority of eye-tracking studies have used static stimuli, e.g.,
images and texts. e two most common types of eye movements when viewing
static stimuli are fixations and saccades. Fixations are periods when the eye is more or
less still, while saccades are fast movements between the fixations that take the eyes
from one object of interest to the next. Currently, the interest in dynamic stimuli
is growing and it is becoming increasingly common to conduct studies where video
clips are used as stimuli [5]. e type of eye movement called smooth pursuit occurs
when the eyes are following a moving object [6]. Traditionally, algorithms have
been developed for signals recorded during static stimuli, i.e., developed to detect
fixations and saccades. When smooth pursuit movements are not considered by
an algorithm, they will be spread into the other types of detected eye movements
and make the interpretation of these difficult. Smooth pursuit movements may for
instance be erroneously classified as very long fixations interspersed with very short
saccades [7].

Many of the measures that earlier have been used to investigate eye movements
during image viewing are based on the detection of fixations and their properties,
e.g., fixation duration and number of fixations [8]. When dynamic stimuli are
used, these fixation measures are still of interest. However, in order to be able to
investigate and draw well-founded conclusions from fixations in data where smooth
pursuit movements are present, a robust algorithm for separation of fixations and
smooth pursuit movements is needed.

Since the signal characteristics of fixations and smooth pursuit movements are
overlapping [9], classification of fixations in the presence of smooth pursuit move-
ments is a difficult task [5, 10]. e task is also different depending on whether
the algorithm is intended for analysis of data recorded with a high or low sampling
frequency, and for real-time or offline processing. Classification of data with dif-
ferent sampling frequencies require different event detection methods, mainly due
to differences in the level of high frequency noise.

In [10], three algorithms for detection of fixations, saccades, and smooth pursuit
movements were evaluated: a velocity based algorithm with two velocity thresholds
(I–VVT), a velocity and movement pattern based algorithm (I–VMP), and a ve-
locity and dispersion based algorithm (I–VDT). All algorithms were evaluated with
data recorded using the EyeLink 1000 from SR Research. e stimuli consisted of
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dots moving with different speeds and different directions. e results showed that
the most successful method was the I–VDT, which used a combination of velocity
and dispersion thresholds.

Another algorithm, proposed in [11], employed principal component analysis
in combination with a velocity threshold to distinguish between saccades, fixations,
and smooth pursuit movements. e algorithm was used to analyze saccades in
humans and monkeys watching short video clips, but the performance of the algo-
rithm was not evaluated in detail. In the following, the algorithm proposed in [11]
is referred to as I–PCA.

A completely different method, intended for real-time detection of smooth pur-
suit movements using a low-speed mobile eye-tracker was proposed in [12]. e
method used a set of features and a k-nearest neighbor classifier in order to dis-
tinguish between smooth pursuit movements and the remaining parts of the data.
e performance of the algorithm was evaluated using data recorded with stimuli
where a dot was moving over the screen in different speeds and different directions.
e results showed that a combination of features that capture temporal aspects of
smooth pursuit movements was a successful detection method.

In this work, the focus is on offline processing of fixations and smooth pursuit
movements in data recorded using a high-speed eye-tracker. e paper consists
of two main parts: First, an algorithm for classification of fixations and smooth
pursuit movements is developed for eye-tracking data when dynamic stimuli are
used, and secondly, a detailed evaluation is performed, where the performance of
the algorithm is evaluated from different aspects.

2 Methods

A schematic overview of the proposed algorithm for detection of fixations and
smooth pursuit movements is shown in Fig. 1. e algorithm is applied to the
intersaccadic intervals, i.e., the intervals between the detected saccades, PSO, and
blinks, and comprises three stages where the first stage performs a preliminary seg-
mentation while the latter two evaluate the characteristics of each such segment and
reorganize the preliminary segments into fixations and smooth pursuit events. In
this paper, the intersaccadic intervals are identified using the algorithm in [13].

2.1 Preprocessing

In order to avoid any influence of adjacent saccades or PSO, the intersaccadic in-
tervals are preprocessed. Since neither fixations nor smooth pursuit movements
physiologically can have a velocity higher than 100◦/s [14], the sample-to-sample
velocities of the intervals are computed and all samples in the beginning and/or end
of each interval exceeding this threshold are removed.
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Figure 1: Overview of the proposed algorithm.

2.2 Preliminary segmentation

Each intersaccadic interval is divided into windows, wi, of size tw ms, with an over-
lap of to ms. For all pairs of x- and y-coordinates contained in the window, the
sample-to-sample direction, α(n), is computed as the angle of the line between
two consecutive pairs of x- and y-coordinates to the x-axis. In order to investigate
whether the sample-to-sample directions in each window are consistent a Rayleigh
test is performed [15]. e sample-to-sample direction, α(n), is transformed into
Cartesian coordinates ri(n), for n = 1, 2, ..., N − 1, where N is the number of
samples in wi.

ri(n) =

(
sin(α(n))
cos(α(n))

)
(1)

e mean vector, r̄i, is calculated as

r̄i =
1

N

N∑
n=1

ri(n) (2)

e Reyleigh test uses the resultant vector Ri = ∥r̄i∥ to determine whether the
sample-to-sample directions in the window are uniformly distributed or not. An
approximation of the p-value under H0 is computed using

Pi = exp[
√

1 + 4N + 4(N2 − (Ri ·N)2)− (1 + 2N)] (3)

e null and alternative hypotheses of the test, H0 and HA, respectively, are:

H0: e samples in the window are distributed uniformly around the unit
circle.
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HA: e samples in the window are not distributed uniformly around the
unit circle.

e p-value of the test, Pi, is computed for each window i. Since there is an overlap
between the windows, each sample may belong to more than one window. e
mean value of Pj , for all windows j which sample k belongs to is computed as,

Pmean(k) =
1

K

K∑
j=1

Pj (4)

whereK is the number of windows each sample belongs to, k = 1, 2, ...,M , andM
is the number of samples in the intersaccadic interval. All consecutive samples in the
interval satisfying either Pmean(k)≥ ηP or Pmean(k)< ηP are grouped together into
preliminary segments sharing similar properties in terms of directionality. ese
preliminary segments are further analyzed in the next step.

2.3 Evaluation of spatial features in the position signal

For all preliminary segments that have a duration longer than tmin, four parameters,
pD, pCD, pPD, and pR, are calculated. ese four parameters describe the dispersion
(D), the consistency in the direction (CD), the positional displacement (PD), and
the range (R) of the segment, which all are parameters that are typical for a smooth
pursuit movement. In order to measure the dispersion, Principle Component Anal-
ysis (PCA) is employed. e first principle component determines the direction in
which the data have their largest variance and the second principle component is
chosen orthogonal to the first one. e principle components, pc1 and pc2, are
computed by removing the respective mean from the preliminary x- and y- seg-
ments and estimating the covariance matrix, Ĉ, between these. e zero mean data
are projected onto the principle components, dpc1 and dpc2 respectively, and the
lengths of the corresponding vectors are calculated, [11]. An illustration of dpc1
and dpc2 , is shown in Fig. 2a. e first parameter, pD, determines the relationship
between the lengths of the first and the second principle components, dpc1 and dpc2 .

pD =
dpc2
dpc1

(5)

e parameter, pD, measures if a preliminary segment is more dispersed in one
direction than in the other, i.e., a value of pD close to one means that the segment
is equally spread in both directions.

e second parameter, pCD, measures if the segment has a consistent direction
or not. It is determined by computing the Euclidean distance (ED) between the
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starting and ending positions of the interval, dED, and comparing it to dpc1 . An
example of dED is shown in Fig. 2a.

pCD =
dED

dpc1
(6)

Hence, a value of pCD close to one corresponds to that the data in the preliminary
segment are starting and ending in the largest direction of the data. e third pa-
rameter, pPD, measures the relationship between dED and the trajectory length (TL)
of the segment, dTL.

pPD =
dED

dTL
(7)

A straight line will have pPD equal to one, see Fig. 2b for an illustration of dTL.
e fourth parameter, pR, measures the absolute spatial range of the segment,

and is computed as

pR =
√

(maxx− minx)2 + (max y − min y)2 (8)

where x and y are the x- and y-coordinates in the segment. e four parameters are
calculated for each preliminary segment, and are compared to individual thresholds
resulting in one criterion for each parameter.

1. Dispersion: pD < ηD

2. Consistent direction: pCD > ηCD

3. Positional displacement: pPD > ηPD

4. Spatial range: pR > ηmaxFix

2.4 Classification of fixations and smooth pursuitmovements

e segments are divided into three categories, depending on how many criteria
that are satisfied. All segments where none of the criteria are satisfied are classified
as fixations. Likewise, all segments with all criteria satisfied are classified as smooth
pursuit movements. Finally, all segments where 1-3 criteria are satisfied are placed in
a third category containing uncertain segments. e segments in this category have
properties that may characterize both fixations and smooth pursuit movements.
Consecutive segments belonging to the same category are grouped together.

e categorization of other segments in the same intersaccadic interval may
provide information of whether the uncertain segment is part of a larger fixational
interval or a larger smooth pursuit interval. e following strategy is used: First,
each uncertain segment is evaluated through criterion 3, which is the criterion that
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evaluates the most typical feature of a smooth pursuit movement compared to a
fixation. If criterion 3 is satisfied, the uncertain segment is most similar to a smooth
pursuit movement and the spatial range, pR, is recalculated by adding the spatial
ranges of other smooth pursuit segments in the intersaccadic interval that has a mean
direction that does not differ more than ϕ to the mean direction of the uncertain
segment. If the merged segment has a pR > ηminSmp, the segment is classified as a
smooth pursuit and otherwise as a fixation. If, on the other hand, the segment is
most similar to a fixation, i.e., criterion 3 is not satisfied, criterion 4 decides whether
the segment is classified as a fixation; if criterion 4 is not satisfied, the segment is
classified as a fixation and vice versa.

2.5 Performance evaluation

e performance of the proposed algorithm is evaluated using the following five
methods:

1. Event properties. e total number of fixations and smooth pursuit move-
ments are calculated as well as the mean duration for each of the two types
of events.

2. Proportion of events for different types of stimuli. e percentage of each type of
event is calculated for image-, and moving dot stimuli. e expected result
for image stimuli is to have close to 100% detected fixations and close to 0%
detected smooth pursuit movements. For moving dot stimuli the expected
result is to have an as large amount of detected smooth pursuit movements
as possible.

3. Sensitivity and specificity analysis. e sensitivity describes the ability of the al-
gorithm to detect a certain type of event. e specificity is a complementary
measure that describes the ability of the algorithm to correctly detect each
type of event (c.f. [16]). When calculating the sensitivity and specificity,
manual annotations are used as the “gold standard”. e annotations of each
intersaccadic interval are compared to the detections of the algorithm. Since
the on- and offsets of the saccades may differ between the algorithm and the
annotations, the data is classified into four groups: Fixations (Fix), Smooth
pursuit movements (Smp), Disturbances (Dist), and Others, where Distur-
bances includes all samples that are detected as blinks or removed outliers
and Others contains samples from adjacent saccades and PSO.

4. Cohen’s kappa analysis. In order to evaluate the overall agreement between
the manual annotations and the detections of the algorithm, Cohen’s kappa
is used. A detailed description of the calculations of sensitivity, specificity,
and Cohen’s kappa can be found in [13].
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5. Scores evaluation. In [17] and later in [10], scores were proposed as an evalu-
ation method for saccades, fixations, and smooth pursuit movements. Since
the work in this paper focuses on the separation between fixations and smooth
pursuit movements, only a set of the proposed scores in [10] are computed.
e following scores are used:

• PQnS – e ratio between the sum of the durations of all the detected
smooth pursuit movements and the sum of the durations of moving
dots in the stimuli. PQnS is compared to its corresponding ideal value,
PQnSideal, which is calculated as the total duration of moving dots in
the stimuli where the duration of the first fixation and the duration of
the first corrective saccade are removed.

• PQlSP – Determines the mean distance between the moving dot stim-
uli and the samples detected as smooth pursuit movements. PQlSP is
compared to its ideal value which is 0◦.

• PQlSV – Determines the mean difference between the velocities of the
detected smooth pursuit and of the corresponding stimuli. PQlSV is
compared to its ideal value which is 0◦/s.

A detailed description and background to all scores can be found in [17, 10].

3 Experiment and database

e eye-tracking signals used in this paper were collected during an experiment de-
scribed in [13], where a Hi-Speed 1250 eye-tracker from SensoMotoric Instruments
(Teltow, Germany) was used. e eye-tracking signals were recorded binocularly,
with a sampling frequency of 500 Hz. In this paper, the signals from the right eye
were used. e experiment was designed specifically for the evaluation of event de-
tection algorithms when smooth pursuit movements are present. e experiment
includes static images and short video clips as well as dots moving in different direc-
tions and speeds. e database was split into two parts: one development database
and one test database. A subset of each database was manually annotated by two
experts. In total for all stimuli, 33 trials were annotated by Expert 1 and 58 trials
by Expert 2.

4 Results

All results presented in this section were generated using the settings shown in Ta-
ble 1, which were chosen to maximize both the sensitivity and specificity of the algo-
rithm with respect to the manually annotated development database. e detected
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Table 1: Parameter settings for the proposed algorithm.

Parameter Value Description
tw 22 ms window size
to 6 ms overlap of the windows
ηP 0.01 significance level for the Rayleigh test
ηD 0.45 threshold for pD
ηCD 0.5 threshold for pCD
ηPD 0.2 threshold for pPD
ηmaxFix 1.9◦ threshold for max spatial range for

a fixation
ηminSmp 1.7◦ threshold for min spatial range for

a smooth pursuit movement
ϕ π

4 max difference in mean direction for
a smooth pursuit movement

tmin 40 ms minimum fixation duration

fixations and smooth pursuit movements are compared to those detected by the I–
VDT algorithm proposed in [10] and the I–PCA algorithm proposed in [11]. e
I–VDT algorithm is used with the parameter settings proposed in [10], i.e., using a
velocity threshold TV = 75◦/s, a temporal window TW = 150 ms, and a dispersion
threshold TD = 1.9◦. e I–PCA algorithm, which is part of the iLab C++ Neu-
romorphic Vision Toolkit, was downloaded from http://iLab.usc.edu/toolkit and
used with default settings. e preprocessing, where disturbances and blinks are
removed, is the same for the three algorithms, see [13] for a description.

4.1 Event properties

e average properties of the detected fixations and smooth pursuit movements are
shown in Tables 2 – 4, for images, video, and moving dot stimuli, respectively. e
results are summarized below:

• Images – For the development database the mean fixation durations are sim-
ilar between the two experts and the three algorithms, with values ranging
from 217 ms to 241 ms. e mean durations for the detected smooth pursuit
movements are, however, less similar across the algorithms and the experts.
In general, I–VDT detects the most and the shortest smooth pursuit move-
ments with a mean duration of 48.7 ms. Expert 1 detects the fewest number
of smooth pursuit movements with a mean duration of 361 ms. Except for
the I–PCA, the algorithms detect a larger number of smooth pursuit move-
ments than the experts. For the test database, the result has a similar pattern
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as for the development database. e largest difference is that Expert 1 does
not detect any smooth pursuit movements.

• Videos – In the development database, the differences between experts and
algorithms are larger than for images. e mean fixation duration is slightly
larger for the proposed algorithm (218 ms) and considerably larger for I–
VDT (360 ms) and I–PCA (298 ms), compared to the two experts with
206 ms and 179 ms, respectively. e I–VDT algorithm detects the largest
number of smooth pursuit movements (66) and the I–PCA algorithm the
fewest (22). For the test database, the agreement between the experts on
the number of detected smooth pursuit movements is lower than for the
development database.

