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Populärvetenskaplig Sammanfattning

Datorsimuleringar, konsten att modellera verkliga eller tänkta händelser
med hjälp av en dator och ett lämpligt simuleringsprogram, har blivit
ett dominerande verktyg inom tekniska och naturvetenskapliga omr̊aden,
likväl inom akademiska och industriella tillämpningar. Trots att experi-
mentella studier har ett vedertaget erkännande inom diverse forsknings-
studier har den snabba utvecklingen av datorprestanda, mjukvara och al-
goritmer gjort att datorsimulering blivit ett vitalt och väletablerat kom-
plement till kostsamma experiment.

Vid bruk av datorsimularingar utg̊ar man fr̊an en matematisk modell
för att beskriva ett fysikaliskt förlopp för att i sin tur kunna studera
det fenomen som man är intresserad av. Därefter används varianter av
beräkningsmetoder för att kunna genomföra simuleringarna.

Fenomenet Fluid-Struktur Interaktion, vilket är forskningsämnet, ex-
isterar i en rad tillämpningsomr̊aden i praktiken. Luftpartiklars strömning
kring en flexibel flygplansvinge eller hängbro samt vattenpartiklars pas-
sage kring havsplattformar och/eller propellrar till havsfartyg är n̊agra
utav m̊anga exempel där en direkt/indirekt interaktion mellan förem̊alen
i fr̊aga och mediet i sig kan klassificeras under kategorin Fluid-Struktur
Interaktion; FSI. Denna interaktion (mellan fluid och struktur) kan un-
der stränga förh̊allanden leda till oönskade händelser s̊asom falering av en
flygplansvinge, kollaps av en bro samt/eller häftiga vibrationer av t.ex.
borrnings-rör som är fast förankrade till oljeplattformar.

Syftet med denna forskningsstudie är att kunna reda ut och predik-
tera de fysikaliska mekanismer som ligger till grund och kan ge upphov
till ovan nämnda oangelägenheter. Detta har undersökts genom att stu-
dera hur karaktären p̊a rörelsen och/eller deformationen hos strukturen
förh̊aller sig till dynamiken i dess vak, vilken representeras av kvanti-
teter som flödeshastighet och tryck. Målet är bland annat att p̊a en
erforderlig niv̊a kunna beskriva och förklara kopplingen mellan varieran-
de fasförh̊allanden som typiskt karaktäriserar dynamiken hos strukturen
och dess korresponderande (tidsberoende) vak.

Dessa m̊al ställer dock höga krav p̊a precission och effektivitet hos
tillgängliga beräkningsmetoder samt de metoder som är under utveck-
ling. I synnerhet behöver metoderna kunna hantera väldigt stora system
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p̊a grund av höga krav p̊a upplösning i simuleringarna och dessutom
behöver de ha n̊agon form av felkontroll för att säkerställa noggrannhe-
ten i simuleringarna.

I denna avhandling har tv̊a objekt av olika geometri och uppsättning
använts för att studera interaktionen mellan fluid och struktur, nämligen
en elastiskt upphängd stel cirkulär cylinder och en flexibel rektangulär
balk med ett kvadratiskt tvärsnitt som är fast inspänd i den ena änden
och fri i den andra. Den stela cirkulära cylindern har brukats i ett renod-
lat studiesyfte och resultaten har analyserats med utg̊angspunkt fr̊an
tidigare utförda studier. Arbetet för den fast inspända balken, å andra
sidan, omfattade dels utveckling av en beräkningseffektiv metod, genom
att fördela beräkningsarbetet jämbördigt i delproblem mellan flertal da-
torer, och dels en studie kring metodens styrka och dess begränsningar.

iv



Abstract

This thesis concerns the study of Fluid-Structure interaction phenomena
among deforming and (non-deforming) vibrating objects under unsteady
fluid flow exposures. This multi-physical phenomenon is widely encoun-
tered in real-life situations and therefore it is of significant importance
to understand the underlying physics. The trend is that both industrial
and research facilities aim for developing methods that treat this complex
and multi-disciplinary problem with high accuracy and also sufficient ef-
ficiency.

Time-domain simulations, that is the dominating prediction tool within
the FSI-community although frequency-domain representation is still
used to some extent, have been integrated with two different struc-
tural models that model the solid objects. For the vibrating rigid ob-
ject an Immersed Boundary (IB) method based on the use of Cartesian
mesh is used to represent the solid object by using momentum source
that enforce the required boundary condition. The deforming object,
on the other hand, is modelled by a three-dimensional Finite Element
(FE) formulation based on collocated mesh formulation. An Arbitrary
Lagrangian-Eulerian (ALE) formulation provides the deformation of the
object which is solved in conjunction with the fluid and solid solvers.
Further, a partitioned FSI-approach based on strong coupling strategy
assures for reliable flow and solid domain quantities.

The time-dependent and unsteady fluid flow is predicted based on
Implicit Large Eddy Simulations (ILES) which becomes a prerequisite in
order to resolve flow processes involving large-scale structures with suffi-
cient accuracy. In particular, separation processes, vortex shedding and
possibly vortex-pairing are flow phenomena of such kind that typically
are encountered when the flow around an object enforces the body to
be deformed or displaced, which in turn, alters the character of the flow
structures.

In the context of deformable- and rigid body motions, this study is
especially focused in the near-wake (instantaneously) behaviour of flow
structures in conjunction with dependency of wake topologies when the
unsteady wake flow generates unsteady loading on the object. The vari-
ations in response dynamics of the objects are studied in parallel and
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a direct/indirect coupling is made in the object-wake dynamics in or-
der to better understand the complex two-way FSI phenomenon. In
the analyses, particular post-processing tools for the fluid-flow, such as
Proper Orthogonal Decomposition (POD) and Dynamic Mode Decom-
position (DMD) have served as a toolbox. It is shown that very useful
conclusions can be drawn and hence, attribute these findings to relevant
mechanisms underlying the FSI problem.
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CHAPTER 1

Introduction

Since the start of the scientific revolution a specific interest in fluid
motion has emerged as a vital subject on its own, which can be traced
back to the early 16th century. In the modern world, a particular branch
has evolved under fluid mechanics which describes details of fluids and
the forces on them. A similar trend can be drawn for solid materials
which are characterized by structural rigidity and resistance to changes
of shape or volume and falls under the branch solid mechanics. Civil (and
structural)- and mechanical engineering, geology and material science are
disciplines that study the behaviour of solid materials, particularly their
motion and deformation under the action of forces and other external
or internal parameters. The parallel disciplines for fluids involve e.g.
chemical engineering, aerospace engineering, medical engineering and,
also, material sciences. It is a field where multiple physical effects can
be met, for example the motion of a fluid flow and the deformation or
displacement of a structure and their mutual interaction. Fluid-Structure
Interaction (FSI) is the name of such a dynamic (or in some cases a static)
state of an object, e.g. a structure, where external (or internal) fluid
forces act on it so as to alter the structural response, which in return,
affects the surrounding (or embracing) fluid flow.
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1. Introduction

General examples of FSI problems in engineering fields and applied
sciences are flows around elastic structures, e.g. aeroplanes and sub-
marines, categorized under aero- and hydroelasticity, respectively and
flows in elastic structures, e.g. haemodynamics, i.e. the transport of
blood in aortas. Research facilities on such FSI applications (and other
types as well) comprise, from a historical point of view, mostly experi-
mental studies. Nevertheless, the ongoing development of computational
software and resources in either of the inherent FSI branches have made
numerical simulations of these problems a robust and reliable candidate
for experiments.