• Moving dots – For the development database, the largest difference in the
results is for the number of detected fixations, which ranges from 5 for Ex-
pert 1 to 37 for the I–VDT algorithm. e agreement between the proposed
algorithm and the two experts is high for the number of detected smooth
pursuit movements, 21 compared to 27 and 24, respectively. However, be-
tween the two experts, there is a large disagreement on the number of de-
tected fixations and their durations, where Expert 1 detects fewer but longer
fixations compared to Expert 2, with 5 and 17 fixations, respectively. For
the test database, I–VDT and I–PCA have the shortest mean durations of
smooth pursuit movements, 93.3 ms and 127 ms, respectively, compared to
the proposed algorithm with a mean duration of 345 ms.

Table 2: Event properties for detected fixations and smooth pursuit movements,
for image stimuli. A = Proposed algorithm, B = I–VDT, C = I–PCA, D = Expert
1, and E = Expert 2.

Development database
Measure A B C D E
Mean fixation duration (ms) 217 241 224 217 214
Mean smooth pursuit duration (ms) 191 48.7 114 361 283
Number detected fixations 278 250 260 304 298
Number detected smooth pursuits 26 177 10 3 8

Test database
Measure A B C D E
Mean fixation duration (ms) 317 372 345 350 346
Mean smooth pursuit duration (ms) 350 38.4 80 0 310
Number detected fixations 96 87 92 99 93
Number detected smooth pursuits 9 82 3 0 9
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Table 3: Event properties for detected fixations and smooth pursuit movements,
for video stimuli. A = Proposed algorithm, B = I–VDT, C = I–PCA, D = Expert
1, and E = Expert 2.

Development database
Measure A B C D E
Mean fixation duration (ms) 218 360 298 206 179
Mean smooth pursuit duration (ms) 542 90.8 138 509 477
Number detected fixations 67 72 85 56 55
Number detected smooth pursuits 30 66 22 39 46

Test database
Measure A B C D E
Mean fixation duration (ms) 406 616 463 509 338
Mean smooth pursuit duration (ms) 759 147 173 583 484
Number detected fixations 25 29 37 26 26
Number detected smooth pursuits 13 19 12 12 24

Table 4: Event properties for detected fixations and smooth pursuit movements,
for moving dot stimuli. A = Proposed algorithm, B = I–VDT, C = I–PCA, D =
Expert 1, and E = Expert 2.

Development database
Measure A B C D E
Mean fixation duration (ms) 191 266 297 256 157
Mean smooth pursuit duration (ms) 417 54.5 104 388 384
Number detected fixations 15 37 32 5 17
Number detected smooth pursuits 21 40 14 27 24

Test database
Measure A B C D E
Mean fixation duration (ms) 187 240 259 142 203
Mean smooth pursuit duration (ms) 345 93.3 127 328 344
Number detected fixations 8 23 20 4 2
Number detected smooth pursuits 16 18 8 20 20
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Table 5: Percentage of fixations and smooth pursuit movements in the intersac-
cadic intervals, for image and moving dot stimuli. A = Proposed algorithm, B = I–
VDT, C = I–PCA.

Development database
Image Moving dot

Measure A B C A B C
% Fixations 91.2 86.9 98.1 21.4 52.8 86.6
% Smooth pursuits 8.79 13.1 1.94 78.6 47.2 13.4

Test database
Image Moving dot

Measure A B C A B C
% Fixations 93.2 88.1 99.2 16.9 47.9 83.5
% Smooth pursuits 6.81 11.9 0.76 83.1 52.1 16.5

4.2 Proportion of events for different types of stimuli

e percentages of fixations and smooth pursuit movements in the intersaccadic in-
tervals are calculated for image and moving dot stimuli, see Table 5. e values for
the proposed algorithm are based on the intersaccadic intervals resulting from the
algorithm in [13], the values for I–VDT and I–PCA are resulting from the intersac-
cadic intervals from the saccade detection of each algorithm. e percentages are
calculated for the complete development database and the complete test database.
e results are summarized below:

• Images – e expected result for images is to have close to 100% detected
fixations and 0% detected smooth pursuit movements. e proposed al-
gorithm detects 91.2% fixations, I–VDT 86.9%, and I–PCA 98.1%. e
corresponding numbers for detected smooth pursuit movements are 8.79%,
13.1%, and 1.94% for the development database. For the test database, the
results are very similar to the results of the development database.

• Moving dots – e expected result is to have as large amount of detected
smooth pursuit movements as possible and as few detected fixations as pos-
sible. e proposed algorithm detects 78.6% smooth pursuit movements
and 21.4% fixations. e I–VDT algorithm detects 47.2% smooth pursuit
movements and 52.8% fixations for the development database. e I–PCA
algorithm detects the largest amount of fixations 86.6% and only 13.4% of
smooth pursuit movements. For the test database, the results are very simi-
lar to the development database, with a slight increase in the percentages of
smooth pursuit movements for all three algorithms.
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Figure 3: Sensitivity (solid) and specificity (dashed), for images (+), video (*), and
moving dot (o). (a) Proposed algorithm (A) with Expert 1 (D) as reference. (b)
Proposed algorithm (A) with Expert 2 (E) as reference. (c) I–VDT algorithm (B)
with Expert 1 (D) as reference. (d) I–VDT algorithm (B) with Expert 2 (E) as
reference. (e) I–PCA algorithm (C) with Expert 1 (D) as reference. (f ) I–PCA
algorithm (C) with Expert 2 (E) as reference.

4.3 Sensitivity and specificity analysis

Using both experts as references, the sensitivities and specificities of the detected
fixations and smooth pursuit movements for the proposed algorithm, the I–VDT
algorithm, and the I–PCA algorithm, respectively, are shown in Fig. 3. In the ideal
case, both the sensitivity and specificity should be as close to one as possible. Below
is a summary for the different types of events for the development database:

• Fixations – In general, the sensitivity for fixations is high, with values around
0.8 – 0.9, for the algorithms and with both experts as reference. For the speci-
ficity, there is a larger difference between the algorithms, where the proposed
algorithm has values around 0.8 – 0.9 for all stimuli, while I–VDT and I–
PCA have values ranging from 0.3 for video and moving dot stimuli, to 0.9
for image stimuli.

• Smooth pursuit movements – e sensitivity for the proposed algorithm is
generally in the same range as for fixations, i.e., between 0.6 – 0.8 for all types
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of stimuli and compared to both experts. For the I–VDT algorithm, the sen-
sitivity is between 0.2 – 0.6 for all types of stimuli. For the I–PCA algorithm,
the sensitivity is between 0 – 0.2 for all types of stimuli, which is much lower
than for fixations. e specificity for smooth pursuit movements is high for
all algorithms, for all types of stimuli, and compared to both experts.

• Disturbances and Others – e sensitivity and specificity for Disturbances
are high for all algorithms, independent of stimuli and expert, with values
around 0.9. Since the proposed algorithm and I-VDT have the same pre-
processing procedure the results for the two algorithms are almost identical.
For I–PCA, which besides the preprocessing part from [13], has its own very
strict disturbances detection, the result is slightly different from the other
two algorithms. e specificities for the event type Others are high for both
algorithms, which means that the expert and the algorithms are in agreement
about the transitions between saccades/PSO and other events.

4.4 Cohen's kappa analysis

In order to be able to measure the overall agreement between the experts and the
algorithms, Cohen’s kappa, κ, is calculated between each of the two experts and each
of the three algorithms, see Tables 6 – 7. For the development database, Cohen’s
kappa for the proposed algorithm is larger than Cohen’s kappa for I–VDT and I–
PCA, for all types of stimuli. However, the agreement between the experts is even
larger. For the test database, Cohen’s kappa for the proposed algorithm is larger for
video and moving dot stimuli, but lower than the other two algorithms for image
stimuli. Also, Cohen’s kappa between the experts is much lower for image stimuli
than for other stimuli types.

Table 6: Cohen’s kappa between Expert 1 and the proposed algorithm, I–VDT,
I–PCA, and Expert 2.

Development database Test database
Image Video Moving dot Image Video Moving dot

Proposed algorithm 0.620 0.671 0.446 0.0685 0.383 0.423
I–VDT 0.524 0.180 0.098 0.091 0.378 0.0522
I–PCA 0.475 0.113 0.0827 0.12 0.24 0.0242
Expert 2 0.806 0.784 0.573 0.113 0.402 0.816
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Table 7: Cohen’s kappa between Expert 2 and the proposed algorithm, I–VDT,
I–PCA, and Expert 1.

Development database Test database
Image Video Moving dot Image Video Moving dot

Proposed algorithm 0.667 0.530 0.412 0.0595 0.401 0.309
I–VDT 0.537 0.127 0.050 0.105 0.172 0.0362
I–PCA 0.501 0.0744 0.0524 0.066 0.152 0.0257
Expert 1 0.834 0.779 0.550 0.116 0.395 0.687

4.5 Scores evaluation

e performance of the proposed algorithm is also evaluated by calculating scores
for smooth pursuit movements, as proposed in [10]. Since scores can only be used
when the coordinates of the stimuli are known, they are calculated for 17 trials con-
taining moving dot stimuli. e scores were computed for the proposed algorithm,
the I–VDT algorithm, the I–PCA algorithm, and Expert 2, and their values over
the 17 trials are shown in Table 8, (these trials were not annotated by Expert 1).

• PQnS –All the algorithms and Expert 2 have a value of PQnSideal close to
90%. e PQnS value of Expert 2 is closest to its corresponding ideal value,
76.8% compared to ideal the value 90.9%. Between the algorithms, the
proposed algorithm is closer to its corresponding ideal value with 62.7% and
ideal value 88.9%, compared to I–VDT with 24.7% and ideal value 86%,
and I–PCA with 13.1% and ideal value 84.9%.

• PQlSP – e values for PQlSP, which describes the mean distance between
the smooth pursuit samples and the stimuli, are around 2.1 − 2.9◦ for the
proposed algorithm, I–VDT, I–PCA, and Expert 2. e corresponding ideal
value is 0◦.

• PQlSV – e mean differences between the velocity of the stimuli and that
of the eye are ranging from 12.1◦/s for the proposed algorithm to 36.6◦/s for
I–PCA. e corresponding ideal value is 0◦/s.

Cohen’s kappa is also calculated separately between Expert 2 and the proposed
algorithm, I–VDT, and I–PCA, respectively, for the 17 trials used in the calculation
of the scores. e results are shown in Table 8; the proposed algorithm has a Cohen’s
kappa of 0.31 and I–VDT and I–PCA have 0.07. ese results are in the same range
as the values for Cohen’s kappa for moving dot stimuli in Table 7.
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Table 8: Values of the scores and Cohen’s kappa between Expert 2 and the pro-
posed algorithm, I–VDT, and I–PCA. A = Proposed algorithm, B = I–VDT, C =
I–PCA, and E = Expert 2.

Measure A B C E
PQnSideal (%) 88.9 86.0 84.9 90.9
PQnS (%) 62.7 24.7 13.1 76.8
PQlSP (◦) 2.83 2.98 2.1 2.9
PQlSV (◦/s) 12.1 17.9 36.6 13.4
Cohen’s kappa 0.31 0.07 0.07 1

5 Discussion

An algorithm for discriminating between fixations and smooth pursuit movements
was developed. In order to perform the discrimination, the algorithm uses four fea-
tures of the position signal. e algorithm was evaluated using signals recorded dur-
ing both static and dynamic stimuli presentation, and was compared to the I–VDT
algorithm [10] and the I–PCA algorithm [11], as well as to annotations performed
by experts. In general, regardless of stimuli, the proposed algorithm detected longer
but fewer smooth pursuit movements than the I–VDT algorithm. One reason for
this behavior may be that the I–VDT algorithm used only one feature of the signal,
the dispersion, in order to detect the smooth pursuit movement, and when the dis-
persion exceeded the threshold several times, the signal became more segmented. In
comparison to the I–PCA, which uses several features to detect the smooth pursuit
movements, the proposed algorithm detects longer and a larger amount of smooth
pursuit movements.

e percentages of fixations and smooth pursuit movements were calculated for
two types of stimuli – images and moving dots. In theory, it is expected to have close
to 100% detected fixations and close to 0% detected smooth pursuit movements
for images and the opposite for moving dots. For images, the results were 91.2%
fixations and 8.8% smooth pursuit movements for the proposed algorithm. A part
of the samples that was detected as smooth pursuit movements during image stimuli
may be due to vergence. Since the proposed algorithm uses data from one eye only,
it cannot distinguish such movements from smooth pursuit movements. It should
be noted that also the experts detected 1 – 2% smooth pursuit movements in image
stimuli, calculated for the manually annotated part of the development database.

e settings for the I–VDT algorithm were chosen as suggested in [10]. By
using these settings on our database, the I–VDT algorithm is tuned to detect fixa-
tions well, which can be seen from the values of Cohen’s kappa in Table 6, (0.52,
0.18, 0.10), for image, video, and moving dot stimuli respectively. In order to
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make the algorithm less sensitive to fixations, Cohen’s kappa was calculated also for
TD = 1.1◦, (0.33, 0.22, 0.28). By lowering the dispersion threshold, the I–VDT
algorithm detects a larger number of smooth pursuit movements and shorter dura-
tions of fixations in the video and the moving dot stimuli, and gives a larger Cohen’s
kappa for these types of stimuli. Even though Cohen’s kappa becomes more evenly
distributed over the three types of stimuli, it is not in the ranges of the proposed
algorithm that has a larger Cohen’s kappa for all types of stimuli.

For the I–PCA algorithm the default settings of the algorithm were chosen. e
algorithm is clearly tuned and developed to be able to detect saccades and fixations of
a predefined size, shape, and duration, which is shown by the low percentage-values
in Table 5 for image stimuli. e results in Table 5 also show the difficult trade-
off between accurately detecting few smooth pursuit movements in image stimuli
and at the same time a large amount of smooth pursuit movements in moving dot
stimuli.

When comparing Cohen’s kappa of the algorithms to Cohen’s kappa between
the experts, the agreement between the experts is higher. However, Cohen’s kappa
between the experts still has a large variation between the different types of stimuli,
with values from 0.55 for moving dot stimuli to 0.83 for image stimuli, which in-
dicates that the separation of fixations and smooth pursuit movements is a difficult
task even for experts. One explanation to why Cohen’s kappa is a bit lower than
expected between experts and between experts and algorithms, may be due to that
the data are unbalanced; for image stimuli, the majority of samples are fixations
with very few smooth pursuit movements while the opposite is true for moving dot
stimuli. When Cohen’s kappa is calculated for databases that have an unbalanced
distribution between the types of events, small differences in the two compared de-
tections lead to a substantial decrease in Cohen’s kappa, even though the detections
are correct most of the time. An example is given in Fig. 4 where Cohen’s kappa is 0
between the expert and the proposed algorithm since the expert does not classify any
sample as a fixation. An unbalanced database in combination with a low number
of trials are the reasons for the much lower values of Cohen’s kappa in Tables 6 – 7
for images stimuli in the test database, both for algorithms and experts.

An important question is whether the annotations represent a “gold standard”.
e information that the algorithm and the expert is using in order to make the deci-
sion may differ a lot and may potentially render the comparison unfair. e experts
can often guess which types of stimuli that have been used. is may partly explain
why the two experts have a larger agreement between themselves than between ex-
perts and algorithms. e fact that the two experts sometimes differ makes it even
harder to decide which one to trust or use as the “gold standard”. In [18], three
manual coders were used and the correlation between the coders ranged between
0.58 – 0.85. is is comparable to the Cohen’s kappa between experts reported in
this paper.
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Figure 4: Example of a trial with a moving dot, where the detections for the pro-
posed algorithm are in agreement with the expert most of the time, but Cohen’s
kappa is 0. e lower panel shows the detection results for the proposed algorithm
(A), I–VDT (B), I–PCA (C), Expert 2 (E), and what the stimuli was (S). Black
color represents smooth pursuit movements, grey samples are fixations and white
are all other types of eye movements.



121

e performance of the proposed algorithm was evaluated using five different
methods, each with advantages and drawbacks. In order to provide an overview of
the detected events, their properties, and the proportion of events for different types
of stimuli, method 1, (event properties) and 2, (proportion of events for different
types of stimuli), are satisfactory methods. However, these methods do not reveal
whether the events were correctly detected or not. By using method 3, (Sensitivity
and specificity analysis), and method 4, (Cohen’s kappa analysis), the accuracy of
the classification is taken into account. e drawback with these methods is that
there is a need for a “gold standard”, to which the results of the algorithm can be
compared. In this paper, manual annotations from two experts were used. When
using method 5, (Scores), there is no need for time consuming annotations since the
stimuli are used as references. However, this strategy cannot be used for all types of
stimuli, e.g., not for images, text stimuli or video stimuli. In addition, not all types
of events can be evaluated, e.g., PSO, since they are not driven by the stimulus. To
summarize, when comparing and evaluating algorithms, the prerequisite in terms
of stimuli and types of events to be detected will control which type of evaluation
method that should be used. All methods are complementary and no single method
will show the complete performance of the evaluated algorithm.

So far, discrimination between fixations and smooth pursuit movements has
mainly been used in human-computer interaction using low speed eye-trackers,
e.g., to stabilize the cursor during gaze control of a computer screen [19], and in in-
teraction with information screens [20]. Having the possibility to separate between
the two event types also for high-speed eye-trackers is paving the way for studies
where the properties of the two types of events can be investigated and compared.
Two examples of such applications are to measure the difference in smooth pursuit
characteristics between experts and novices when watching dynamic stimuli [21],
and the amount of smooth pursuit when viewing natural stimuli as a diagnostic tool
for neural disorders [22].

6 Conclusions

Discrimination between fixations and smooth pursuit movements is a difficult task
since many of the signal characteristics of the two event types are similar. In this
work, an algorithm for the discrimination between fixations and smooth pursuit
movements in high-speed eye-tracking data is developed and compared with two
existing algorithms and to annotations from two experts. A rigorous performance
evaluation strategy was employed to capture different aspects of the algorithm’s
behavior. e proposed algorithm outperforms two current state-of-the-art algo-
rithms for detection of fixations and smooth pursuit movements, regardless of the
stimuli and evaluation method. However, the agreement to annotations is not as
high as the inter-rater agreement between the experts.
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Smooth Pursuit Detection in Binocular
Eye-Tracking Data with Automatic Video-Based

Performance Evaluation

Abstract

Objective: An increasing number of researchers record binocular eye-tracking signals from
participants viewing moving stimuli, but the majority of event detection algorithms are,
however, monocular and do not consider smooth pursuit movements. e purposes of the
present study are to develop an algorithm that discriminates between fixations and smooth
pursuit movements in binocular eye-tracking signals and to evaluate its performance using
an automated video-based strategy. Methods: e proposed algorithm uses a clustering ap-
proach that takes both spatial and temporal aspects of the binocular eye-tracking signal into
account, and is evaluated using a novel video-based evaluation strategy based on automati-
cally detected moving objects in the video stimuli. Results: e binocular algorithm detects
98% fixations in image stimuli compared to 95% when only one eye is used, while for video
stimuli, both the binocular and monocular algorithms detect around 40% smooth pursuit
movements. Conclusion: e present paper shows that using binocular information for dis-
crimination of fixations and smooth pursuit movements is advantageous in static stimuli,
without impairing the algorithms ability to detect smooth pursuit movements in video and
moving dot stimuli. Significance: By using an automated evaluation strategy, time con-
suming manual annotations are avoided and a larger amount of data can be used in the
evaluation process.

Based on:
Linnéa Larsson, Marcus Nyström, Håkan Ardö, Kalle Åström and Martin Stridh, “Smooth
Pursuit Detection in Binocular Eye-Tracking Data with Automatic Video-Based Perfor-
mance Evaluation,”
Submitted for publication.
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1 Introduction

Eye-tracking is an important research tool which measures the movements of the
eyes. It is an established technique to investigate the comprehension and under-
standing of, e.g., a text [1] or an image [2]. Research using eye-tracking also in-
cludes clinical applications, e.g., examination of eye movement dysfunctions in pa-
tients with schizophrenia [3], dyslexia [4], and the human vestibular system [5].
e most common movements of the eye are fixations and saccades. A fixation is
when the eye is more or less still and visual information is taken in. A saccade is
instead a fast eye movement that redirects the eye from one position to the next.
When the eye follows a moving target, the eye movement is called a smooth pursuit.
In order to see a moving object clearly during smooth pursuit, the object must be
aligned with the direction of gaze. When the object is not perfectly followed by the
eye, small corrective saccades are used to re-align the direction of the gaze to that
of the moving object. A smooth pursuit is divided into two stages: open-loop and
closed-loop [6]. e open-loop stage is the initial stage when the smooth pursuit
is initiated by a movement of an object. e second closed-loop stage is a feedback
system where the velocity of the eye is controlled in order to keep the eye on the
moving object. e upper limit for the velocity of a smooth pursuit movement is
100◦/s [7]. No lower limit for smooth pursuit velocity seems to exist, and the pur-
suit system can operate in the same velocity range as fixational eye movements [8].

A majority of eye-tracking studies are performed using monocular recordings [9],
i.e., only one eye is recorded. e popularity of monocular recordings is partly
due to the common belief that the two eyes are performing the same movements
at the same time, which is not always the case [9, 10, 11]. In addition, monoc-
ular eye-trackers are cheaper than binocular ones, which contributes to its pop-
ularity [9]. Studies where binocular aspects are important are most often clinical
where the binocular coordination and control are investigated, e.g, for children with
dyslexia [4] and for patients with cerebellar dysfunction [12].

Since a majority of studies are based on monocular recordings, event detec-
tion algorithms, which classify the eye-tracking signal into different types of eye
movements, are typically also developed for monocular data. An exception is the
Binocular-Individual reshold (BIT) algorithm which uses both eyes and is de-
veloped to adapt its internal settings to each specific task and participant [10]. e
BIT-algorithm is a velocity based algorithm that uses minimum determinant covari-
ance estimates and control chart procedures in order to detect fixations, saccades,
and blinks. Other algorithms have indirectly used binocular information, e.g., by
averaging the data from the two eyes in order to reduce the level of noise [13].
Another strategy is used in [14], where the detection algorithm separately analyzes
the data from the two eyes and at a later stage combines the two series of events
into one. e algorithm was proposed for the detection of microsaccades which
occurred simultaneously in both eyes. None of the algorithms that uses binocular
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information, [10, 13, 14], detects smooth pursuit movements.
To accurately differentiate between smooth pursuit movements and fixations

in eye-tracking data recorded during dynamic scene viewing is still a major chal-
lenge. Inclusion of binocular information may improve classification robustness
and make it easier to distinguish between smooth pursuit movements and vergence
movements where the eyes move in opposite directions. erefore, in this paper, we
address the above issues by proposing a new event detection algorithm to discrimi-
nate between fixations and smooth pursuit movements which takes both spatial and
temporal aspects of binocular eye-tracking signals into account.

Another novelty of this paper is a video-based performance evaluation strategy
that is based on automatic detection of moving objects in the video stimuli. Eval-
uation of event detection algorithms has earlier mainly been performed through
manual annotations [15], by using simulated eye-tracking data [16], and by record-
ing eye-tracking data for artificial stimuli such as moving dots [17, 18]. None of
these methods is completely satisfactory or practical for dynamic scene viewing.
Manual annotations are time consuming, and suffer from subjectivity and often
large inter-rater variability. To build simulation models that mimic the complexity
and individuality of eye-tracking signals is difficult to achieve for all types of eye
movements. When artificial stimuli is used not only the algorithm’s performance
is evaluated, but also the viewer’s ability to follow the presented stimuli. An eval-
uation method based on artificial stimuli is proposed in [17, 18]. e speed and
position of the moving dots are compared to the corresponding characteristics of the
eye-tracking signals, and a set of scores are calculated. e method is, however, lim-
ited to stimuli were the coordinates of the moving dots are known. To evaluate the
performance of a smooth pursuit detection algorithm when eye-tracking data are
recorded for complex videos, automatic tracking of the trajectories of the moving
objects is needed. Knowledge about the trajectories of all moving objects opens up
for new possibilities to evaluate the performance of event detectors. e proposed
video-based evaluation strategy relates the eye-tracking signal to the trajectories of
the moving objects and compares them to the smooth pursuit movements detected
by the proposed algorithm. e main assumption of the video-based evaluation
strategy is that a detected smooth pursuit movement is correct only when the eye-
tracking signal is aligned with a moving object in terms of position, velocity, and
direction.

Compared to manual annotation, the video-based evaluation strategy does not
provide as detailed information about the detected events, but has three important
advantages: it is more objective, it is faster, and it relates the eye-tracking signal to
the content of the video. is is practical for future studies where longer sequences
of dynamic stimuli may be used in combination with a larger number of partici-
pants. It is, however, important to note that, in the current work, the video data
are used only for evaluation purposes, and not as part of the event detector as is
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Figure 1: Overview of the structure for the proposed binocular event detection
algorithm.

proposed in [19].
e paper is structured as follows: e proposed algorithm and the video-based

evaluation strategy are described in Section 2, and in Section 3, a description of the
eye-tracking recording procedure and the database is given. In Section 4, the results
are presented, and, finally, in Section 5, the results are discussed.

2 Methods

e following section is divided into two parts, which describe the proposed binoc-
ular event detection algorithm and the video-based evaluation strategy, respectively.

2.1 Binocular event detection algorithm

e proposed algorithm contains four stages; an overview is shown in Fig. 1. e
algorithm is applied to inter-saccadic intervals derived, e.g., from [20], which are
intervals between detected saccades/postsaccadic oscillations (PSO) and blinks. In
the first stage, the inter-saccadic intervals are preprocessed and in the second stage
the inter-saccadic intervals from the two eyes are compared and intervals that occur
in both eyes simultaneously are selected. e third stage contains quality assessment
of the selected inter-saccadic intervals, and in the final stage, the samples in the
intervals are classified into fixations and smooth pursuit movements based on the
directionality of the data from the two eyes.

Preprocessing
e main objective of the preprocessing stage is to remove samples that do not be-
long to fixations or smooth pursuit movements. Since smooth pursuit movements
can not move faster than 100◦/s [7], all samples in the beginning and/or end of the
inter-saccadic interval with corresponding velocities that exceed 100◦/s are removed
and assumed to belong to adjacent saccades or PSO.



132 PAPER III

Selection of inter-saccadic intervals
In this stage, the inter-saccadic intervals that occur in both eyes simultaneously are
determined. If a saccade is detected in both eyes, the onset and offset of the saccade
with the longest duration determines the end of the previous inter-saccadic interval
and the beginning of the next. Saccades that are not detected in both eyes are clas-
sified as “true” monocular saccades or noise. e main difference between a true
saccade and noise is measured in the velocity signal, where the noise is several order
of magnitudes larger and most often contains spikes. In order to determine whether
the detected saccades contain spikes, the sample-to-sample velocity, ve(n), for each
eye separately, is compared to vem(n), which is ve(n) filtered with a median filter of
length 3, where e= {L – left eye, R – right eye}. e residual signal, re(n) = ve(n)

– vem(n), is calculated to contain the spike, where ve(n) =
√

(vex(n))
2 + (vey(n))

2

is the sample-to-sample velocity and vem(n) =
√

(vemx(n))
2 + (vemy(n))

2 the me-
dian filtered velocity. e spike index, SIe, is calculated as the ratio between the
residual signal and the original ve(n) and is for each eye calculated as

SIe =

∑M
n=1 |re(n)|∑M
n=1 |ve(n)|

(1)

where M is the number of samples in the saccade. If SIe > ηSI for both eyes, the
detected saccade is classified as noise and the two previous inter-saccadic intervals
which were split by the saccade, are merged into one. A saccade is considered to be
correctly classified if SIe ≤ ηSI for both eyes. Moreover, if SIe ≤ ηSI for one of
the eyes, the amplitude of that saccade is determined, and if the amplitude is larger
than ηSA the saccade is considered to be correctly classified.

Quality assessment
e quality of the eye-tracking signal may vary, especially in terms of undesired high
frequency noise. By calculating the high frequency content of the recorded signal,
an estimate of the amount of high frequency noise is obtained. For each eye sepa-
rately, a non-overlapping sliding window of 50 ms is applied to the inter-saccadic
intervals. Within each window a differential filter of length 2 is applied. A high
frequency noise content index, Ihf (i), representing the energy of the differential
signal for each window i, is calculated as

Iexhf (i) =
1

N − 1

N∑
n=2

|xe(n)− xe(n− 1)|2 (2)

Ieyhf (i) =
1

N − 1

N∑
n=2

|ye(n)− ye(n− 1)|2 (3)
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where xe(n) and ye(n) represent the respective coordinates of the eye-tracking sig-
nals for each eye e. e number of samples in the sliding window is denoted N ,
and i= 1, ...,M , whereM is the number of windows in the inter-saccadic interval.
For each inter-saccadic interval and for each eye separately, the maximum values of
the high frequency noise content indices are calculated.

IRhfmax
= max[IRx

hf (i), I
Ry
hf (i)] ∀i (4)

ILhfmax
= max[ILxhf (i), I

Ly
hf (i)] ∀i (5)

e maximum high frequency content, IRhfmax
, and ILhfmax

, are mapped on to the
generalized logistic function S,

S(a) = A+
K −A

(1 +Qe−B(a−P ))1/ν
(6)

where A = 0, K = 1, Q = 0.001, P = 3000, B = 0.001, and ν = Q. e
parameters of the functionS(a) are determined by visual inspection of the complete
database to best separate high frequency noise from data with good quality. e
range of the generalized logistic function, S(a), is from 0 to 1, where 0 indicates
a low level of high frequency noise content and 1 indicates a high level of high
frequency noise content. erefore, all inter-saccadic intervals where S(IRhfmax

) <

ηS OR S(ILhfmax
)< ηS , are considered to have high enough quality in order to be

further classified into events.

Classifier
For each inter-saccadic interval that occurs in both eyes simultaneously and for
which the signal has S(a) < ηS , a classifier is applied. e classifier consists of the
following steps: directional clustering, binary filters, and classification.

Directional clustering For each consecutive pair of x- and y- coordinates, the
sample-to-sample direction, α(n), is calculated. It is defined as the angle between
the line connecting consecutive pairs of x- and y- coordinates and the x- axis. e
sample-to-sample directions are mapped on to the unit circle and are clustered using
the iterative minimum-squared-error clustering algorithm [21]. e procedure of
the clustering algorithm is described below. First, the threshold for the maximum
angular span of a cluster is initialized to γmax, which is the maximum size of the
sector for one cluster. Each cluster, i, is described by its angular span, γi, and its
mean direction, mi. In the initial iteration, all α(n) are placed into cluster i = 1,
and the mean, m1, and the angular span, γ1, are calculated.

Assuming that the number of clusters is L, each following iteration starts by
determining which cluster, j, that has the maximum angular span. If γj > γmax,
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Algorithm 1: e directional clustering algorithm.
Initial iteration:

• Compute α(n) for all samples in the inter-saccadic interval.

• Place all α(n) into cluster 1, calculate m1 and γ1.

• Initialize γmax.

while max[γi] > γmax do
Divide the largest cluster into two new clusters.
Remove the affiliation of the samples.
foreach α(n) do

Calculate the angles βi between α(n) and the mean directions, mi.
Assign α(n) to cluster i which has the minimum βi.

end
Compute the angular span γi for each cluster.

end

cluster j is split into two clusters, cluster j and cluster L+ 1. e mean direction,
mL+1, is initialized to the sample of α(n) of those belonging to cluster j which has
the largest angle βj(n) tomj . e mean direction,mj , is recalculated as the mean
value of the remaining directions that belong to cluster j. e mean values of the
clusters are saved and the affiliations of the samples are removed.