Numerical predictions of FSI problems of deformable objects are per-
formed using Computational Fluid Dynamics (CFD) and Computational
Structural Dynamics (CSD) solvers as a coupled system. In the litera-
ture there exist two distinct coupling approaches for this purpose, namely
the monolithic and partitioned approaches. In the monolithic approach
the fluid- and solid system of equations are solved for simultaneously,
including the boundary conditions. In the partitioned approach, on the
other hand, the governing equations for either of the fields are solved as
separate subsystems in a staggered manner, where a coupling is required
as an additional coupling interface. Here, aspects such as solver-to-solver
communication and/or grid-to-grid interpolations have to be considered.

The partitioned schemes are further subdivided into explicit and im-
plicit coupling schemes. Explicit coupling schemes solve the fluid and
solid equations without any sub-iteration, leading to severe stability
problems in most applications. These schemes are generally favoured in
aeroelastic applications [11], where the difference in density between fluid
and solid is typically large. To overcome the stability problem arising
from the partitioning and to enforce the continuity coupling condition,
implicit coupling schemes are utilized. For the implicit coupling schemes
the fluid and structure solutions are repeated until certain convergence
tolerance is reached. Normally, this is a procedure which involves finding
equilibrium between large systems of non-linear equations using iterative
solvers, e.g. block-Jacobi, block-Gauss-Seidel or relaxation methods such
as Aitken’s relaxation method. Applications of implicit schemes, where
the fluid and solid densities are of comparable order, can for instance be
found in biomedicine [12] and hydroelasticity [13].
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Normally, any structure immersed into a cross-flow, for instance a
cylinder representing the pillar of offshore structure or mooring cable,
will be subjected to unsteady lift forces due to the asymmetric shedding
of vortices from the upper/lower surfaces of the structure. Under cer-
tain conditions, i.e. when the frequency of the shed vortices and also
the frequencies of the structure’s motion coincide or more correctly locks
onto the natural frequency of the structure, extremely high vibrations
may commence. ‘Locked-on’ states is an accepted terminology within
the more general designation of Flow-Induced Vibrations (FIV) or the
more specific Vortex-Induced Vibrations (VIV) that features a feedback
process of high energy transfer in-between the two agents of fluid-flow
and structure. In particular, the three-dimensional repetitive pattern
of flow (or vortex-wake) structures developing in the near-wake of the
structure play an important role in the overall fluid-structure interaction
process. By nature, these locked-on states are (most often) highly un-
wanted and therefore the main objectives becomes to reduce them or at
least control and outline the underlying mechanisms. For this reason, a
better understanding and predictions of flow induced vibrations might
prevent fatigue and/or failure of bridges, buildings, aeroplane wings, etc.
Other flow-induced related issues concern for instance the production of
noise which typically occurs at rotating devices such as propellers and/or
turbine blades. In this case, reducing the noise levels become important
from the perspective of human comforts.

Purpose and Objectives

The main purpose of this thesis work is to improve the understand-
ings of the physics of the interaction between unsteady fluid flows and
structure(s) with specified size, shape and material properties. Numerical
simulations are carried out within the large eddy simulation framework,
which is a high fidelity approach that provides detailed information at
the various length and time-scales.

The objectives, in accordance with the purpose of the work, are as
follows:

• Analysis and understanding of the physics of the flow around a

3



1. Introduction

single and multiple rigid cylinders. Both frequency locking- and
non-locking effects are considered.

• Determine the interaction between the flow and several rigid, elas-
tically mounted structures, moving relative to each other at some
parameter ranges for different geometrical configurations.

• Carry over the analysis for rigid circular cylinders to encompass
flexibility effects, i.e. deformation, of a cantilever beam and its
interaction with wake instabilities.

• Characterize the possible physical mechanisms of the fluid-structure
interaction phenomena between single and multiple cylinders, and
also between a stiff and flexible cantilever beam.

For the achievements of the first two bullets two different decompo-
sition techniques were used, Proper Orthogonal Decomposition (POD)
and Dynamic Mode Decompositions (DMD).

For the second last bullets, on the other hand, code development was
required in order to facilitate the simulations for objects with body flex-
ibility. Within this scope, particular effort was made in the developing
of a functional structural solver in the open source program OOFEM
[14, 15]. At the start of the project no implicit dynamical solver was
available in OOFEM, which was a prerequisite for the planned applica-
tion area in this thesis work and not least for future applications, such
as haemodynamics.
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CHAPTER 2

Physics of FSI

2.1 Flow Past Stationary Bluff Bodies

The importance of predicting the influence of viscosity on the be-
haviour of a fluid in a particular set of circumstances plays a major role
when characterizing different flow regimes in a fluid flow. For ‘external’
flows around bodies immersed in a fluid stream, viscous effects might be
of considerable level near the body surfaces and in its near-wake. De-
pending on the body shape and flow properties different flow regimes
may be identified and this will be discussed in more detail below.

These flow regimes, called laminar and turbulent, are characterized
by the Reynolds number, Re, which was introduced in 1883 by Reynolds
[16]. The Reynolds number quantifies the relative importance between
the ratio of inertial and viscous forces as

Re =
V L

ν
=

Inertial forces

Viscous forces
, (2.1)

where V is a characteristic velocity of flow, L is a characteristic length
and ν is kinematic viscosity of the fluid. Hence, low Reynolds number
corresponds to viscous forces dominating whereas high Reynolds number
corresponds to viscous forces being negligible compared to inertial forces.

5



2. Physics of FSI

Viscosity effects, large region of separated (external) flow, a high
value of drag coefficients and the classical phenomenon of vortex shed-
ding are features of the flow field that characterize a ‘bluff body’ within
the context of fluid mechanics. Figure 2.1 shows three kinds of bluff bod-
ies with varying bluffness-es. The ‘degree of bluffness’ for a rigid body
exposed to external flow field is referred to as the ratio between the cross-
flow dimension of the separated wake and the extent of the body surface
immersed in the separated wake. With respect to this definition, the
airfoil geometry (Figure 2.1 (a)) is regarded as a streamline body due to
its small wake and the rectangular flat plate normal to the free-stream
(Figure 2.1 (c)) is regarded as the body with maximum bluffness.

(a)

(b)

(c)

Figure 2.1: Bluff bodies with increasing degree of bluffness-es from top
to bottom.

Depending on flow regime, the flow around a bluff body will exhibit
a certain periodic buildup and subsequent shedding of vortices, which in
a non-dimensional form in terms of a Strouhal number, St, is expressed
as (introduced by Strouhal [17])

St =
fsL

V
, (2.2)
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2.1. Flow Past Stationary Bluff Bodies

where fs is a vortex-shedding frequency, V is the characteristic velocity
of flow and L is the characteristic length scale. It is an important flow
parameter which represents the relation between transient and convective
terms to describe oscillating flow mechanisms.

Historically, different models have been developed in order to quali-
tatively describe the flow around an arbitrary bluff body. With the aim
of establishing universal laws for the the essential mechanism underly-
ing for the cause of e.g. high drag and lift, several methods describing
the relationship between the wake and the body of consideration have
been reported. In the early 1950s, Roshko [18] made an experimental
study of the flow around two-dimensional bodies of varying bluffness-es;
a circular cylinder, a 90◦ wedge and a ‘flat plate’ positioned normal to
the flow. The investigation was aimed at finding a relation between the
flow characteristics in the immediate vicinity of the cylinders and at the
wake further downstream, with the hope of finding a solution depen-
dent on only one experimental measurement. A dimensional analysis of
an analytical model of the near-wake region gave a universal Strouhal
number, St?, which was then experimentally determined as a function of
wake Reynolds number, Re?. This result, together with free-streamline
theory, allowed the drag to be calculated from a measurement of the
shedding frequency and furnished a useful correlation between different
bluff bodies. Moreover, by allowing for some annihilation of the vorticity
in the free shear layers, it was shown how to combine the Kirchhoff [19]
solution, attributed to the free-streamline theory, and the von Kármán
vortex street [20]. The conclusions from this work was that additional
(empirical) relation is needed for more understanding of the flow in the
region of vortex formation.