By randomly selecting one α(k) at the time and by measuring the angles βi(k)
betweenα(k) and the mean directions of each cluster, α(k) is assigned to the cluster
with the closest mean direction, where k ranges from 1 to the sample length of the
inter-saccadic interval. Each time an α(k) is assigned to a cluster, the mean direc-
tion and the angular span of that cluster is updated. When all α(n) are reassigned
to a cluster, the maximum angular span, γj , is again calculated and compared to
γmax. e procedure continues until all clusters have an angular span that is smaller
than γmax. When the clustering process has converged, all samples are assigned to
a cluster. A short pseudo code of the algorithm is shown in Algorithm 1.

Binary filters In the next step, four different types of binary filters are used to
discriminate between fixations and smooth pursuit movements. In this paper, a
binary filter refers to a filter which has a length and a criteria. If the samples in
the filter satisfy the criterion, the output for the central sample of the filter is 1
or -1, depending on the purpose of the filter. If the samples do not satisfy the
criterion, the output is 0. e purpose of having different types of binary filters is
that each filter emphasizes either typical properties of fixations or typical properties
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of smooth pursuit movements. e filters are applied with different lengths and
criteria to the clustered signal. e four types of filters are: Transition, Directional
consistency, Total distance, and Synchronization. A Transition filter counts the
number of transitions between the clusters within the filter length. A transition
occurs when two consecutive samples belong to clusters that differ between their
mean directions, mi, with an angle larger than αT . Transitions between clusters
are more frequent in samples belonging to fixations than in samples belonging to
smooth pursuit movements. erefore, a large transition rate more likely represents
a fixation.

e Directional consistency filter counts the number of samples that are in the
same cluster or in a neighboring cluster maximally αT away. A large number of
samples in the same cluster represents samples that are heading in the same direc-
tion, which is a typical feature of a smooth pursuit movement.

e Total distance filter determines the distance, dS , that the samples in the
filter have moved in total. In order to determine the distance that the samples,
x(n) and y(n) in each cluster, i, has moved, the distance di is calculated as

di =
M∑
n=1

√
(x(n+ 1)− x(n))2 + (y(n+ 1)− y(n))2 (7)

where M is the number of samples that are covered by the filter. Each cluster i has
mean direction,mi, which the corresponding di is mapped to in order to calculate
the total distance. e distance dS represents the actual movement of the samples
in the filter.

dS =

N∑
i=1

√
(di cosmi)2 + (di sinmi)2 (8)

whereN is the number of clusters. e total distance dS is compared to the criterion
of the filter. A small distance is representative for a fixation and a longer distance is
representative for a smooth pursuit movement.

Finally, the Synchronization filter measures the synchronization between the
eye-tracking signal from the two eyes, and is therefore only active if signals from
both eyes are present. e filter counts the number of samples where the sample-
to-sample directionα(n) from the two eyes, are in the same or a neighboring cluster,
maximally αT away, at the same time.

e filters and their lengths and criteria are shown in Tables 1–2. When the
criterion of a filter is fulfilled, the central sample receives the output −1 for filters
emphasizing fixations (Table 1) and 1 for filters emphasizing smooth pursuit move-
ments (Table 2), resulting in K binary responses, rl(n), l = 1, 2, ...,K, for each
inter-saccadic interval. If only the signal from one eye has passed the quality assess-
ment, K = (7 + 9) = 16, i.e., filters F1-F7 and S1-S9 are used. While when the
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Table 1: Settings for binary filters, F1-F9, which emphasize fixations. e filter
length for the filter Total distance is described as the percentage of the current
inter-saccadic interval.

Number Type of filter Length Criterion
F1 Transition 100 ms > 60%
F2 120 ms > 50%
F3 200 ms > 65%
F4 Directional consistency 60 ms < 50%
F5 Total distance 100% < 0.68◦
F6 75% < 0.55◦
F7 50% < 0.55◦
F8 Synchronization 50 ms < 30%
F9 80 ms < 35%

Table 2: Settings for binary filters, S1-S9, which emphasize smooth pursuit move-
ments. e filter length for the filter Total distance is described as the percentage
of the current inter-saccadic interval.

Number Type of filter Length Criterion
S1 Transition 40 ms < 20%
S2 110 ms < 20%
S3 150 ms < 25%
S4 Directional consistency 50 ms > 90%
S5 130 ms > 90%
S6 180 ms > 90%
S7 Total distance 100% > 1.00◦
S8 75% > 0.68◦
S9 50% > 0.51◦
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signals from both eyes have passed the quality assessment, K = 2 · (7 + 9) + 2 =
34, i.e., filters F1-F7 and S1-S9 are used for both eyes separately and filter F8-F9
for the combination of the two eyes. Finally, the responses are added together to
one summation signal s(n).

s(n) =

K∑
l=1

rl(n) (9)

Classification Based on the summation signal s(n), the samples are classified
into fixations and smooth pursuit movements. In general, when s(n) ≥ 0, sample
n is classified as a smooth pursuit movement and when s(n) < 0, sample n is
classified as a fixation. In order to prevent the samples in the inter-saccadic interval
to be divided into small segments of smooth pursuit movements and fixations, the
dominant type of eye movement of the inter-saccadic interval is estimated. e
estimation is based on the sign of the mean value of s(n), and is used to filter out
non-matching candidate fixations or smooth pursuit movements that are shorter
than, tminFix or tminSmp, respectively. Correspondingly, the dominant event is
fixation, i.e., the sign of the mean of s(n) < 0, smooth pursuit movements shorter
than tminSmp are converted to fixations. If the dominant event is smooth pursuit,
i.e., the sign of the mean of s(n) ≥ 0, shorter fixations than tminFix are converted
to smooth pursuit movements.

2.2 Video-based performance evaluation strategy

e performance of the proposed algorithm is evaluated by a video-based evalu-
ation strategy, which comprises three parts. First, the positions of objects in the
stimuli are detected. In the second part, a model is proposed where the coordinates
of the eye-tracking signal are related to the movements of the detected objects. Fi-
nally, performance measures are calculated by comparing the intervals where the
eye-tracking signal is moving close to and in alignment with a moving object, to the
intervals where the proposed algorithm detects smooth pursuit movements. ese
three parts are in the following described in detail.
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Figure 2: A frame from the video stimuli.

Figure 3: A frame where detected feature points are marked.
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Figure 4: Overview of the clustering for the sample-to-sample velocities of the
tracks into 6 clusters. e red circle marks the velocity of the eye.

Figure 5: A frame where detected feature points are marked with respect to which
cluster they belong to.
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Automatic detection of objects in video
For video stimuli, the positions of the moving objects need to be detected and
tracked for each frame. In order to determine the trajectories of moving objects
and possibly also of the background of the video, feature points are extracted [22],
see Fig. 2 for an example of a frame and Fig. 3 for extracted feature points. e
extracted feature points are then connected between frames into tracks [23]. e
velocity, v, and the direction δ of the tracks between two consecutive frames are
calculated as

dxp(n) =
xp(n+ 1)− xp(n)

∆t
(10)

dyp(n) =
yp(n+ 1)− yp(n)

∆t
(11)

vp(n) =
√
dxp(n)2 + dyp(n)2 (12)

δp(n) = arctan
dyp(n)

dxp(n)
(13)

where dxp(n) and dyp(n) are the sample-to-sample velocities in the x- and y- di-
rections, for track p and in frame n, and ∆t is the time between two frames in the
video.

Tracks that move in similar directions and speeds are grouped together into
clusters using the k-means method as shown in Fig. 4. Since the number of objects
in each frame is unknown, the number of clusters k = 1, 2, ..., 6 are tested using
the Calinski-Harabasz criterion in order to find the optimal number of clusters, (see
the Matlab 2014b statistic and machine learning toolbox). e tracks belonging to
one cluster forms a detected object. Figure 5 shows one frame with the clustered
tracks marked according to the clusters in Fig. 4.

Video-gaze model
A video-gaze model is introduced to indicate whether the positions of the eye-
tracking signals are moving close to and in alignment with a detected video object.
e model consists of four requirements that need to be satisfied for both eyes:

1. e detected object is classified as moving.

2. e eye-tracking signal has moved.

3. e velocity and the direction of the eye-tracking signal match with the ve-
locity and direction of a detected object.
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Figure 6: A frame with eye-tracking data (red circle) together with the region of
interest (black square).

4. e position of the eye-tracking signal is close to the area covered by the
detected object.

e detected objects in the video are classified as moving if vp(n) > 10 pixels/s
(requirement 1). e second requirement is satisfied if ve > 15 pixels/s, where ve
is the mean velocity of the eye-tracking signal calculated for a window with length
100 ms. For the third requirement, the cluster that is closest to the velocity of the
eye-tracking signal in the velocity domain is identified, see Fig. 4. e feature points
that belong to that cluster are mapped back to the frame and the positions of the
feature points are compared to the positions of the eye-tracking signal in the frame.
A rectangular region of interest is centered around the most recent eye coordinate.
e height and width of the region of interest is 30% of the resolution of the frame.
e gaze coordinates together with the region of interest are shown in Fig. 6. When
the four requirements are fulfilled, a Video-Gaze Movement (VGM) is indicated.
Intervals indicated as a VGM are likely to contain smooth pursuit movements, but
may also contain small proportions of other types of eye movements. If a VGM is
not indicated, it corresponds to that a smooth pursuit movement cannot have been
performed.

Performance evaluation measures
In order to evaluate the performance of the proposed algorithm the following pa-
rameters are calculated: percentage of smooth pursuit movements, percentage of
fixations, percentage of correct smooth pursuit movements, percentage of incorrect
smooth pursuit movements, and a balanced performance measure. e parameters
are calculated for the inter-saccadic intervals during which the proposed binocular
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algorithm uses both eyes. e percentage of smooth pursuit movements, PSP , is
calculated as

PSP =
NSP

NISI
(14)

where NSP is the total number of samples detected as smooth pursuit movements
and NISI is the total number of samples of the inter-saccadic intervals. e per-
centage of fixations, PF , is calculated as

PF =
NF

NISI
(15)

where NF is the total number of samples detected as fixations. e percentage of
correct smooth pursuit movements, PC , is calculated as

PC =
NC

NISI
(16)

where NC are the total number of samples detected as smooth pursuit movements
and indicated as VGM by the video-gaze model. e percentage of incorrect smooth
pursuit movements, PIC , is calculated as

PIC =
NIC

NISI
(17)

whereNIC are the total number of samples detected as smooth pursuit movements
and not indicated as VGM by the video-gaze model.

e balanced performance measure, B, is calculated as the mean of PF for im-
age stimuli and PC for moving dot stimuli. e balanced performance measure
indicates the algorithm’s ability to detect few falsely detected smooth pursuit move-
ments in image stimuli and at the same time a high rate of correctly detected smooth
pursuit movements in moving dot stimuli. A value close to 100 is desired.

3 Experiment and database

e eye-tracking signals used for the evaluation of the proposed algorithm were
recorded during two separate experiments. In both experiments a Hi-speed eye-
tracker from SMI (SensoMotoric Instrument, Teltow, Germany), with a sampling
frequency of 500 Hz, was used. A detailed description of the first experiment is
given in [20]. In this work, the eye-tracking signals recorded with images and mov-
ing dot stimuli in [20], were used. A subset of the signals was manually annotated.

e second experiment had 21 participants (four female), with a mean age 32.9
(SD = 7) years. Binocular eye movements were recorded at 500 Hz with the Hi-
speed 1250 system and iView X (v. 2.8.26) from SensoMotoric instruments (SMI).
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Table 3: Proportion of moving objects in video clips with static camera (1-7) and
moving camera (8-14).

Video Number 1 2 3 4 5 6 7
% moving content 91.6 99.6 99.7 99.5 90.1 77.1 98.3
Video Number 8 9 10 11 12 13 14
% moving content 93.9 97.1 80.3 99.7 72.8 99.8 95.7

Table 4: Settings for intrinsic parameters for the proposed binocular detection
algorithm.

Parameter Value Description
ηSA 0.75◦ Minimum saccade amplitude
ηSI 30% Maximum proportion of residual signal
ηS 0.8 Regulation of amount of high frequency content
γmax

π
5 Maximum size of each cluster

αT
π
2 Maximum angle between neighboring clusters

tminFix 50 ms Minimum duration of a fixation
tminSmp 60 ms Minimum duration of a smooth pursuit

Stimuli were presented with Experiment Center v. 3.5.101 on an Asus VG248QE
screen (53.2 x 30.0 cm) with a resolution of 1920 x 1080 pixels and refresh rate of
144 Hz.

e participants were seated and asked to place their head in the eye tracker.
e head was supported by a chin- and forehead rest. e viewing distance to the
screen was 70 cm. A 13 point calibration was performed followed by a four point
validation of the calibration. e average accuracy reported by Experiment Center
was 0.25◦ and 0.38◦, for the horizontal and the vertical directions, respectively.

In this experiment, short video clips were used as stimuli. e stimuli were
both material from the benchmark data described in [24] and video clips down-
loaded from http://pi4.informatik.uni-mannheim.de/~kiess/ test_
sequences/download/. e video clips contained both static and moving cam-
era/background. All video clips contained objects that moved most of the time, see
Table 3. e participants were instructed to follow the moving objects as closely as
possible.

e recorded signals were divided into a development database and a test database.
e development database was used during the development and implementation
of the algorithm, while the test database was used only for evaluation.

http://pi4.informatik.uni-mannheim.de/~kiess/
test_sequences/download/
test_sequences/download/
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Figure 7: e balanced performance measure, mean of the percentage of correctly
detected smooth pursuit movements in moving dot and percentage of fixations in
images, for the proposed binocular algorithm (Bin), the proposed monocular right
(R), the proposed monocular left (L), and the algorithm in [15].
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4 Results

e parameters of the proposed algorithm are found in Table 4. e parameters
were adjusted based on the development part of the database. e inter-saccadic
intervals were generated using the algorithm in [20].

4.1 Binocular event detection algorithm

e performance of the proposed algorithm is evaluated by calculating the per-
centages of detected fixations and smooth pursuit movements in image-, video-,
and moving dot-stimuli, respectively. In addition, the percentages of correct and
incorrect smooth pursuit movements according to the video-gaze model are cal-
culated. ree versions of the proposed algorithm (binocular, monocular right
eye, and monocular left eye) are compared to the algorithm in [15], which is a
state-of-the-art algorithm proven to outperform earlier smooth pursuit detection
algorithms, (cf. [15]). e results of the four compared algorithms are shown in
Tables 5–8. For image stimuli, the ideal results are 0% detected smooth pursuit
movements and 100% detected fixations in the inter-saccadic intervals. e binoc-
ular version of the proposed algorithm outperforms the other algorithms with 1.7%
detected smooth pursuit movements and 98.3% detected fixations, compared to
values around 5− 9% and 91− 95%, detected smooth pursuit and detected fixa-
tions, respectively for the three other algorithms. Since there are no moving objects
in image stimuli, all detected smooth pursuit movements are incorrect.

For moving dot stimuli, there is a dot moving 100% of the time. In Fig. 8a,
the percentage of time marked as VGM by the video-gaze model is shown for four
different speeds of the moving dot. Between 80− 90% VGM are indicated which
can be compared to the results in Table 6, where the proposed algorithm, both the
monocular and binocular versions, detects a larger amount of smooth pursuit move-
ments than the algorithm in [15], 83− 85% compared to 81%. e percentage of
correct smooth pursuit movements for the proposed binocular algorithm is 80%.
See Fig. 8a for a comparison between different speeds of the moving target. e bal-
anced performance, calculated as the mean of the percentage of correctly detected
smooth pursuit movements for moving dot stimuli and the percentage of correctly
detected fixations for image stimuli, is shown in Fig. 7. In summary, the binocular
version of the proposed algorithm detects a large amount of smooth pursuit move-
ments for moving dots stimuli and at the same time decreases the percentage of false
smooth pursuit detections for image stimuli.

For video stimuli, the maximal percentages of detected smooth pursuit move-
ments depends on the percentage of time that moving objects are present in the
video stimuli. For the video clips used in this study, the percentage of time with
moving objects vary between 72−100%, where the calculation also includes moving
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Table 5: Results for the eye-tracking signals recorded with image stimuli for the
test database (development database).