Bearman [21] made an extensive research on fixed and oscillating bluff
bodies, in which he discusses the importance of the mechanism of the pro-
duction of vortex shedding. He reports among else the opening research
performed by Gerrard [22] on the mutual interaction between two sepa-
rating shear layers which is considered as a key factor in the formation
of a vortex-street wake. Here, properties of the flow such as circulation,
oppositely signed vorticity and entrainment are significant for the vortex-
formation model. An other approach (for the vortex-formation model)
may be to estimate the rate of shedding of circulation from a bluff body
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2. Physics of FSI

by considering the mean base pressure, as in [23, 18]. To shine some light
in to the understanding of vortex shedding phenomenon Abernathy and
Kronauer [24] were able to show, from their numerical simulations, that
it is the presence of two shear layers, rather than the bluff body itself,
that is principally responsible for vortex shedding.

Flow Past Rigid Cylinders

The circular cylinder has for a long time been accepted as the canoni-
cal geometry for two-dimensional bluff bodies. This (postulated) generic
nature of the circular cylinder was strengthened when Roshko [18] for-
mulated the Universal Strouhal number, St? = (St d′)/(k? d), where S
is the usual cylinder Strouhal number, k? is a parameter depending on
the base pressure, d is the dimension related to the body whereas d′

represents the wake width (as a function of k?). The important result
for this consideration is actually that a wake width (d′) is defined, where
St? collapses the two-dimensional wake structure of different short bodies
with respect to the vortex shedding frequency and base pressure. Among
others, Roshko [18], Bearman [25, 26] and Narasimhamurthy and Ander-
son [27] clarify the coupling between the base pressure and the evolution
of various two- and three-dimensional wake instabilities as the Reynolds
numbers are varied. Especially, the sensitive response of the base pressure
is reported with respect to the process of vortex formation in the near
wake by plotting the base suction coefficient −CPb versus the Reynolds
number. Narasimhamurthy and Anderson [27] note that a reduction in
base pressure is associated with a stronger vortex formation due to a
shorter recirculation length and an increase in St.

The variability of the separation-point for a circular cylinder further
adds to the complexity of the problem, which is pronounced implicitly at
the determination of the ‘critical’ Reynolds number of bluff body flows.
As the Reynolds number is increased the flow undergoes tremendous
changes with respect to the two flow regions, namely the boundary layer
and the wake. The latter is composed by regimes of vortex shedding
which occurs due to instabilities in the flow and can be described as
follows; Initially, the transition scenario from a steady wake flow field
to laminar two-dimensional von Kármán shedding, indicated by a Hopf

8



2.1. Flow Past Stationary Bluff Bodies

bifurcation instability, occurs at Re ≈ 47, which has been outlined by
for example Dusek et al. [28]. Further transition results in the formation
of three-dimensional vortex structures in the wake when the Reynolds
number exceeds a critical value of Re ≈ 190. As the Reynolds number
is increased through the critical value Williamson [29] reports that the
character of the wake of the flow is composed of interrelated properties
of two instability modes. These are referred to as Mode A and Mode
B shedding with spanwise wavelengths of 3 − 4 and approximately 1
cylinder diameter, respectively. The critical Reynolds number for Mode
A transition, which exhibits out of phase symmetry, was observed by
Miller and Williamson [30] to occur at Re = 194. The transition of Mode
B instability, exhibiting in phase symmetry, was observed in the range
of 230 ≤ Re ≤ 250 by Williamson [29]. The interrelated effect between
Reynolds number and Strouhal number deserves a particular observance.
Roshko [1] and Norberg [2] both quantified the vortex street behind a
circular cylinder where the non-dimensional vortex shedding frequency
has been investigated with respect to Reynolds number, as can be seen
in Figure 2.2. Here, Roshko gives expressions for the Strouhal number
as function of the Reynolds number individually for the low- and high
Reynolds number range based on experimental data. He also discusses
three different ranges in terms of Reynolds number; the stable range
from 40 ≤ Re ≤ 150, the transition range from 150 ≤ Re ≤ 300 and the
irregular range above Re = 300. Nevertheless, it is of course of interest to
investigate whether the transition sequence found for circular cylinders is
also valid for other bluff bodies. Does the results obtained for the circular
cylinder wake describe all important three-dimensional instability modes
observed for nominally two-dimensional cylindrical bodies of different
geometries, i.e. is the wake transition scenario observed for a circular
cylinder effectively the generic scenario for all bluff bodies? Ryan et al.
[31] investigated the transition scenario to three-dimensional wake, i.e.
the behaviour and character of Mode A and Mode B instability. This was
done for an elongated cylinder (or plate) with an aerodynamic leading
edge and square trailing edge. The three-dimensional instability modes
were determined as a function of the chord to thickness ratio (aspect
ratio). The conclusions was that an increase in the aspect ratio alters the
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Figure 2.2: Strouhal number - Reynolds number dependency for a
circular cylinder. From Roshko [1] and Norberg [2].

preferred mode of instability. However, for very short bodies, Mode A is
the dominant one and it is expected that the transition scenario be similar
to that of a circular cylinder. For intermediate aspect ratio bodies, i.e.
for AR1 > 7.5, Mode B′ (with the same spatio-temporal symmetry of
Mode B for a circular cylinder but a much longer wavelength) becomes
the initial mode of instability in preference to Mode A, where the critical
Reynolds number is approximately Re = 450. For very long aspect ratio
bodies AR1 > 17.5, the outcome may result in Mode A not becoming
critical at all due to the development of Mode B.

Following Schewe [32] the boundary layer over the cylinder surface
remains laminar over the range 300 < Re < 3× 105, which is called the
subcritical flow regime. With a further increase in Reynolds number a
transition into turbulence occurs in the boundary layer itself where the
region of transition moves upstream over the cylinder surface towards the
stagnation point. Initially, in the region of 3.0 × 105 < Re < 3.5 × 105,
the boundary layer is turbulent at one side and laminar at the other side
causing asymmetric flow over the cylinder. This flow regime is called the
critical flow regime. The next Reynolds number regime is the so called
supercritical flow regime where 3.5 × 105 < Re < 1.5 × 106, at which
the boundary layer separation is turbulent on both sides of the cylinder,
however no yet complete. Finally, in the transcritical flow regime, Re >
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2.2. Elastically Mounted Circular Cylinders

4.5× 106, the boundary layer over the cylinder surface is fully turbulent
everywhere.

2.2 Elastically Mounted Circular Cylinders

In the previous sections the main features of the laminar flow past a
stationary bluff body, such as flat plate normal to free-stream and circular
cylinder, have been discussed. In many applications, though, the body
of consideration is not fixed but oscillates at a given frequency that may
interact with the vortex shedding process at the wake and thus alter
its structure. In this thesis, the transversal oscillations of an elastically
mounted circular cylinder forms principally the major concern among
vortex-induced vibrations systems, and indeed works as a prototype for;
forced structure oscillations; structures in two degrees of freedom; flexible
structures, to name a few.

2.2.1 Vortex Induced Vibrations

Vortex induced vibrations (VIV) are motions induced on bluff bodies
interacting with an external fluid flow, where these motions are produced
by certain periodical irregularities in the wake of the body. In contrast to
forced cylinder oscillations the frequency and amplitude of the cylinder
motion is not known a priori.

m, D

k

b

x

V

Figure 2.3: A schematics of the elastically mounted circular cylinder.

An elastically supported circular cylinder is regarded as the simplest
case in the general subject of bluff body-fluid structure interactions. The
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2. Physics of FSI

two-dimensional cylinder system, allowed to vibrate only transverse to
the free-stream is presented in Figure 2.3 and described by the follow-
ing structural parameters: mass m, damping b, spring constant k and
cylinder diameter D. The fluid parameters are the fluid density ρ, kine-
matic viscosity ν and free-stream velocity V∞. One of the important
parameters related to oscillating structures is the natural frequency of
the structure, defined as ωN =

√
(k/m).

Response Dynamics; Amplitude and Frequency of Motion for
a Single Cylinder

In the context of various VIV systems (as mentioned above) the re-
sponse of an elastically mounted cylinder is influenced by a set of non-
dimensional parameters [33]; m?, ζ, V ? = V∞/(ωND), A?, f? and Re,
which correspond to the non-dimensional mass, damping, (reduced) ve-
locity, amplitude of oscillation, frequency of oscillation and the Reynolds
number, respectively. One of the fundamental questions to be answered
for various VIV systems has been to understand; how the maximum re-
sponse amplitude depends on the system mass and damping? Generally,
various relationships have been presented in the literature depending on
the type of experiments conducted. Nevertheless the common approach
has been to find a unique correlation between the response (peak) ampli-
tude, A?max, and, the product of the system mass and damping, (m?ζ).
Among others, Vickery and Watkins [34], who considered an equation
of motion for flexible cantilevers, plotted the peak amplitudes versus a
‘stability parameter’, Ks, defined as

Stability parameter = Ks = π2(m?ζ). (2.3)

Furthermore, Scruton [35] used a parameter proportional to Ks for his
experiments on elastically mounted cylinders, which has been termed the
Scruton number [35]:

Scruton number = Sc =
π

2
(m?ζ). (2.4)

Skop and Griffin [36] compiled data from several different experiments to
predict response amplitudes whereby they were able to derive a slightly
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2.2. Elastically Mounted Circular Cylinders

different parameter from the response analysis. The combined response
parameter was subsequently termed SG as:

Skop-Griffin parameter = SG = 2π3St2(m?ζ). (2.5)

Peak amplitudes, evaluated from the curve fits in the ‘Griffin’ plots
under the limit of zero mass-damping from different physical experiments
(such as, elastically mounted rigid cylinders exposed to one- and two de-
grees of freedom, cantilevers and pivoted cylinders, and forced cylinder
oscillations) have shown that the largest attainable amplitudes lies be-
tween 0.8 and 1.6 according to Williamson and Govardhan [37]. Here,
they present an extension of the log-log Griffin plot for a variety of exper-
iments compiled by Skop and Balasubramanian [38] but, plotted with a
linear Y - axis. From the various experiments, a large scatter of the
data was observed and the conclusion was that it seemed unreasonable
to compile all the results into a single plot, with the hope that a single
(unique) curve of data may ensue. This idea was strengthened by Sarp-
kaya [39], who stated that the response of the motion is governed by m?

and ζ independently, and not just by the combined mass-damping (m?ζ).
Moreover, Zdravkovich [40] reports that a combined (m?ζ) parameter is
not legitimate for m? < 10 in marine and offshore engineering whereas
it is useful for wind engineering m? > 100. However, Williamson and
Govardhan [37] presented later only those data consisting of uniformly
similar set of experiments. Following the experimental work by Khalak
and Williamson [33], which involves the transversal oscillations of an elas-
tically mounted rigid cylinder, two distinct curves have been introduced
into the Griffin plot representing the peak amplitudes for both the upper
and the lower branches of the amplitude of the cylinder motion. The re-
sulting data from the diverse experimental arrangements appear to give
an approximate functional relationship between A?max and ((m? +CA)ζ)
over a wide range of parameters. Here, CA is the potential added mass
coefficient taking the values 1.0 according to the potential flow theory.

To better understand the physical significance of the mass and damp-
ing ratios, the response dynamics of the cylinder amplitude of oscillations
are (traditionally) plotted as a function of the reduced velocity, V ?. In
Figure 2.4, the contribution of each of these two parameters are schemat-
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Figure 2.4: Two distinct types of amplitude response are shown
schematically. High-(m?ζ) parameter results in only two branches (ini-
tial and lower) while low-(m?ζ) type of response exhibits three response
branches (initial, upper and lower). The range of V ? for synchronization
is controlled primarily by m? (when (m?ζ) is constant), whereas the peak
amplitudes are controlled principally by the product (m?ζ).

ically illustrated and the conclusions can be summarized as follows:

• the range of the synchronization, i.e. the range of V ? for which
high amplitude of oscillations are achieved, is primarily controlled
by mass ratio, m?, when (m?ζ) is constant.

• the peak amplitude of oscillations, on the other hand, are controlled
principally by the product (m?ζ).
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A study of Figure 2.4 puts a further the question; what modes of
response exist as a function of mass and damping? This question is of
vital interest in the ongoing research field of vortex-induced vibrations
and acts as a template in the understanding of the physics within bluff
bodies and VIV systems.

Khalak and Williamson [3] studied the amplitude and frequency re-
sponse of a freely vibrating cylinder in water for m? = 2.4 and compared
the results with those of Feng [4], who performed experiments in air
with m? = 248. As it can be seen from Figure 2.5, the character of the
amplitude response reveals other interesting VIV phenomena. For high
(m?ζ), as in Feng [4], there are two different branches of amplitude re-
sponse only, namely the ‘initial’ and ‘lower’ branch. In contrast to the
high-(m?ζ) experiment by Feng [4], the low-(m?ζ) type of response by
Khalak and Williamson [3] is characterized by three different branches
of response. In addition to the ‘initial’ and ‘lower’ branches, they also
find an ‘upper’ branch of response. The numerical simulations of Cesur
[5] show a similar trend as those of Feng, although with a wider syn-
chronization range, despite the low value of m?. This behaviour may be
related to the low Reynolds number used for the simulations, Re = 400.

Moreover, Khalak and Williamson [3] have also shown that the transi-
tion between the Initial⇔ Upper branches is hysteretic, while the Upper
⇔ Lower transition involves an intermittent switching.

The crucial engineering interest within bluff body dynamics exerted
to external fluid flow has been to identify a clear definition for the syn-
chronization or lock-in phenomena, explained briefly above. The classical
definition has been that the vortex shedding frequency, fs, of the vor-
tices and the (actual) oscillation frequency, f , of the cylinder remain
close to the natural frequency of the cylinder, fN , and thus the ratio
f? = f/fN ≈ 1. Whilst this interpretation has been true for high mass
ratios, it is not for low mass ratios, as still significant amplitude response
is evident despite the departure of the frequency ratio, f? = f/fN , from
unity. This behaviour of the frequency ratio can clearly be seen in Fig-
ure 2.5. For this reason, Govardhan and Williamson [37] choose to define
synchronization as the matching of the frequency of the periodic wake
vortex mode with the body oscillation frequency.
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Figure 2.5: Response amplitude (a) and frequency (b) for an elastically
mounted rigid cylinder. Symbols; �: m? = 2.4 and ζ = 0.0045 Khalak
and Williamson [3] experimental data, N: m? = 248 Feng [4] experimen-
tal data, •: m? = 2.7 Cesur [5] numerical simulations. From Khalak and
Williamson [3] with the addition of data from Cesur [5].