Algorithm % smooth % correct % incorrect % fixation
pursuit smooth pursuit smooth pursuit

Proposed (Bin) 1.7 (4.1) 0.0 (0.0) 1.7 (4.1) 98.3 (95.9)
Proposed (Mono R) 6.9 (7.5) 0.0 (0.0) 6.9 (7.5) 93.1 (92.5)
Proposed (Mono L) 8.8 (7.7) 0.0 (0.0) 8.8 (7.7) 91.2 (92.3)
Algorithm in [15] 4.5 (5.7) 0.0 (0.0) 4.5 (5.7) 95.5 (94.3)

Table 6: Results for the eye-tracking signals recorded with moving dot stimuli for
the test database (development database).

Algorithm % smooth % correct % incorrect % fixation
pursuit smooth pursuit smooth pursuit

Proposed (Bin) 83.1 (77.6) 80.4 (74.7) 2.7 (2.8) 16.9 (22.4)
Proposed (Mono R) 85.4 (79.9) 82.2 (76.7) 3.2 (3.2) 14.6 (20.1)
Proposed (Mono L) 85.1 (80.5) 82.0 (77.0) 3.1 (3.5) 14.9 (19.5)
Algorithm in [15] 80.6 (73.4) 77.9 (70.8) 2.6 (2.6) 19.4 (26.6)

Table 7: Results for the eye-tracking signals recorded with video stimuli with static
camera for the test database (development database).

Algorithm % smooth % correct % incorrect % fixation
pursuit smooth pursuit smooth pursuit

Proposed (Bin) 47.7 (58.9) 39.2 (48.2) 8.5 (10.6) 52.3 (41.1)
Proposed (Mono R) 52.0 (62.8) 41.5 (49.9) 10.4 (12.9) 48.0 (37.2)
Proposed (Mono L) 51.3 (62.5) 41.4 (50.1) 9.9 (12.5) 48.7 (37.5)
Algorithm in [15] 45.8 (55.7) 37.6 (45.8) 8.2 (9.9) 54.2 (44.3)

Table 8: Results from the signals recorded with video stimuli with moving camera
for the test database (development database).

Algorithm % smooth % correct % incorrect % fixation
pursuit smooth pursuit smooth pursuit

Proposed (Bin) 42.5 (52.6) 32.3 (41.6) 10.2 (11.0) 57.5 (47.4)
Proposed (Mono R) 47.9 (57.0) 34.8 (43.7) 13.0 (13.3) 52.1 (43.0)
Proposed (Mono L) 49.1 (58.4) 35.6 (44.4) 13.6 (14.0) 50.9 (41.6)
Algorithm in [15] 39.0 (48.2) 30.3 (38.8) 8.7 (9.4) 61.0 (51.8)
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(c) Video clips with moving camera.

Figure 8: Percentage of time indicated as VGM by the video-gaze model and
percentage of time in smooth pursuit movements for the proposed algorithm and
the algorithm in [15].
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background/moving camera, see Table 3. In order for an object to be considered as
moving, the sample-to-sample velocity, vi(n), must be larger than 10 pixels/s. e
percentages of time that the video-gaze model has marked as VGM together with
the percentages of detected smooth pursuit movements by the binocular version
of the proposed algorithm, and the algorithm in [15], are shown in Figs. 8b– 8c.
Fig. 8b shows the percentages for video clips with static stimuli and Fig. 8c shows
the percentages for video clips with a moving camera or a moving background. For
a majority of the video clips, independent of whether the camera is moving or not,
the percentage of time indicated as VGM by the video-gaze model is larger com-
pared to that of the event detection algorithms. In general, the proposed binocular
algorithm detects higher percentages of smooth pursuit movements than the algo-
rithm in [15], see also Tables 7–8. For video stimuli, the percentage of correct
smooth pursuit movements, i.e., the amount of smooth pursuit detections which
are in agreement with the video-gaze model, are around 40% for static camera and
around 35% for moving camera. For detection of smooth pursuit movements in
videos with moving camera, the proportion of incorrectly detected smooth pursuit
movements is larger than for other types of stimuli. e monocular versions of the
proposed algorithm detect the largest amount of smooth pursuit movements, but
at the cost of more incorrectly detected smooth pursuit movements.

4.2 Synchronization between the two eyes

An advantage of using binocular information in the event detection algorithm is
that the temporal alignment between the positions of the two eye-tracking signals
can be measured and compared. An example of an inter-saccadic interval recorded
during image viewing is shown in Fig. 9a. is example shows how different the
eye-tracking signals acquired from the left and the right eyes may be over shorter
periods of time. In Fig. 9b, the outputs from the two synchronization filters used
in the proposed binocular algorithm are shown. e filters measure if the positions
of the eye-tracking signals from the two eyes are temporally aligned. An output of
−1 means that the signals are unsynchronized, while an output of 0 means that
signals are synchronized. e two output signals show that the eye-tracking signals
are not synchronized until after the first 30−40 samples. In the proposed binocular
algorithm, this feature is used to promote fixations and prevent that vergence-like
movements, similar to the case shown in Fig. 9a, may be confused with smooth
pursuit movements.
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4.3 Quality assessment

In the first part of the proposed algorithm quality assessment of the inter-saccadic
intervals was performed. Due to poor quality, 4.6%, 9.7%, 4.6%, and 2.3%, of
the data were rejected, i.e., data were deemed to have poor quality in both eyes, for
images-, moving dot-, static camera, and moving camera stimuli, respectively.

5 Discussion

Experiments where binocular eye-tracking signals are recorded from participants
viewing dynamic stimuli have become increasingly common. Few event detection
algorithms, however, take into account that such signals contain smooth pursuit
movements. Moreover, information from both eyes are rarely used to make robust
decisions about when a specific event occurs. We propose a binocular event detec-
tion algorithm based on directional clustering of the eye-tracking signal using both
spatial and temporal filters. e proposed algorithm was developed with the idea
that signals from two eyes contain more information about the performed type of
eye movement than a signal from only one of the eyes. Tables 5 and 6, together
with Fig. 7, show that the binocular version of the proposed algorithm provides the
best balance between the percentage of correctly detected smooth pursuit move-
ments and percentage of correctly detected fixations. e monocular versions of
the proposed algorithm detect more correct smooth pursuit movements but also
much more incorrectly detected smooth pursuit movements. Since the binocular
version of the proposed algorithm requires that the two eyes are synchronized during
smooth pursuit movements, its performance is more robust with fewer incorrectly
detected smooth pursuit movements. is is especially true for the image stimuli
as seen in Table 5, where the binocular version of the proposed algorithm detects
1.7% smooth pursuit movements. ese detections are smooth pursuit like move-
ments that could for instance be due to post-saccadic drift that occurs in both eyes
at the same time or due to changes in pupil size causing drift in the eye-tracking
signal [25].

It should also be pointed out that movements were taking place 70 − 100%
of the time in the videos (see Table 3), and that the participants were asked to
follow the moving objects to the largest extent possible. e results of Fig. 8 verify
that the instruction was followed; the video-gaze model indicates VGM 60− 80%
of the time. In Fig. 8, some cases show a large gap between the VGM indicated
by the video-gaze model and the percentage smooth pursuit movements detected
by the algorithms solely based on the eye-tracking signals. One reason is that the
videos, e.g., number 11, contain slow moving objects, where the corresponding eye
movements move so slowly that they are not always considered as smooth pursuit
movements by the algorithms.
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e proposed algorithm is evaluated using a novel video-based evaluation strat-
egy, which uses information automatically extracted from the stimuli videos. e
logic behind the strategy is that smooth pursuit is only possible when there is a
moving object to follow, (see [26]); if the eye-tracking signal is aligned with a mov-
ing object in terms of speed, direction and position, it is therefore very likely that
the participant is pursuing the object. is type of automatic evaluation strategy
may not be as accurate as manual annotations, but gives a general and objective pic-
ture of the performance of the evaluated algorithm. e main advantage of using
automatic evaluation compared to manual annotations is that significantly larger
amounts of data can be used in the evaluation process. Manual annotations are very
time consuming and not a practical solution for large data sets. With the proposed
video-based evaluation strategy, longer videos can be used and a larger number of
participants can be included when the performance of a new algorithm is evaluated.

Despite its clear logic, the proposed video-based evaluation strategy is new, and
lacks objective validation. To address this issue the VGM indicated by the video-
gaze model are compared to smooth pursuit movements annotated manually in data
recorded during moving dot stimuli. In this comparison, the sensitivity and the
specificity were determined to 0.87 and 0.58, respectively. e rather low value of
specificity indicates that the video-gaze model cannot distinguish between fixations
and smooth pursuit movements when the eye-tracking signal is close to a slowly
moving object.

In this work, the video-gaze model is used to confirm or reject smooth pursuit
detections for the purpose of performance evaluation. It would be possible to in-
stead incorporate such information in the event detector in order to provide even
better fixation and smooth pursuit discrimination. Such strategy may be particu-
larly well-suited for mobile eye-trackers where a scene camera is used to record the
scene which the user is looking at. is is, however, outside the scope of this paper.

In the present paper, the eye-tracking signals are recorded for participants with
normal or corrected-to-normal vision with good binocular coordination. e pro-
posed binocular algorithm has therefore not been tested on participants with poor
binocular control. Future studies will show if the requirements of synchronization
will work also for this group of participants.

6 Conclusions

An algorithm for the detection of fixations and smooth pursuit movements using
binocular eye-tracking data is proposed. Using binocular information is most ad-
vantageous in image stimuli, where vergence or drift-like movements otherwise may
be confused with smooth pursuit movements. e proposed binocular algorithm
detects a larger amount of smooth pursuit movements in moving dot stimuli than
previous algorithm, without increasing the percentage of falsely smooth pursuit de-
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tections for image stimuli. e proposed algorithm is evaluated using a novel video-
based evaluation strategy based on automatically detected moving objects in video
stimuli. Compared to manual annotation of data, this makes it practically feasible
to evaluate larger amounts of data.
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Head Movement Compensation and
Multi-Modal Event Detection for Mobile

Eye-Trackers

Abstract

e complexity of analyzing eye-tracking signals increases as eye-trackers become more mo-
bile. e signals from a mobile eye-tracker are recorded in relation to the head coordinate
system and when the head and body move, the recorded eye-tracking signal is influenced
by these movements which render the subsequent event detection difficult. e purpose
of the present paper is to develop a method that performs robust event detection in sig-
nals recorded using a mobile eye-tracker. e proposed method performs compensation
of head movements recorded using an inertial measurement unit (IMU) and employs a
multi-modal event detection algorithm. e event detection algorithm is based on the head
compensated eye-tracking signal combined with information about detected video objects
extracted from the scene camera of the mobile eye-tracker. e proposed method for head
compensation decreases the standard deviation during intervals of fixations from 8◦ to 3.3◦
for eye-tracking signals recorded during large head movements. e multi-modal event de-
tection algorithm outperforms both the I-VDT and the built-in-algorithm of the mobile
eye-tracker with an average balanced accuracy, calculated over all types of eye movements,
of 0.90, compared to 0.85 and 0.75, respectively for the compared algorithms.

Based on:
Linnéa Larsson, Andrea Schwaller, Marcus Nyström, and Martin Stridh, “Head Movement
Compensation and Multi-Modal Event Detection for Mobile Eye-Trackers,”
Submitted for publication.
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1 Introduction

In recent years the popularity of mobile eye-trackers has increased drastically. is
is partly due to that electronics have been made smaller and thereby mobile eye-
trackers have become lighter; from a camera mounted on top of a bicycle helmet
to a neat pair of glasses. Compared to stationary eye-tracking performed in the
laboratory in front of a computer screen, mobile eye-tracking allows the recording of
eye movements in natural environments. As a result, new areas are developing, e.g.,
decision making in the supermarket [1], package design [2], and sport activities [3].
However, the increase in mobility when recording in natural situations comes with
increased difficulties in the analysis and interpretation of the recorded signals. Due
to movements of the head, the body, and the environment during the recording,
the complexity of the analysis of the eye-tracking signal is significantly increased
compared to the analysis of eye-tracking signals recorded using a stationary setup.
Consequently, algorithms developed for stationary eye-tracking, when the stimuli
are presented on a computer screen, are not applicable without first removing parts
of the eye-tracking signal that are caused by movements of the body and/or the
head. In addition to the three most common types of eye movements, fixations,
saccades, and smooth pursuit movements, vestibular ocular reflexes (VOR) occur
when eye movements are recorded using a mobile eye-tracker where the position of
the head is not fixed. Vestibular ocular reflexes are movements that the eye performs
as a compensatory movement in the opposite direction of, e.g., a rotation of the
head [4].

Typically, when recording movements of the eye using a video based eye-tracker,
the eye-in-head motion is recorded, i.e., the movement of the eye with respect to the
head. When the head is still, the eye-in-head motion is equivalent to the eye-in-space
motion, i.e., the movement of the eye with respect to the world. e eye-in-space
motion is preferable since it describes the gaze direction in space. In mobile eye-
tracking, the eye-in-head positions are usually given in the coordinate system of the
scene camera, which is changing in relation to how the scene camera is moving with
the head and the body. e eye-in-space motion can be achieved by compensating
for the movements of the head and the body. One strategy is to use information
from the scene camera to compensate for head and body movements [5, 6]. In [5],
an additional camera was used to film the environment and compensate for motion,
while in [6] the ego-motion was calculated from the scene video of the eye-tracker.
ere are, however, situations where the scene video does not provide information
accurate enough to estimate the ego-motion, e.g., caused by blurring of the image
during fast motion [7], or when there is not enough texture in the image to detect
changes [6]. In order to overcome these problems, a motion capture system has
been used to track the head and body movements in combination with an eye-
tracker [8, 9, 10, 11]. e purpose was to represent the eye-tracking signal in the
same world coordinate system as the objects in the surroundings. e problem with



160 PAPER IV

these systems is that they are limited to the range of the motion capture system.
In this paper, we propose a method for compensation of head movements in

the recorded eye-tracking data where head movements are recorded using an inertial
measurement unit, IMU. An IMU consists of an accelerometer, a gyroscope, and a
magnetometer, which is used to estimate its orientation. e advantages of using an
IMU to record head movements are that the recordings can be performed without
limitations of the recording area and that it is independent of the quality of the
images from the scene camera. As a first step towards analyzing eye-tracking signals
recorded with a mobile eye-tracker for any type of head and body movements, the
proposed method is developed and evaluated on eye-tracking signals recorded using
a mobile eye-tracker from participants watching stimuli on a big screen and where
no positional changes of the entire body are allowed.

e main purpose of performing head movement compensation in mobile eye-
tracking is to be able to perform robust and reliable event detection, i.e, to discrim-
inate between the different types of eye movements in the recorded data. Due to
the lack of reliable event detection algorithms for mobile eye-trackers, researchers
often have to perform the event detection manually by inspecting the scene video
together with the eye-tracking data frame-by-frame [1, 12].

A second novelty in this work is that we propose an event detection algorithm
that is based on the head compensated eye-tracking signals combined with informa-
tion about moving objects extracted from the scene video. Earlier approaches for
detection of smooth pursuit movements in mobile eye-tracking signals have used k-
means clustering [13], and a Bayesian mixture model [14]. None of these methods
has used additional information extracted from the scene video in order to sup-
port the classification of smooth pursuit movements. Information about objects
extracted from the scene video has previously been used for fixation detection [12]
and for scan path comparison [15].

e present paper is outlined as follows: e proposed method for head move-
ment compensation and multi-modal event detection is presented in Section 2. e
experimental setup and the data recording procedure are described in Section 3. e
results of the work are presented in Section 4, and finally, in Section 5, the proposed
method and results are discussed.