Elastically mounted cylinders vibrating at low mass ratios depict ad-
ditional intriguing response behaviour. Earlier, it was mentioned that the
vibrational response of an elastically mounted body may be determined
using the reduced velocity, V ?, which is related to the in vacuo natural
frequency, fvN . Vikestad et al. [41] report in their experimental study
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that at low mass ratios the in vacuo natural frequency is less relevant to
use. Instead, the reduced velocity is often based on the natural frequency
in still fluid, fwN , i.e. also accounting for the hydrodynamic mass as ob-
tained using potential theory. For a cylinder the hydrodynamic mass is
equal to the mass of the displaced fluid. Hence, since the cylinder also
has to accelerate a portion of the surrounding fluid it appears to have a
higher mass. The ratio between the two natural frequencies can therefore
be written as

fvN
fwN

=

√
m+ma

m
=

√
m? + π/2

m?
. (2.6)

However, it was shown by Vikestad et al. [41] that the hydrody-
namic mass of a vibrating cylinder is not a constant, but instead depends
strongly on the character of the vibrational motion. Vikestad et al. [41]
show explicitly in their study how the equation of motion for a circular
cylinder is reformulated to take into account for hydrodynamic mass and
also damping as the reduced velocity is varied.

Response Dynamics: Dual Cylinders and 2DOF-Motions

It is expected that the complexity of VIV should increase considerably
when two or more cylinders, elastically mounted, are arranged sufficiently
close to each other, such that their wakes may interfere, and they can as
a consequence vibrate as a coupled system.

Different interference effects between two cylinders can take place de-
pending on whether if the cylinders are placed in a tandem, staggered or
side by side configuration. Traditionally, focus has been made on tandem
and staggered configurations. Borazjani and Sotiropoulos [42] have nu-
merically investigated the VIV of two identical elastically mounted cylin-
ders in tandem arrangement in both one (transverse) and two (transverse
and streamwise) degree of freedom. The cylinders were placed L/D = 1.5
apart and the Reynolds number was Re = 200. They showed that the
spacing ratio, L/D, plays an important role in the response amplitude.
For the one degree of freedom (1DOF) system, it was shown that after
some critical reduced flow velocity, V ? ≥ 5, the vortex shedding mech-
anism (which is the primary mechanism for the vibrations) was able to
produce a vertical separation between the cylinders large enough to trig-
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ger a secondary mechanism, i.e. the gap-flow mechanism. They observed
that the criteria for the existence of the gap-flow and in turn high am-
plitudes was the appearance of a vertical separation of minimum one
(cylinder) diameter between the oscillating cylinders. Both peak ampli-
tudes and width of the synchronization range was enhanced when the
cylinder configuration was altered from an isolated single to a tandem
configuration. In particular, the addition of one more cylinder in the
fluid domain was the cause of increased amplitude of oscillations of the
rear cylinder.

The problem of an elastically mounted (single) cylinder vibrating
transverse to a fluid flow has been the traditional way of examining VIV.
A more practical problem is the body motion in two degrees of freedom
(2DOF) such as riser tubes or heat exchangers, where the oscillating
mass and the natural frequency is the same in the transverse and in-line
directions. In contrast to these, the experimental works performed in
the past with 2DOF-vibrations were based in principal on different val-
ues for the mass ratios and the natural frequencies in the transverse and
in-line directions. The conclusions from the work of Sarpkaya [43], for
example, was that bodies in 2DOF-motion do not lead to astonishing
changes in the resonant amplitudes as compared to bodies in transverse-
motion only. Among a few, one arrangement that ensures equal mass
and natural frequency in both degrees of freedom is the pendulum set-
up at Cornell university [44, 45, 46]. In these experiments, the Reynolds
numbers ranged from 1000 to 15000, and the natural frequency and the
oscillating mass in the two directions were typically fN = 0.4 Hz and
m? ranged from 2.0 - 25.0, respectively. The study at Cornell university
demonstrates that even at a range of low mass ratios (m? ≥ 6), the free-
dom to oscillate in-line (streamwise) with the flow affects the transverse
vibration very little. The same response branches, peak amplitudes, in-
duced forces and vortex wake modes were found for both transverse-only
and 2DOF-motion. However, a remarkable change was discovered in
the fluid-structure interaction when the mass ratios were reduced below
m? = 6. A new response branch with significant streamwise motion ap-
pears, in what they name the ‘super upper’ branch, yielding extremely
large transversal amplitudes, A?2DOF ≈ 1.5, which is in excess of their
typical transverse-only vibration (A?1DOF ∼ 1).
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Wake Vortex Dynamics: Modes of Vortex Formation

There has been some debate in the literature regarding the structure
of the vortices, i.e. the vortex formation modes, in the wake of vibrat-
ing cylinders that might be associated with different response branches.
Williamson and Roshko [47] showed from their flow visualizations at
high-(m?ζ) that the initial branch of the amplitude response is associ-
ated with a 2S mode indicating 2 single vortices shed per cycle, while the
lower branch represents a 2P mode, i.e. 2 pairs of vortices are being shed
per cycle. Also, Govardhan and Williamson [48] confirmed for low-(m?ζ),
that the wake structures in the initial and lower branches correspond to
the 2S and 2P vortex wake modes, respectively. In the upper branch,
on the other hand, the structure corresponds to the 2P mode, where the
second vortex of each pair is much weaker than the first one.

It is worth mentioning that many of the phenomena discovered for the
elastically mounted cylinder carries across to more complex structures,
including structures whose vibration amplitude varies along the span.
Flemming and Williamson [6] studied the case of a pivoted cylinder free
to move both streamwise and transversal to the flow. For cases with low
inertia, I?, they observed the 2S − 2P hybrid mode similar to what was
found for vibrating tapered cylinders by Techet et al. [49]. For the light-
est structures, however, a new vortex formation mode was found along
the span, the 2C mode. This mode comprises two co-rotating vortices
each half cycle and corresponds to much larger transversal amplitudes,
as well as enhanced streamwise vibrations. Moreover, the ‘super up-
per’ branch discovered by Jauvtis and Williamson [44, 45], as discussed
earlier, is associated with a 2T vortex mode comprising two triplet of
vortices in each half cycle, which also was found in the 2DOF-motion
of the cylinders having uniform amplitude. These sets of vortex wake
modes, 2S, 2P, 2C, 2T , which are known to cause free vibration, at mod-
erate Reynolds number, are shown in Figure 2.6.

In the section of Forced Cylinder Oscillations 2.2.2 the mode transi-
tions (as a function of the reduced velocity) for low-(m?ζ), in contrast
to one for high-(m?ζ) will be discussed in more detail.
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Figure 2.6: The set of vortex wake modes for a cylindrical structure.
The 2C mode is found for the vibration of a pivoted cylinder (Flemming
and Williamson [6]).

Reynolds number effect

So far, the characteristics of the amplitude and frequency response
dynamics of an elastically mounted cylinder has been discussed and cor-
relations for its associated wake vortex modes have been revealed. Many
of the experiments and simulations conducted by the mentioned authors
have drawn their conclusions based on high Reynolds number flows, typ-
ically in the range of Re = 103− 105. The corresponding vortex-induced
vibrations attained large transversal amplitude of oscillations, where val-
ues up to A? ≈ 1.5 have been detected. Khalak and Williamson [33] have
presented a table where they summarize peak amplitudes from various
experiments and simulations. From this table it can be observed that Di-
rect Numerical Simulations (DNS) of vortex-induced vibrations all yield
a maximum peak amplitude around A? = 0.6− 0.7 for Re = 100− 200,
which is significantly lower than the peak amplitudes found in experi-
ments. Moreover, Williamson and Govardhan [37] compare the (so far
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only) low-Reynolds number experiments by Anagnostopoulos and Bear-
man [50], over a range Re = 90− 150, with 2D simulations in the range
Re = 100−200 from other authors [51, 52, 53]. The conclusions are that
no upper branch is seen when the peak amplitude, A?, is plotted against
(V ?/f?)St, whereby the amplitude response is solely determined by the
initial and lower branches. Correspondingly, the 2P mode does not ap-
pear and instead the 2S and P + S vortex formation modes constitute
the wake structures.

2.2.2 Forced Cylinder Oscillations

The case of an elastically-mounted, rigid and freely-oscillating cylin-
der has served as a paradigm in the understanding of vortex-induced vi-
bration problems in general. The vortex-induced motion and the wake of
the (freely) oscillating body are intrinsically interdependent. This leads
to a complicated relationship between these two factors which in turn
becomes quite hard to determine. An approach to further understanding
the fluid-structure interaction (between the oscillating rigid body and
the wake) is to control the motion of the body, allowing the investigation
to focus on the response of the wake to a pre-defined motion. A signifi-
cant question arises when utilizing controlled oscillations, namely; if the
forced motion captures the ‘essential features’ of the flow-induced mo-
tion, i.e. can the results of the forced oscillations be used to predict the
motion of an elastically mounted rigid cylinder? This sought relationship
between the forced and freely vibrating cases, especially the likelihood of
the forced oscillation results to provide insight into the more complicated
freely vibrating case, has been an important research area during the last
decade.

It was shown in the work by Khalak and Williamson [33] for free
vibrations (Figure 2.5) that strong flow-induced vibration occurs over a
range of normalized free-stream velocities, V ? (and ωN = 2πfN ), typ-
ically in the lock-in region, where f? = f/fN ∼ 1. As V ? is varied
the response of the cylinder, in particular the amplitude of oscillation,
A? = A/D, varies significantly. The forced oscillations involve a differ-
ent, but analogous, set of parameters. The forced cylinder oscillations
are typically at a constant A? while the frequency of forced oscillation,
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fe, is varied about the point where fe/fs ∼ 1. Using the relationships
stated above for the normalized flow parameters one can find a relation-
ship between the independent variables for forced and free vibrations by
assuming that the frequency of the forced oscillations, fe, is equivalent to
the oscillation frequency of the free motion, f . As a matter of fact, this
can be shown via the relationship between V ? and f? = f/fN multiplied
with the Strouhal number, St, yielding (V ?/f?)St = fs/f . Thus, V ? will
vary inversely with fe/fs.

The transverse motion of a cylinder undergoing vortex-induced vibra-
tions is generally sinusoidal and when the cylinder is forced to oscillate,
this motion is approximated by a pure sinusoid. Hence, the approximated
transverse force and the motion is often represented by

y(t) = A sin(2πfet), (2.7)

F (t) = F sin(ωt+ θ), (2.8)

where A is the amplitude of oscillation, fe is the frequency of oscillation,
F is the instantaneous force and θ is the phase angle between the fluid
force and the body displacement.

Carberry and Sheridan [54] have performed experiments on a circular
cylinder forced to oscillate transverse to the free-stream at Re = 2300.
The amplitude was held constant at A? = 0.5, while the frequency was
varied over the range 0.5 ≤ fe/fs ≤ 1.4. They discovered that the
flow properties and the interaction between the natural instability of the
wake and the forced oscillations depend strongly on the relation fe/fs.
As the frequency ratio fe/fs was increased they were able to show an
abrupt increase in CL, which was approximately out-of-phase with the
cylinder displacement, to a large amplitude in-phase lift force coefficient.
Simultaneously, there was a sharp jump in the phase angle which shifted
approximately 180◦. Consequently, the sharp change in CL was referred
to as a transition from a low-frequency state to a high-frequency state
of the lift force and the transitional frequency was measured to be in
between 0.806 ≤ fe/fs ≤ 0.869. Moreover, Carberry and Sheridan [54]
also found a change of the vortex shedding pattern from 2P to 2S in
the vorticity field when going from the low-frequency (fe/fs ≈ 0.806) to
high-frequency (fe/fs ≈ 0.869) state. They associated this change to be
related to the shift in the lift phase.
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The use of time-averaged properties of the total lift force (2.8) and
the structure of the near wake has been the traditional way of character-
izing the wake states. An other way of describing the wake states is by
using a combination of instantaneous values of θlift and θvortex and the
corresponding wake structures. Essentially, the total lift force is made
up of two components which can be treated separately: the vortex force
which is due to changes in the position and strength of vortex structures
in the wake, and the apparent mass force generated by the acceleration
of fluid as the body accelerates, as discussed by Leonard and Roshko
[55]. This yields the total force in terms of the lift force coefficients as

CL(t) = CLvortex(t) + CLam(t), (2.9)

When the wake is ‘locked-on’ to the motion of the cylinder, the total and
vortex lift forces can be approximated by sinusoidal functions, introduced
by Williamson and Govardhan [48] as follows:

CL(t) ≈ CL sin(2πfet+ θL) (2.10)

CLvortex(t) ≈ CLvortex sin(2πfet+ θLvortex). (2.11)

Thus, CL(t) and CLvortex(t) are the amplitude of the total and vortex
lift force coefficients respectively, and θL and θLvortex are the phase with
respect to the displacement of the cylinder.

Carberry et al. [56] performed controlled oscillation of a cylinder
transverse to the free-stream under the same experimental conditions as
Carberry and Sheridan [54]. They were able to reveal a new wake state
by instantaneous measurements of the total and vortex lift phases. The
new state, named ‘intermediate state’, was found for A? = 0.5 (and also
for A? = 0.6) and fe/fs = 0.84. It was shown that the development of
the vorticity patterns for the intermediate state wake are different from
those of both the low- and high-frequency wakes. However, the mode of
the vortex shedding for the intermediate state was described as 2S, where
its’ properties were found to be remarkably similar to the properties of
the upper response branch of an elastically mounted cylinder described
by Govardhan and Williamson [48].

In essence, Carberry et al. [57] have compared the wake states and
response branches for forced and freely oscillating cylinders. Their ob-
jectives was to investigate whether the results of the forced oscillations
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2. Physics of FSI

can be used to to predict the motion of an elastically mounted body. The
results were presented from two different sets of experiments , where it
should be mentioned that the two sets of experiments were not specifi-
cally designed for the purpose of their objectives. For forced oscillations,
the frequency was varied between 0.74 ≤ fe/fs ≤ 1.27 while the experi-
ments were conducted at a number of oscillation amplitudes: A? = 0.25,
0.4, 0.5 and 0.6. The Reynolds numbers were varied between Re = 2300
to Re = 9100 for forced oscillations while for the elastically-mounted
case Re varied between 3000 and 3700. The consideration of the total
lift force as having two components, namely; the vortex force and the
apparent mass force, allowed Carberry et al. [57] to reveal the interme-
diate state (as Carberry et al. [56]) and compare the variation of the
total and vortex lift phases for the forced and freely oscillating cylinders.
The (schematically) behaviour of the total and vortex phases in conjunc-
tion with the behaviour of the amplitude response for freely vibrating
cylinder is shown in Figure 2.7(a-c) and can be summarized as follows:

• Low-Frequency State ⇔ Lower Branch: The mean vorticity fields
for the low-frequency state and the lower branch correspond to
shedding modes that at these oscillation amplitudes are 2P .

• Intermediate State⇔ Upper Branch: The mean vorticity fields for
the intermediate and upper branch are 2S and 2P , respectively.