2 Methods

e proposed method comprises five parts, see subsections 2.1–2.5. In the first
part, the method for tracking of head movements is described and in the second
part, head movement compensation in the eye-tracking signal is performed, i.e., the
eye-in-space signal is estimated. e third part describes the approach for tracking
of moving objects in the scene video, and in the fourth part, the trajectories of these
detected objects are head movement compensated, i.e., the object-in-space signal
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Figure 1: Overview of the proposed method.

is estimated. e fifth part describes the multi-modal event detection algorithm
that combines the estimated eye-in-space signal and the estimated object-in-space
signal for classification of saccades, fixations, and smooth pursuit movements. An
overview of the proposed method is shown in Fig. 1.

2.1 Head Tracking

When recording eye movements using a mobile eye-tracker, the eye-in-head signal
is recorded. For a distant target, i.e., a target further away than 1 m [16], the
eye-in-space signal, sG(n), is the sum of the head-in-space signal, sH(n) and the
eye-in-head signal, sE(n) [4], i.e.,

sG(n) = sH(n) + sE(n) (1)

where subscript G, H, and E, denote eye-in-space (G), head-in-space (H), and eye-
in-head (E) signals. For a near target, the relationship between the eye-in-space
signal, the eye-in-head signal, and the head-in-space signal is more complicated.
Due to the short distance to the target, the separation between the two eyes as
well as the fact that the head and the eyes have different axes of rotation cannot be
neglected [4]. In this paper, (1) is used under the assumption that all stimuli are
viewed at a far distance and without any translational movements of the body.

In the experimental setup, described in Section 3 and illustrated in Fig. 5, there
are two coordinate systems: the world coordinate system and the coordinate system
of the scene camera. e origin of the world coordinate system is assumed to be
at the center of the participant’s head. e stimulus screen is located at a distance
d from the participant in a plane that is perpendicular to the Y -axis of the world
coordinate system. e signals recorded by the IMU are expressed in Euler angles,
ψ, θ, and ϕ, which corresponds to rotations around the Z-, Y -, andX- axes of the
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X
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ϕ

ψ

θ

Figure 2: Overview of the world coordinate system, which has its origin at the
center of the participant’s head. e relation to the stimuli screen is also indicated.

world coordinate system, respectively, see Fig. 2. ese rotations can be express as
rotations of a heading vector, vH(0) = (0, d, 0), between the origin and the plane
which coincides with the Y -axis and has length d. Any rotation of the heading
vector is expressed by

vH = RvH(0) (2)

where R is a rotation matrix, consisting of the rotation matrices around each axis.

R = RZ(ψ)RY (θ)RX(ϕ) (3)

RZ(ψ) =

cosψ − sinψ 0
sinψ cosψ 0
0 0 1


RY (θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


RX(ϕ) =

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ


e coordinate system of the scene camera is expressed in pixels and is moving with
the head of the participant around the same origin as the world coordinate system.
e coordinate system of the scene camera is connected to the world coordinate
system through the vector vH which points to the center of the scene camera image.
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Figure 3: Mapping of the heading vector vH to the 2-dimensional plane of the
stimuli screen.

In order to be able to perform head movement compensation in the eye-tracking
signal that is expressed in the coordinate system of the scene camera, the orientation
of the head must be expressed as a coordinate, (xH , d, yH), on the screen in the
world coordinate system. is is done by mapping vH to the 2-dimensional plane
of the stimulus screen, see Fig. 3. e mapping is performed separately for xH and
yH .

A head movement corresponding to the angle α in theXY -plane of the world
coordinate system is mapped to the 2-dimensional plane of the stimuli screen and
corresponds to a movement xH , as is shown in Fig. 4. It is described by:

tanα =
xH
d

(4)

Since the resolution, (xmax, ymax), of the scene camera, and the maximum angular
view of the camera, (αmax, βmax), are known from the specifications of the camera,
a relationship between these and the distance to the screen can be written as.

tan(αmax/2) =
xmax/2

d
(5)
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Figure 4: Horizontal mapping of the heading vector vH to the 2-dimensional
plane of the stimuli screen.

Combining (4) and (5) gives the following expression for xH

xH =
xmax/2

tan(αmax/2)
tan(α). (6)

Similarly to the horizontal case shown in Fig. 4, a head rotation corresponding to
the angle β, in Fig. 3, is mapped to the 2-dimensional plane of the stimuli screen
and corresponds to a movement yH . Note that for the angle β, the distance between
the origin and the 2-dimensional plane is d′. e expression for yH is,

tanβ =
yH
d′
, tan(βmax/2) =

ymax/2

d
, (7)

where d′ = d/ cos(α), which yields

yH =
ymax/2

tan(βmax/2) cos(α)
tan(β). (8)

So far, the relationship between (α, β) and the coordinates (xH , yH) has been
calculated. In order to perform the mapping from the Euler angles, (ψ, θ, ϕ), re-
ported by the IMU, to the coordinates (xH , yH), a relationship between (ψ, θ, ϕ)
and (α, β) is needed. is relationship is investigated by expressing vH in spherical
coordinates.

vH =

r sin(π2 − β) cos(π2 − α)
r sin(π2 − β) sin(π2 − α)

r cos(π2 − β)
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where r is the radius of the sphere. e expression for vH in cartesian coordinates
is given by

vH = RvH(0) =

d(cosψ sin θ sinϕ− sinψ cosϕ)
d(sinψ sin θ sinϕ+ cosψ cosϕ)

d cos θ sinϕ


By combining the two expressions for vH , the relationships between the angles
(α, β) and (ψ, θ, ϕ) are found to be:

α =
π

2
− arctan(

sinψ sin θ sinϕ+ cosψ cosϕ
cosψ sin θ sinϕ− sinψ cosϕ

) (9)

β =
π

2
− arccos(cos θ sinϕ) (10)

By combining (6) and (8) with (9) and (10), the rotations recorded by the IMU are
mapped to the 2-dimensional plane of the stimuli screen.

2.2 Compensation of head movements in eye-tracking sig-

nals

In order to compensate for head movements in the eye-tracking signal, i.e., estimate
the eye-in-space signal, (1) is used for the x- and y-coordinates separately.

xG(n) = xH(n) + xE(n) (11)

yG(n) = yH(n) + yE(n) (12)

2.3 Detection of objects in the scene video

In this work, two important types of objects are detected in the scene video of the
mobile eye-tracker. First, since the major part of the stimuli in this study consists
of black dots moving in different patterns, a simple black and white image analysis
algorithm was implemented to detect the black dots in each frame. Secondly, the
corners of the projected stimulus screen were also detected, in order to also be able
to calculate head movements from the scene video. Each detected black dot, i, is
referred to as detected object i, with corresponding coordinates, (xiobj(n), y

i
obj(n)),

expressed in the coordinate system of the scene camera. In this work, maximally
two dots were present at the same time.
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2.4 Compensation of head movements for objects detected

in the scene video

e coordinates of the detected objects (xiobj(n), y
i
obj(n)) are head movement

compensated in the same way as the eye-tracking signals, i.e., the object-in-space
coordinates, (xiobjS(n), y

i
objS(n)), are estimated using the following equations for

each object i.
xiobjS(n) = xH(n) + xiobj(n) (13)

yiobjS(n) = yH(n) + yiobj(n) (14)

2.5 Multi-modal event detection

e proposed method for detection of saccades, fixations, and smooth pursuit move-
ments, is performed by combining the eye-in-space signals and the object-in-space
signals as described below:

Saccade detection and noise detection
is part of the event detector is divided into two steps, where the first step detects
saccade candidates in the velocity domain, and in the second step, the acceleration,
amplitude, and slope of the saccade candidates are examined in order to distinguish
saccades from noise. Saccade candidates are detected by first calculating the sample-
to-sample velocities, vx(n) and vy(n),

vx(n) =
xG(n+ 1)− xG(n)

∆t
(15)

vy(n) =
yG(n+ 1)− yG(n)

∆t
(16)

where xG(n) and yG(n) are the coordinates of the eye-in-space signal, and∆t is the
time between two samples. e sample-to-sample velocities are fed into the algo-
rithm proposed in [17] which estimates velocity thresholds as multiples of the stan-
dard deviations of the sample-to-sample velocities in the x- and y-directions, sepa-
rately. Consecutive samples which have larger velocities than the selected threshold
are grouped into saccade candidates. e acceleration, a(n), of the samples belong-
ing to the saccade candidates are calculated as

a(n) =

√
(vx(n+ 1)− vx(n))2 + (vy(n+ 1)− vy(n))2

∆t
(17)
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e saccade candidates with a peak acceleration larger than ηa, i.e., max(a(n)) >
ηa, are classified as noise. For the saccade candidates that are not considered as
noise, the slopes, kx and ky, of the saccade candidates are computed for xG(n) and
yG(n), separately. In order to calculate the slope, a first order polynomial is fit in the
least-square sense between the start and end points of the saccade candidate. e
maximum value of k=max(kx, ky) is selected as the slope of the saccade candidate.
In order for the saccade candidate to be considered as a saccade, the amplitude A
must be larger than ηSA. e amplitude is for each saccade candidate calculated as:

A =
√

(max x− min x)2 + (max y− min y)2 (18)

where x and y are vectors of xG(n) and yG(n), respectively, within the saccade
candidate. Saccade candidates satisfying both A > ηSA and k ≥ ηk are considered
as true saccades. e remaining saccade candidates are left with no label. Due to
their low amplitudes, they are considered to be too small to be noise.

Discontinuity detection
e stimuli contain dots that abruptly move between different locations on the
screen which causes discontinuities in the object-in-space signal. ese discontinu-
ities are detected in the object-in-space signal using the algorithm described above
for the detection of saccades in the eye-in-space signals.

Fixation and smooth pursuit detection
Since fixations and especially smooth pursuit movements are strongly correlated to
the movements of objects in the stimuli, the presence of moving objects in the scene
video is utilized for discrimination between fixations and smooth pursuit move-
ments. e fixation and smooth pursuit detection includes the following steps:
Directional clustering, Object selection, Binary filters, and Classification.

Directional clustering e directional clustering is based on the method pre-
sented in [18]. A brief description is given below: In the inter-saccadic intervals,
i.e., intervals between the detected saccades, the sample-to-sample directions, α(n),
are calculated for both (xG, yG) and (xiobjS , y

i
objS). e sample-to-sample direc-

tions, αG(n) and αi
objS(n), respectively, are the angles between the line formed

by two consecutive pairs of x- and y- coordinates and the x-axis. e sample-
to-sample directions αG(n) and αi

objS(n) are divided into clusters based on their
directions. e clustering is based on the iterative minimum-squared error cluster-
ing algorithm [19]. Each sample is assigned to a cluster, and based on the samples
of α(n) in each cluster, c, a mean direction, mc, is calculated.
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Object selection In order for detected video objects to support the separation
between fixations and smooth pursuit movements, the proximity between an ob-
ject and the eye-tracking signal is evaluated in terms of position and trajectory, see
criteria below. Only objects that move similarly to the corresponding eye-tracking
signal and are spatially close, are used. For this purpose, the total mean direction,
meye

T , and the total achieved distance, deyeT , of the eye-tracking signal, are compared
to the total mean directions,mobjSi

T , and the total achieved distances, dobjSi

T , of the
detected objects that are present in the inter-saccadic interval. e total mean direc-
tion and the total achieved distance of the inter-saccadic interval for the eye-tracking
signal and the objects are calculated as follows: In each inter-saccadic interval, the
Euclidean distance, EDeye(n), between consecutive samples in the eye-tracking
signal is calculated as:

EDeye(n) =
√
d2xG

(n) + d2yG(n) (19)

where dxG(n) = xG(n+1)−xG(n) and dyG(n) = yG(n+1)−yG(n). Based on
the directional clustering, each sample and its corresponding EDeye(n) is labeled
with a cluster number c = 1, 2, ..., K, where K is the number of clusters. All
EDeye(n) that belong to the same cluster c, EDeye

c (l), are summed together into
deyec , which corresponds to the total achieved distance by the samples in cluster c.
us,

deyec =

Mc∑
l=1

EDeye
c (l) (20)

where Mc is the number of samples in cluster c. Similarly, for each detected
video object i in each inter-saccadic interval, the corresponding Euclidean distance,
EDobjSi(n), is calculated as.

EDobjSi(n) =
√
d2xobjSi

(n) + d2yobjSi
(n) (21)

where dxobjSi
(n) = xobjSi

(n+1)−xobjSi
(n) and dyobjSi

(n) = yobjSi
(n+1)−

yobjSi
(n). Based on the directional clustering, each sample and its corresponding

EDobjSi(n) is labeled with a cluster number c = 1, 2, ..., K, where K is the
number of clusters. AllEDobjSi(n) that belong to the same cluster c,EDobjSi

c (l),
are summed together,

dobjSi
c =

Nc∑
l=1

EDobjSi
c (l) (22)

whereNc is the number of samples in each cluster c. In order to calculate the total
achieved distance, deyeT , each deyec is mapped on to the cluster’s corresponding mean
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direction mc,

deyeT =

K∑
c=1

√
(deyec cosmc)2 + (deyec sinmc)2 (23)

where K is the number of clusters. For each object i, the total achieved distance,
dobjSi

T , is calculated as.

dobjSi

T =

K∑
c=1

√
(dobjSi

c cosmc)2 + (dobjSi
c sinmc)2 (24)

e total mean direction for the eye-tracking signal, meye
T , of the inter-saccadic

interval, is calculated as

xeyem =
1

K

K∑
c=1

deyec cosmc (25)

yeyem =
1

K

K∑
c=1

deyec sinmc (26)

meye
T = arctan

yeyem

xeyem
, (27)

and the total mean direction for each object, mobjSi

T , of the inter-saccadic interval
is calculated as

xobjSi
m =

1

K

K∑
c=1

dobjSi
c cosmc (28)

yobjSi
m =

1

K

K∑
c=1

dobjSi
c sinmc (29)

mobjSi

T = arctan
yobjSi
m

xobjSi
m

. (30)

In order for a detected object in the current inter-saccadic interval to be used in the
algorithm, it must satisfy the following criteria.

1. Directional criterion: |mobjSi

T −meye
T | < αT

2. Total distance criterion: |dobjSi

T − deyeT | < ηT

3. Spatial criterion: dP < ηP
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where dP =
√

(x̄G − x̄iobjS)
2 + (ȳG − ȳiobjS)

2 with x̄G and ȳG calculated as the

means of xG(n) and yG(n), respectively, in the inter-saccadic interval, and x̄iobjS
and ȳiobjS calculated as the means of xiobjS(n) and yiobjS(n), respectively, in the
inter-saccadic interval. If the three criteria are satisfied for several objects, the object
that has the smallest difference in direction is selected. e selected object is used
for fixation and smooth pursuit movement detection, by supporting decisions of
smooth pursuit movements when the selected object is moving similarly as the eye-
tracking signal and by disqualifying smooth pursuit movements when the selected
object is not moving.

Binary filters Next, the results of the directional clustering for the eye-tracking
signal and the selected video object in each inter-saccadic interval, respectively, are
applied to a set of binary filters. ese are designed to either emphasize fixations,
fixation filters, or smooth pursuit movements, smooth pursuit filters. A binary filter is
a filter with a length and a criterion. If the criterion is fulfilled for fixation filters the
output is −1, and if the criterion is fulfilled for smooth pursuit filters, the output
is 1. For both types of filters, if the criterion is not fulfilled the output is 0. In
this work, three types of binary filters are used: Total distance, Transition, and
Synchronization to the selected object. e lengths and criteria for the respective
fixation and smooth pursuit filters are listed in Tables 1–2.

e Total distance filter is a filter that, based on the directional clustering, calcu-
lates the total achieved distance that the samples within the filter length have moved.
For eye-tracking signals, (20) and (23) are used to calculate the total achieved dis-
tance of the movement of the samples within the filter length. If an object was
selected, (22) and (24) are used to calculate the total achieved distance for that
object within the filter length. A long total achieved distance corresponds to that
multiple samples are heading in a similar direction which is typical for a smooth
pursuit movement. A short total achieved distance corresponds to that samples
have moved in different directions which is typical for a fixation. e length of the
Total distance filter is adapted to the length of the respective inter-saccadic interval.
In Tables 1–2, the length of the filter is given as a percentage of the respective inter-
saccadic interval. e Total distance filter aims to reflect the overall structure of the
inter-saccadic interval in terms of distance and direction, and is applied to both the
eye-tracking signal and to the trajectory of the selected object.

e Transition filter calculates the number of transitions between clusters for
consecutive samples within the filter length. A transition happens when the mean
directions of two clusters differ with more than αT . A high transition rate is typical
for fixations, while a low transition rate is typical for smooth pursuit movements.
e Transition filter is applied to the directional clustering of both the eye-tracking
signal and to the trajectory of the selected object in each inter-saccadic interval. e
length of the Transition filter is variable and uses the same strategy as the I-VDT
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Table 1: Settings for binary filters which emphasize fixations.