• High-Frequency State⇔ Initial Branch: The mode of vortex shed-
ding for the high-frequency and initial branch wakes is 2S.

In both forced and freely oscillating cylinders the jump in θLvortex corre-
sponds to the jump in the phase of vortex shedding. This is physically
significant, as the vortex force is representative of the force due to the
movement of vortex structures in the wake. This can be confirmed from
Figure 2.7 (c) for freely vibrating cylinders, where the initial branch to
upper branch transition is associated with a jump in θLvortex and a change
of vortex shedding mode takes place. The upper branch to lower branch
transition, on the other hand, involves a jump in θLtotal

and no change of
vortex shedding mode occurs. The behaviour for forced cylinder oscilla-
tion differs slightly. The high-frequency to intermediate state transition
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Figure 2.7: Schematic diagrams illustrating the behaviour of the total
and vortex phases for (a) the free response branches at low-m?ζ values
and (b) the corresponding forced wake states at a high A?, whereas
(c) shows the amplitude response of the low-(m?ζ) type showing the
principal branches, and correspondingly the jump phenomena.
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is comprised of a jump in θLvortex , but no change of vortex shedding mode
occurs, the wake is of a 2S character in both cases, in contrast to the
freely vibrating cylinder. An analogous result is achieved for the inter-
mediate to low-frequency state transition as can be seen in Figure 2.7
(a-b).

The extensive measurements of the fluid forces on a cylinder that is
controlled to oscillate transverse to a free-stream by Morse and Williamson
[58, 59] has recasted some additional findings for the fluid-structure in-
teraction phenomena discussed above. They performed measurements
of fluid forces on a cylinder that is controlled to oscillate transverse to
a free-stream at Re = 4000. These measurements were used to create
very high resolution contour plots of the magnitude of fluid forcing, and
its phase relative to the cylinder displacement. In their investigation
the amplitude (A?) is varied from 0.02 to 1.6. They were able to find
clear discontinuities in the force contours, and hence were able to iden-
tify boundaries separating different fluid forcing regimes. These regimes
appeared remarkably similar to boundaries separating different vortex
shedding modes in the regime map of Williamson and Roshko [47]. One
of the most striking findings of their study was an overlap region of the
vortex shedding mode, lying between the 2P and 2S modes. They named
this mode as ‘2P0’ mode which was a variation of the 2P mode, although
there were two pairs of vortices shed per cycle, the secondary vortex was
much weaker and decayed rapidly as the vortex pair moved downstream
in the vortex wake. Further, the character of the 2P0 mode was stated
to be equivalent to the ‘intermediate wake state’ identified by Carberry
et al. [56] and the ‘2Pupper’ mode found by Williamson and Govardhan
[48]. Among else, Morse and Williamson [58, 59] visualize from their vor-
ticity field that it is quite easy to mistake the 2P0 mode for a 2S mode
depending on how well one has resolved the small secondary vortex.

Finally, at the introduction of this section an important question was
underlined, namely; to what extent can measurements from controlled
vibration be applied to the case of a freely vibrating, elastically mounted
cylinder? The classical understanding of the question postulated has
been, under the assumption that such motion is approximately sinu-
soidal, that the fluid excitation must be positive (0◦ < [θL and θLvortex ]
< 180◦), which is arisen from the property that the excitation energy,
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CE , is a function of the phase angle, i.e. CE ∝ sin(θ). Nevertheless,
Morse and Williamson [58, 59] answered this question by examining the
energy transfer from the fluid to the body motion. This was done by in-
troducing the concept of an ‘energy portrait’, which is a plot of the energy
transfer into the body motion and the energy dissipated by damping, as
a function of normalized amplitude. They were able to define the com-
plete regime in amplitude-wavelength plane in which free vibration may
exist which requires not only positive excitation but also stability of the
equilibrium solutions. It is, however, interesting to pay attention to the
results of Carberry et al. [57], which compose forces and wake modes
found for controlled vibration and free vibration oscillations. Carberry
et al. [57] were able to find similar wake modes and jumps in the force
and its phase, however, they also measured regimes of negative excitation
from controlled vibration, suggesting that free vibration should not oc-
cur under the conditions at which free vibration has readily found. Most
importantly, they concluded that sinusoidal controlled motion does not
simulate all the key components of the flow-induced motion. This seems
reasonable since the results were available at the time from different fa-
cilities. However, Morse and Williamson [60] made direct comparison
between free and forced vibrations and were able to show that if the ex-
perimental conditions are matched exactly, controlled vibration can yield
fluid forces which are in very close agreement with the results from free
vibration. The key point in these kind of studies is a careful matching
of conditions in order to be able to predict free vibration response with
forced cylinder oscillations.

2.3 FSI on Flexible Cantilever

The flexible cantilever has received only little attention in the litera-
ture up till now. This configuration is, though, one of the most impor-
tant examples of the general Vortex-Induced Vibrations (VIV) problems
in fluid mechanics and yet it is still not been fully understood. One of the
main questions to be answered is (as was mentioned in the beginning of
this chapter) to be able to understand to what extent the rigid cylinder
VIV behaviour is a valid hypothesis for predicting e.g. the response of
a flexible cantilever structure with varying amplitude of deflection along
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the span?

Studies concerning flexible cantilever cylinders have been tackled by
for instance Pesce and Fujarra [7]. In their experimental study a clamped,
lightly damped and long, flexible, circular cylinder was exposed to vortex-
induced vibrations at Reynolds numbers varying from 6×103 to 4×104.
They were able to detect 2 resonance branches, in accordance with ex-
periments performed with rigid cylinders elastically mounted in linearly
supports. In addition, they also observed a jump phenomenon within
the synchronization region (8.3 ≤ V ? ≤ 10) indicating that the lower
and upper branches share the response amplitudes within this region.
Moreover, from the experiments the maximum (transversal) modal am-
plitude occurred for A?modal ≈ 1.27.

A one-to-one comparison between the response amplitude for a flexi-
ble cantilever and an elastically mounted rigid cylinder was conducted by
Fujarra et al. [10]. The cantilever data originated from the experimental
study of Pesce and Fujarra [61], where same flexibility in the streamwise
and transverse directions were employed whereas the rigid cylinder data
was from Khalak and Williamson [8]. These experimental results are
shown in Figure 2.8 where also the low Reynolds number (Re = 400)
simulation by Revstedt [9] has been added. The response amplitudes
reveal in average qualitatively similar behaviour for the flexible and rigid
cylinders while it is hard to characterize the corresponding response for
the cantilever beam with small aspect (i.e. length to diameter) ratio,
(AR2 = 10), due to lack of data.

Considering the response amplitudes of the two cylinders more care-
ful, although the main difference seems to be in the larger maximum
amplitude of oscillations for the cantilever, it is observed that the re-
sponse of the cantilever exhibits only two branches, i.e. the initial and
the lower branches, compared to the typical three-branch of response at
low mass ratios for rigid cylinders. As a matter of fact, this happens to
be true despite the fact that the cantilever is constructed in such a way
that the mass (m?) and damping (ζ) of the cantilever are similar to the
rigid cylinder’s mass-damping parameter (m?ζ = 0.016).