Number Type of filter Length Criterion
F1 Total distance 75% < 1.5◦

F2 Transition 300 ms ≥ 30%
F3 250 ms ≥ 30%

Table 2: Settings for binary filters which emphasize smooth pursuit.

Number Type of filter Length Criterion
S1 Total distance 75% ≥ 1.5◦

S2 75% ≥ 2◦

S3 Transition 400 ms < 20%
S4 Synchronization 200 ms ≥ 65%
S5 100 ms ≥ 65%

algorithm [20]. A description for the smooth pursuit filter follows: For each inter-
saccadic interval, an initial filter length is used. For this filter length, the criterion
of the filter is tested. e length of the filter is extended one sample at a time
until the criterion for the smooth pursuit filter is fulfilled. en, all output samples
within the filter length, except the last one, are set to 0. A new window with the
initial window length is initialized starting at the last sample of previous window. If
the samples in the new window fulfill the smooth pursuit criteria, the first output
sample in the window is set to 1, and a new window with the initial length is again
initialized. Similarly, for the fixation filter, the initial filter length is initialized and
the criterion for the fixation filter is tested. e window is extended one sample at
the time until the criterion of the fixation filter is not fulfilled. en, the output
samples in the window, except for the last sample, are set to −1 and a new window
is initialized with the initial length. If the samples in the new window do not fulfill
the criterion of the fixation filter, the first sample of the filter is set to 0, and a new
window is initialized. In Tables 1–2, the initial lengths of the filters are given. e
Transition filter is developed to reflect structural differences in the inter-saccadic
interval on a lower temporal level than the Total distance filter.

e Synchronization filter measures the similarity between the movements of
the eye-tracking signal and the trajectory of the selected video object. e two
signals are considered to move similarly if the eye-tracking signal and the selected
object belong to the same cluster at the same time or belong to two clusters separated
by at most αT . e lengths of the Synchronization filters are shown in Table 2. e
Synchronization filters are used as sliding multi-input filters that move one sample
with each new calculation.
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e outputs of the different filters for the eye-tracking signal, rleye(n), are
summed together into one summation signal, seye(n).

seye(n) =

L∑
l=1

rleye(n) (31)

where L is the number of filters. When there is no selected object, L = 3+ 3 = 6,
i.e., fixation filters F1–F3 and smooth pursuit filters S1–S3 are used. When there is
a selected object,L=3+5=8, i.e., fixation filters F1–F3 and smooth pursuit filters
S1–S5 are used. In addition, when there is a selected object, filter outputs, rlobj(n),
are calculated. Here, the fixation filters F1–F3 and smooth pursuit filters S1–S3
are used to determine whether the selected object is moving. e filter outputs,
rlobj(n), are summed together into the summation signal, sobj(n).

sobj(n) =
L∑
l=1

rlobj(n) (32)

where L = 6, is the number of responses.

Classification e initial classification of fixations and smooth pursuit move-
ments is based on the sign of seye(n). When seye(n) ≥ 0, the sample is classified
as a smooth pursuit candidate, and otherwise the sample is classified as a fixation
candidate. In order for a smooth pursuit candidate to be classified as a smooth pur-
suit movement, the selected object need to be moving, i.e., sobj(n) ≥ 0. In order
to compare seye(n) to sobj(n), two binary signals are determined.

sbeye(n) =

{
1 if seye(n) ≥ 0
0 if seye(n) < 0

sbobj(n) =

{
1 if sobj(n) ≥ 0
0 if sobj(n) < 0

e difference between the two binary signals is calculated as,

b(n) = sbobj(n)− sbeye(n), (33)

which describes the agreement between the movement of the object and the clas-
sification of the eye-tracking signal into fixation and smooth pursuit candidates.
Since a smooth pursuit movement cannot be performed without a moving object,
all samples classified as smooth pursuit candidates when the object is not moving,
i.e., b(n) = −1, are disqualified and are instead marked as a disturbance.
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In order to prevent the samples in the inter-saccadic interval to be divided into
small segments of smooth pursuit movements and fixations, the dominant type of
eye movement of the inter-saccadic interval is estimated. e estimation is based on
the sign of the mean value of seye(n), and is used to filter out candidate fixations or
smooth pursuit movements in minority that are shorter than, tminFix or tminSmp,
respectively [18]. When the dominant event is a fixation, i.e., the sign of the mean
of seye(n)< 0, smooth pursuit candidates shorter than tminSmp are converted into
fixation candidates. Similarly, if the dominant event is a smooth pursuit, i.e., the
sign of the mean of seye(n) ≥ 0, shorter fixation candidates than tminFix are con-
verted into smooth pursuit candidates. After this step, smooth pursuit candidates
are classified as smooth pursuit movements and fixation candidates as fixations.

2.6 Performance evaluation

Compensation of head movements in eye-tracking signals
In order to evaluate the performance of the head movement compensation, the stan-
dard deviation during intervals when stationary targets are shown is calculated. e
evaluation is performed for three combinations of eye and head movements; only
eye movements, (EM), eye- and head movements, (EHM), and head movements
only, (HM), see Section 3 for a description of the experimental setup. e standard
deviations, σGx and σGy, for the x- and y- coordinates are calculated as:

σGx =

√√√√ 1

N

N∑
n=1

(xG(n)− x̄G)2 (34)

σGy =

√√√√ 1

N

N∑
n=1

(yG(n)− ȳG)2 (35)

whereN is the total number of samples in intervals with stationary targets. For com-
parison, the standard deviations, σEx and σEy, of the eye-in-head signals, xE(n)
and yE(n), are calculated similarly as is done in (34) and (35). As an alternative ap-
proach, the eye-in-head signal is also compensated with head movements extracted
from the scene video. e corresponding standard deviations, σGV y and σGV y, are
again calculated similarly as in (34) and (35).

Event detection
e performance of the proposed event detection algorithm is evaluated by compar-
ing the detections of the algorithm to the presented stimuli, i.e., for the movement
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patterns described in Section 3; patterns I-IV corresponds to fixations and V-IX cor-
responds to smooth pursuit movements. e sensitivity and specificity for each type
of eye movement are calculated. For saccades, a sample is considered to be correct
if it occurs within a 500 ms interval after the stimuli switched position. Samples
classified as saccades outside the 500 ms window are considered to be incorrect. A
sample classified as a fixation is considered to be correct if it occurs when a station-
ary target is shown from the end of the 500 ms window for saccades until the target
switches position. Otherwise, it is considered to be incorrect. A sample classified as
a smooth pursuit is considered to be correctly classified if it occurs when the target
is moving across the screen. e sensitivity for eye movement type q, SENq, where
q = {S = Saccade, F = Fixation, and P = Smooth pursuit}, is calculated as

SENq =
TPq

TPq + FNq
(36)

where true positives, TPq, is the number of correctly classified samples for eye move-
ment type q, and the false negatives, FNq, is the number of samples that the algo-
rithm falsely classified as another type of eye movement than type q. A value close
to 1 is desired.

e specificity, SPECq, describes the algorithm’s ability to only find the sam-
ples of eye movement type q and a value close to 1 is desired. For each type of eye
movement q, the SPECq was calculated as

SPECq =
TNq

TNq + FPq
(37)

where true negatives, TNq, is the number of samples that the algorithm correctly
classified as another type of eye movement than q. e false positives, FPq, is the
number of samples that the algorithm falsely classified as eye movement type q.

In order to evaluate the algorithm’s ability to be both sensitive and specific,
the balanced accuracy, Bq, for eye movement type q is calculated. e balanced
accuracy is calculated as the average of the sensitivity and specificity,

Bq =
SENq + SPECq

2
(38)

and a value close to 1 desired.

Settings of the binary filters
In order to evaluate the settings of the binary filters, the output from each filter is
compared to the stimuli, and the balanced accuracy, BF and BP , for fixations and
smooth pursuit movements, respectively, are calculated using (38). Several window
lengths and criteria thresholds were tested and the corresponding ROC-curves were
evaluated. e settings with the highestBF andBP , according to the ROC-curves,
were chosen for the fixation filters and the smooth pursuit filters, respectively.
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3 Experiment and database

3.1 Participants and apparatus

e signals used in this paper were recorded during an experiment where 21 partic-
ipants were included, (4 females, mean age 32.9 ± 7 years). e participants were
seated on a chair facing a big white screen with dimensions 1.80 x 1.46 m. e
chair was placed 2.6 m from the screen. A projector (Sanyo Pro xtraX Multiverse
Projector), placed on a shelf behind the participant, was used to project the stimuli
onto the screen. An illustration of the setup is shown in Fig. 5. e stimuli were pre-
sented on the screen using PsychoPy (version 1.80.03, [21]). e eye-tracking sig-
nals were recorded with a sampling frequency of 60Hz using the mobile eye-tracker
ETG 2.0 from SMI (SensoMotoric Instruments, Berlin, Germany) connected to a
laptop running iViewETG, (v. 2.2.2). In order to synchronize the stimulus with
the eye-tracking signals, the laptop received triggers from the stimulus computer via
the parallel port. Head movements were recorded with a sampling frequency of 512
Hz using an Inertial Measurement Unit (IMU), from x-io Technology [22], which
was mounted above the eye-tracking glasses with a headband. On the IMU, an
AHRS algorithm is implemented [23], which is a fusion algorithm used to prevent
the recorded signals from drift. In this experiment, the IMU works as a standalone
data logger. Before the experiment started, the clock on the IMU was synchronized
to the clock on the computer presenting the stimuli.

Projector

2.6 m

1.46 m

1.8 m

Figure 5: An illustration of the setup during the recording.
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(a) Pattern I (b) Pattern II
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Figure 6: Eye- and head-movement patterns I - IV, which contain stimuli for
fixational eye movements. e + indicates where the black dot stopped for a few
seconds before instantaneously moving to the next position as indicated by the
arrow.

3.2 Design and stimuli material

e experiment consisted of calibration, synchronization, followed by four experi-
mental parts. e four experimental parts were as mention above: only eye move-
ments (EM), combined eye- and head movements (EHM), only head movements
(HM), and a natural task that requires both eye and head movements. e three
first experimental parts were based on a set of 10 movement patterns of a black dot,
with a diameter of 1◦, presented on a white background. e 10movement patterns
are shown in Figs. 6–8. e stimuli of the fourth part were mainly photographs of
products on shelves in the supermarket.
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(a) Pattern V (b) Pattern VI

(c) Pattern VII

Figure 7: Eye- and head-movement patterns V - VII, which contain stimuli for
smooth pursuit movements. e + indicates the center of the screen.
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(a) Pattern VIII (b) Pattern IX

(c) Pattern X

Figure 8: Eye- and head-movement patterns VIII - X, which contain stimuli for
smooth pursuit movements. e + indicates the center of the screen.
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3.3 Procedure

In the beginning of the experiment, the participant was informed about the aim
of the study and the procedure of the experiment. e IMU was mounted on the
participant’s head and the recording of the head movements started. ereafter, the
eye-tracking glasses were put on the participant and adjusted to the correct posi-
tion. Before the recording of the eye-tracking signals started, a 3-point calibration
was performed. e calibration was followed by a synchronization session, which
consisted of VOR-movements where the participant was asked to fixate the eyes on
a blue dot in the middle of the screen while moving the head according to a green
dot moving back and forth, first horizontally and then vertically. Since this move-
ment gives a response in both the eye-tracking signal and the IMU signal, and the
VOR-latency is around 10ms, it was used as a control signal for the synchronization
between the IMU- and the eye-tracking signals. In the EM part, the participants
were asked to keep the head as still as possible and only move the eyes according
to the movements of a black dot. e black dot moved according to movement
patterns I - X. In the EHM part, the participants were asked to move the head and
eyes simultaneously according to the 10 movement patterns of the dot. In the HM
part, the participants were asked to fixate the eyes on a blue cross in the middle of
the screen, while moving the head according to the movements of a green dot. e
dots were moving according to movement patterns I - IV. In order to give the par-
ticipants a chance to become familiar with the 10 movement patterns of the black
dot, a round of practice was performed before the start of each part. Finally, in the
fourth experimental part, the participants were asked to move the head and eyes
freely while performing several different tasks. Examples of tasks are counting ob-
jects, looking freely at an image, and make a decision of what product to buy from
a photograph of a shelf in a supermarket.

3.4 Database

e 21 recordings were divided into two subsets, a development database with 11
recordings and a test database with 10 recordings. e development part of the
database was used during the development of both the head compensation method
and the event detection algorithm. Settings were only adjusted based on the data
in the development database. e test database was used for the final calculation of
results only.

4 Results

e results presented in this section were generated using the settings in Tables 1-4.
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Table 3: Settings for the head compensation.

Parameter Value Description
d 2.6 m Distance to the screen
xmax 1280 px Resolution of the scene camera x
ymax 960 px Resolution of the scene camera y
αmax 60◦ Maximum angular view of

the scene camera in x [24]
βmax 46◦ Maximum angular view of

the scene camera in y [24]

Table 4: Settings for parameters of the proposed event detection algorithm.

Parameter Value Description
ηa 36000◦/s2 Minimum acceleration threshold for noise
ηSA 0.75◦ Minimum saccade amplitude
ηk 0.2 Minimum slope of a saccade
αT

π
2 Maximum deviation between eye-tracking

signal selected object
ηT 7.5◦ Maximum difference in total distance bet-

ween eye-tracking signal and selected object
ηP 5◦ Maximum spatial distance between

eye-tracking signal and selected object
tminFix 100 ms Minimum duration of a fixation
tminSmp 100 ms Minimum duration of a smooth pursuit
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4.1 Head movement compensation

Two representative examples of recorded signals during HM and EHM, respec-
tively, are shown in Figs. 9 – 10. During HM, the participant was instructed to
keep the gaze stable in the middle of the screen while moving the head according
to movement patters I - IV. e recorded eye-tracking signal and the correspond-
ing IMU signal are shown in Fig. 9a-b, respectively. Since the mobile eye-tracker
records the eye-in-head signal, the eye-tracking signal moves in the opposite di-
rection compared to the signal recorded with the IMU. In Fig. 9c, the estimated
eye-in-space signal is shown. In this example, if the user was able to keep the gaze
in the middle of the screen and if the head movement compensation succeeded, the
eye-in-space signal should be close to zero. During EHM, the participant was asked
to move the head and eyes according to the stimuli. In Fig. 10, the recorded sig-
nals are shown during moving patterns III - V. In the recorded eye-tracking signal in
Fig. 10a, it is difficult to see what types of eye movements that have been performed,
e.g., the smooth pursuit movements related to movement pattern V are not visible
at all. e large spikes at, e.g., t = 55, 70, and 80 s, result from a combination
of saccades and rapid head movements. e corresponding head movement signal
recorded with the IMU converted to pixels, is shown in Fig. 10b. e compensated
signal, the estimated eye-in-space signal, is shown in Fig. 10c. In the compensated
signal, the saccades and fixations related to movement patterns III - IV, and the
smooth pursuit movements related to movement pattern V, are clearly visible.

In order to evaluate the performance of the estimated eye-in-space signal, the
standard deviation was calculated for movement patterns I - IV, which do not in-
clude any moving stimuli. e inter-saccadic intervals found by the proposed algo-
rithm were used in the calculation. e mean values of the standard deviation for
the test and development databases, for each of the EM, EHM, and HM parts, are
shown in Table 5. For all three parts, the standard deviations were reduced as an
effect of the head compensation. Even for EM when the participant was asked to
keep the head as still as possible, the compensation decreased the standard deviation
from around 0.16◦ to 0.09◦. During EHM and HM when the head was moving,
the head movement compensation had the largest effect. For HM the standard de-
viation decreased from around 8◦ to 3◦ for the x- direction and from 7◦ to 3◦ for
the y- direction. ere was only a very small difference in standard deviations be-
tween IMU-based head movement compensation and compensation based on head
movements extracted from the scene video for this setup.



181

time [s]
0 10 20 30 40 50 60 70

x E
 [

px
]

-600

-400

-200

0

200

400

600
I II III IV

(a) Eye-in-head signal.
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(b) Head-in-space signal.
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(c) Eye-in-space signal.

Figure 9: Examples of recorded signals during experimental part HM, (a) recorded
eye-tracking signal, (b) recorded IMU-signal, and (c) head movement compen-
sated signal. For readability, only the x component is plotted.
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(c) Eye-in-space signal.

Figure 10: Examples of recorded signals during experimental part EHM, (a)
recorded eye-tracking signal, (b) recorded IMU-signal, and (c) head movement
compensated signal. For readability, only the x component is plotted.
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Table 5: Standard deviations of the positions in inter-saccadic intervals for three
parts of the experiment. Uncompensated data are compared to compensated data
both using an IMU and using head movements extracted from the scene video.

Not compensated Compensated
IMU Video

σEx (◦) σEy (
◦) σGx (◦) σGy (

◦) σGV x (◦) σGV y (
◦)

EM 0.16 (0.16) 0.18 (0.19) 0.09 (0.09) 0.12 (0.14) 0.10 (0.09) 0.13 (0.14)
EHM 0.81 (0.84) 0.69 (0.71) 0.14 (0.14) 0.17 (0.18) 0.18 (0.18) 0.20 (0.21)
HM 8.99 (8.73) 7.49 (6.54) 3.31 (3.11) 3.33 (2.93) 3.43 (2.96) 3.43 (2.70)

4.2 Event detection

Performance evaluation
e proposed event detection algorithm for detection of saccades, fixations, and
smooth pursuit movements was evaluated by comparing the detections to the stim-
uli and by calculating the sensitivity and specificity for each type of movement.
For comparison, the sensitivity and specificity are also calculated for the built-in-
algorithm in BeGaze from SMI for uncompensated data, referred to as the built-
in-algorithm, and for head compensated data for the I-VDT algorithm in [20],
referred to as I–VDT. e results are found in Tables 6–8. In general, when the
stimuli do not contain all types of eye movements, the sensitivity and specificity
cannot always be calculated. is is in Tables 6–8 indicated with a ’-’. For saccades,
the balanced accuracies are equally high between the proposed algorithm and the
I-VDT, with 0.980 and 0.978, respectively. e corresponding balanced accuracy
for the built-in-algorithm was 0.932. For EM, EHM, and HM, the results for sac-
cades are similar. For the proposed algorithm, the balanced accuracies for fixations
for all three parts are between 0.79−0.91, compared to 0.70−0.85 for I-VDT, and
0.53−0.91 for the built-in-algorithm. Since the built-in-algorithm algorithm does
not classify smooth pursuit movements, the specificities for fixations for parts EM
and EHM are very low. For smooth pursuit movements, the balanced accuracies
for the proposed algorithm are between 0.82− 0.90, compared to 0.74− 0.85 for
the I-VDT and 0.50 − 1.00 for the built-in-algorithm. It should be pointed out
that for the HM part, which according to the stimuli contains only fixations, the
built-in-algorithm has the largest sensitivity for fixations and the largest specificity
for smooth pursuit movements since it can detect neither any correct nor any false
smooth pursuit movements.
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Table 6: Sensitivity, specificity, and balanced accuracy for saccades (S), fixations
(F), and smooth pursuit movements (P), for the proposed algorithm, the I-VDT
algorithm in [20], and the bulit-in-algorithm for the test database (development
database). Bold font marks the best performing algorithm for that type of eye
movement. When sensitivity or specificity can not be calculated the column is
marked with (-).

EM
Proposed I-VDT Built-in-alg.

SENS 0.980 (0.954) 0.986 (0.967) 0.995 (0.998)
SPECS 0.979 (0.985) 0.971 (0.976) 0.868 (0.881)
BS 0.980 (0.969) 0.978 (0.972) 0.932 (0.939)
SENF 0.989 (0.991) 0.916 (0.917) 0.933 (0.943)
SPECF 0.837 (0.869) 0.799 (0.785) 0.207 (0.190)
BF 0.913 (0.930) 0.858 (0.851) 0.570 (0.567)
SENP 0.807 (0.846) 0.758 (0.750) 0.000 (0.000)
SPECP 0.998 (0.995) 0.934 (0.931) 1.000 (1.000)
BP 0.902 (0.921) 0.846 (0.841) 0.500 (0.500)

Table 7: Sensitivity, specificity, and balanced accuracy for saccades (S), fixations
(F), and smooth pursuit movements (P), for the proposed algorithm, the I-VDT
algorithm in [20], and the bulit-in-algorithm for the test database (development
database). Bold font marks the best performing algorithm for that type of eye
movement. When sensitivity or specificity can not be calculated the column is
marked with (-).

EHM
Proposed I-VDT Built-in-alg.

SENS 0.978 (0.966) 0.987 (0.972) 0.985 (0.989)
SPECS 0.972 (0.982) 0.957 (0.973) 0.865 (0.887)
BS 0.975 (0.974) 0.971 (0.973) 0.925 (0.938)
SENF 0.971 (0.970) 0.772 (0.828) 0.891 (0.922)
SPECF 0.769 (0.912) 0.785 (0.813) 0.185 (0.164)
BF 0.870 (0.941) 0.778 (0.820) 0.538 (0.543)
SENP 0.729 (0.889) 0.730 (0.778) 0.000 (0.000)
SPECP 0.987 (0.983) 0.814 (0.854) 0.999 (1.000)
BP 0.858 (0.936) 0.772 (0.816) 0.500 (0.500)
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Table 8: Sensitivity, specificity, and balanced accuracy for saccades (S), fixations
(F), and smooth pursuit movements (P), for the proposed algorithm, the I-VDT
algorithm in [20], and the bulit-in-algorithm for the test database (development
database). Bold font marks the best performing algorithm for that type of eye
movement. When sensitivity or specificity can not be calculated the column is
marked with (-).

HM
Proposed I-VDT Built-in-alg.

SENS - (-) - (-) - (-)
SPECS 0.973 (0.981) 0.964 (0.970) 0.911 (0.921)
BS 0.973 (0.981) 0.964 (0.970) 0.911 (0.921)
SENF 0.792 (0.733) 0.702 (0.742) 0.911 (0.921)
SPECF - (-) - (-) - (-)
BF 0.792 (0.733) 0.702 (0.742) 0.911 (0.921)
SENP - (-) - (-) - (-)
SPECP 0.819 (0.752) 0.738 (0.772) 1.000 (1.000)
BP 0.819 (0.752) 0.738 (0.772) 1.000 (1.000)

Evaluation of the settings of the binary filters
ree types of binary filters for binocular high speed eye-tracking signals recorded at
500 Hz were proposed in [18]. e three filters are: Directional consistency, Total
distance, and Transition. In [18], the thresholds for each type of filter were adjusted
to either emphasize fixations or emphasize smooth pursuit movements, referred to
as fixation filters and smooth pursuit filters, respectively. In order to evaluate how
suitable the filters are to detect fixations and smooth pursuit movement in low speed
data recorded with a sampling frequency of 60 Hz, the filters were tested separately.
e balanced accuracy,Bq, was calculated for a range of lengths and criteria thresh-
olds for the three pairs of filters. e most important results are shown in Figs. 11a-c
and 11d-f, for fixation and smooth pursuit filters, respectively. For fixation filters,
the Total distance filter performed the best with a balanced accuracy around 0.9,
and the Direction consistency filter the worst with a maximum balanced accuracy
of 0.65. For smooth pursuit filters, the Total distance filter performed the best with
a balanced accuracy of 0.9, and the two other filters performed equally good with
balanced accuracies around 0.8. e results in Fig. 11 were used for guidance when
choosing the settings of the binary filters used in the proposed algorithm, i.e., the
settings of the filters with the best balanced accuracy was chosen.
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(c) Fixation filter Transition.
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(d) Smooth pursuit filter Directional consistency.
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(f ) Smooth pursuit filter Transition.

Figure 11: Balanced accuracies for fixations and smooth pursuit filters that were
proposed in [18], with a range of criteria thresholds and window lengths.
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(a) Participant 1 (b) Participant 2

Figure 12: Examples of the estimated eye-in-space signals for two participants
mapped on a reconstruction of the shown image.

Video input in event detection

In order to evaluate the algorithms’ overall performances, the average balanced accu-
racies for all types of eye movements are calculated. For the proposed algorithm, the
average is 0.9 compared to 0.85 and 0.75 for the I-VDT and the built-in-algorithm,
respectively. e proposed event detector includes moving objects extracted from
the scene video. In order to evaluate the advantage of this inclusion of moving
objects, the average balanced accuracies for all types of eye movements is calcu-
lated when the proposed algorithm does not include moving objects. e average
balanced accuracies for the proposed algorithm without objects included is 0.88,
which can be compared to 0.85 and 0.75 for I-VDT and the built-in-algorithm,
respectively, and shows that the proposed algorithm even without objects performs
better than earlier algorithms. It also shows that it is beneficial to use information
about objects extracted from the stimuli.

4.3 Overall results

In order to illustrate the importance and advantage of head movement compensa-
tion in the eye-tracking signal, Fig. 12 shows the scan-path of the estimated eye-
in-space signals from two participants deciding which juice they would like to buy
from a shelf in the supermarket. During the task, the two participants were allowed
to move their heads freely, and without the eye-in-space estimation it is not possible
to map the scan-path onto a 2D-image of the stimuli. Based on the eye-in-space
signal, the patterns of several participants can be compared.
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5 Discussion

In this paper, a method for compensation of head movements in mobile eye-tracking
signals and a multi-modal event detection algorithm for low speed eye-trackers
are proposed. e method for head movement compensation estimates the eye-
in-space signal by compensating for the head movements recorded using a head
mounted IMU in the eye-in-head signal recorded using a mobile eye-tracker. e
proposed event detection algorithm uses the estimated eye-in-space signal together
with information about the detected objects in the scene video to classify saccades,
fixations, and smooth pursuit movements. Both temporal and spatial aspects of the
eye-tracking signal and of the detected objects are utilized in the proposed detection
algorithm.

e results in Table 5 show that the proposed method for head movement com-
pensation reduces the standard deviation of the position for all three experimental
parts. e part that benefitted the most from the compensation was HM.

e proposed multi-modal event detection algorithm outperformed the two
compared algorithms with an overall average balanced accuracy of 0.90, compared
to 0.85 and 0.75, for the I-VDT and the built-in-algorithm from SMI, respectively.
e proposed algorithm was also evaluated without using the presence of moving
objects, resulting in an average balanced accuracy of 0.88, which shows that it is
beneficial to include moving objects in the event detection algorithm.

In the evaluation, shown in Table 5, the proposed IMU-based method for head
movement compensation is evaluated and compared to a method based on the scene
video. e difference in standard deviation is small, suggesting that the two meth-
ods in this study are equally good for head movement compensation. Both types
of head movement estimates can be applied to the proposed head compensation
algorithm. It should, however, be pointed out that the movements in the present
study were very simple to process with a bright screen on a dark background. Gen-
erally, the advantage of using an IMU is that the signal is available all the time and
is independent of the resolution, quality, and content of the video. On the other
hand, using the scene camera for compensation is advantageous since the detected
movements are in the same coordinate system as the eye-tracking signals, and no
extra equipment is needed. e largest drawback of using the scene camera is that it
may be very difficult to estimate the movements in more complex situations where
the head, the body, and the surrounding environment may be moving.

Compensation of head movements can be performed in the position domain or
in the velocity domain. Earlier proposed methods that involve compensation in the
position domain use a motion capture system [8, 9, 10, 11], an optical system [14],
or a magnetic field tracker for compensation [25]. With the goal to perform event
detection of eye-tracking signals from recordings outside the laboratory, these sys-
tems are not applicable. When video-based compensation is performed, as in [6],
it is performed in the velocity domain, i.e., the relative motion is used. If the goal



189

is to perform reliable event detection that involves smooth pursuit movement, the
velocity signal is proven to not contain sufficient information to separate fixations
from smooth pursuit movements [20]. In that context, performing head movement
compensation in the position domain, as done in this work, is advantageous.

e main drawback of using an IMU is that it in certain environments may
be effected by magnetic fields, which causes drift in the sensor. In this study, an
AHRS-algorithm that combines the signals from a gyro, an accelerometer, and a
magnetometer, is included in the IMU to compensate for the drift [22]. e present
study was performed in the laboratory without any known sources of magnetic
disturbance. Whether magnetic disturbances in outdoor environment may effect
the components of the IMU is not investigated in this study.

Head movement compensation in eye-tracking signals requires good synchro-
nization between the IMU and the eye-tracking signals. In the present study, the
signals were synchronized using signals recorded during VOR, as described in Sec-
tion 3. is type of synchronization removes the natural lag between eye and head
movements. If the VOR-latency is of interest to study, the synchronization must
be handled with an external software or an eye-tracker that has an integrated IMU
where synchronization between the different recording systems is handled inter-
nally, e.g., the Tobii Pro Glasses 2 [26], may be used.

e method for head movement compensation of eye-tracking signals is evalu-
ated by computing the standard deviation in intervals with stationary targets. is
evaluation strategy does not only evaluate the method but also the participant’s abil-
ity to look at the presented stimuli and follow the given instructions. As an example,
the HM part is very difficult to perform without sufficient training. erefore, the
standard deviation for this part, as is shown in Table 5, is large both between par-
ticipants and compared to the corresponding values of EM and EHM.

e proposed multi-modal event detection algorithm is evaluated by comparing
the detections of the algorithm to the presented stimuli, i.e., fixations are expected
when the target is stationary and smooth pursuit movements are expected when
the target is moving. is evaluation strategy gives a general picture of the perfor-
mance, but there are some movements that cannot be evaluated using this method,
e.g., blinks, noise, catch-up saccades, and fixations when smooth pursuit stimuli are
presented. Both catch-up saccades and fixations that are performed when smooth
pursuit stimuli are presented decreases the specificity for saccades and fixations, re-
spectively, and decreases the sensitivity for smooth pursuit movements, even though
the events were correctly detected.

In order to connect the eye-in-space signal with the scene in front of the user, the
scene needs to be in the same coordinate system. It can be achieved by taking pho-
tographs, e.g., as is shown in Fig. 12 or by building a 3D-model of the scene [27].
For real world situations, where it may be impossible to reconstruct the scene, head
movement compensation may be used mainly for reliable event detection purposes
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and not for visualization.
In the proposed event detection algorithm, the eye-in-space signal is used to

classify saccades, fixations, and smooth pursuit movements. e VORs are not
separately classified as an own event. As proposed in [5], the recorded head signal
can be included in the event detection algorithm to also classify VORs. is is,
however, outside the scope of this paper.

e present study is the first step towards reliable event detection in eye-tracking
signals recorded in natural situations. e two major limitations of the present study
are that the body position of the participant is fixed and that the stimuli is artificial
and presented on a screen. In order to be able to compensate for head and body
movements when walking around freely, the proposed method must be combined
with a system that tracks the body position.

6 Conclusions

An event detector which includes head movement compensation is proposed. e
head movement compensation decreased the standard deviation of the position of
the eye-tracking signal when stationary targets were fixated. e proposed IMU-
method was compared to a video-based method and the results show that the two
methods in this study are provide comparable results for head movement compen-
sation. e proposed multi-modal event detector outperforms the I-VDT and the
built-in-algorithm.
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