Besides comparing a flexible cantilever with same flexibility in the
streamwise and transverse directions with an elastically mounted rigid
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Figure 2.8: A comparison between amplitude response, A?, for a flexible
cantilever and an elastically mounted rigid cylinder, as a function of
normalized velocity, V?. Symbols; ◦: Pesce and Fujara [7] data, �:
Khalak and Williamson [8] data, ?: Revstedt [9] data. From Fujarra et
al. [10] and Revstedt [9].

cylinder Fujarra et al. [10] also studied the dynamic response of a flexible
cantilever with enhanced stiffness and natural frequency in the stream-
wise direction and thereby restricting the vibrations of the body to prin-
cipally transverse motion. It was found that the transverse amplitude
response is similar to the vibrations of an elastically mounted rigid cylin-
der. Indeed, as the reduced velocity is increased a clear initial branch
is reached extending to high reduced velocities with maximum ampli-
tude of around 1D at V ? ≈ 6 and thereafter a jump to lower branch
occurs. Furthermore, an interesting large-amplitude response mode was
found outside the principal synchronization region at reduced velocities
V ? ≈ 12. This effect, otherwise not seen for rigid cylinder was attributed
to the stimulation of the streamwise oscillations which now is able to
interact with the transverse oscillations. Indeed, the higher natural fre-
quency in the streamwise direction shifts the regime of coupling to higher
reduced velocities and the authors believe that this vibration mode may
be related to a further vibration mode at high reduced velocities.

Considering the wake vortex dynamics for a flexible cantilever Ya-
mamoto et al. [62] report recurrent findings of the formation of wake
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modes. From their wake visualizations a hybrid mode of vortex shedding
was found along the span of the cantilever. Following the terminology of
Williamson and Roshko [47] a 2S mode was observed in regions of low am-
plitudes, typically at sections in the vicinity of the fix-end and extending
towards the tip of the cantilever. For a given moderate reduced velocity
(within the synchronization region) the 2S mode is transitioned into a 2P
mode of vortex formation characterizing large-amplitude of oscillations.
A further increase in the reduced velocity triggers the transition process
to occur at an earlier stage, i.e. closer to the fix-end, leading to greater
part of the cantilever being exposed to large amplitudes of vibrations.
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CHAPTER 3

Fluid Motion

In the previous chapter a comprehensive description of the Fluid-
Structure Interaction phenomenon was outlined from various experimen-
tal studies. In addition, some results were delivered from sporadic but
relevant simulations. In these simulations a mathematical model is used
to describe the motion of the fluids and the object from a physical point
of view. In this chapter, the modelling and the set of equations governing
the physics of fluid flows are described.

3.1 Governing Equations for Fluid Dynamics

Historically, there have been two different approaches taken to derive
the equations of fluid dynamics: the phenomenological approach and the
kinetic theory approach. In the phenomenological approach relations
between the stress and rate of strain is postulated and the fluid dynamics
equations are developed from the universal laws of conservation such as
conservation of mass, momentum and energy, which has been thoroughly
treated by Schlichting [63]. Hirschfelder et al. [64] describes, on the
other hand, in detail the kinetic theory approach, in which the fluid
dynamic equations are obtained with the transport coefficients defined in
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3. Fluid Motion

terms of certain integral relations, which involve the dynamics of colliding
particles.

In this thesis, the investigation of fluid dynamics is based on the
phenomenological approach in correlation with the concept of Reynolds
transport theorem. This concept requires a conversion of the mathemat-
ical formulations to be valid from a system analysis to a control volume
analysis.

3.1.1 Fixed Mesh

Applying the Reynolds transport theorem to the balance laws of me-
chanics valid for a system and using the Gauss theorem assuming an
infinitesimal control volume yields the conservation equations for a fluid
flow. Presented on a form of Newtonian and incompressible fluid the
conservation equations of mass (3.1) and momentum (also called Navier-
Stokes) equations (3.2) take the following expressions in the Eulerian
framework:

∇ · v = 0, (3.1)

ρf
Dv

Dt
= ∇ · σ + bf , (3.2)

where, ρf , is the constant fluid density. Here, the divergence of the
Cauchy stress tensor, σ, and the external, velocity independent body
forces, bf , balance the material derivative consisting of the partial time
derivative of the fluid velocity, v, and the convection term according to

Dv

Dt
=
∂v

∂t
+ (v · ∇)v. (3.3)

Application of the constitutive relationship provides the necessary closure
of the governing equations. This is done by splitting the Cauchy stress
tensor, σ, into pressure, p, and a deviatoric viscous stress tensor, τ f ,

σ = −pI + τ f . (3.4)

For Newtonian fluids the viscous stress, τ f , is a product of the dynamic
viscosity, µ, and the strain-rate tensor, ε, according to

τ f = 2µε = µ
(
∇vf + (∇vf )T

)
, (3.5)
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which in the end gives a linear relationship between the Cauchy stress
tensor, σ, and strain-rate tensor, ε. It should be noted that the external
forces, bf , are assumed to be insignificant and thus are neglected.

The conservation equations for mass and momentum presented in
(3.1) and (3.2), respectively, have been formulated for the simulations
of elastically mounted circular cylinders where the surface of the rigid
body is represented using Immersed Boundary (IB) method and thus the
simulations are conducted on a Cartesian fixed grid. However, for bodies
deforming, as in the case of flexible cantilever beam, the fluid forces
acting on the structure leads to the deformation of the structure. For
this reason, the computational domain is no longer fixed but changes in
time, which has to be taken into account. The approach for this obstacle
is described in the following subsection 3.1.2.

3.1.2 Deforming Mesh

Arbitrary Lagrangian-Eulerian (ALE) is one of the most popular nu-
merical techniques that is able to treat moving surfaces when objects
are deformed. It is a concept that relies on moving-mesh utilities and
is intended to cope with significantly distorted meshes when large defor-
mations occur at the surface of an object.

The ALE equation of motion can be derived from the Eulerian formu-
lation of the Navier-Stokes equations (3.2) by introducing a deforming
reference system that follows the motion of respective boundaries. The
re-formulated ALE formulation of the mass and momentum equations,
for a time varying domain can be formulated as:

∇ · (v − vm) = 0, (3.6)

ρf
∂v

∂t
+ ρf [(v − vm) · ∇]v = ∇ · σ + bf , (3.7)

where, vm, is the mesh velocity (at the deforming grid points) required
to deform the fluid mesh. It should be noted that for an Eulerian for-
mulation, vm = 0, and for a Lagrangian formulation, vm = v. In the
context of moving mesh, the mass conservation equation becomes inde-
pendent of the mesh velocity, vm, and thus, doesn’t introduce additional
terms. The momentum equation, on the other hand, adds additional
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constraint in the ALE approach. This leads to the system of governing
equations (3.6) and (3.7) being not closed and hence the unknown mesh
velocity, vm, has to be determined for. To compute this mesh velocity
the so-called geometric conservation law (GCL) is used [65], which may
be stated as “the change in volume (area) of each control volume between
time tn and tn+1 must equal the volume (area) swept by the cell bound-
ary during 4t = tn+1 − tn”. In its differential form the GCL condition
reads as

∂V e

∂t
+∇ · vm = 0, (3.8)

where, Ve, is the volume of a control element which assures that within
a change of a control element no space is lost.

Fluid Mesh Motion

Nominally, fluid-structure interaction problems are considered to be
a two-field problem, which constitutes the solution of the flow and the
solid equations. For deformable objects, though, the mesh motion is
indeed considered as the third-field since its solution is non-trivial. The
main objective of the mesh motion is to enable the structure to deform
in response to the fluid stresses by maintaining the mesh quality close
to the fluid-structure interface. Interface-tracking methods [66] are one
approach that tracks the interface between the flow and the structure as
the structure deforms. The mesh motion, in this thesis, is based on an
Laplacian-approach developed by Jasak and Tukovic [67]. Shortly, the
mesh elements are moved according to the diffusive Laplace equation as

∇ · (χ∇vm) , (3.9)

where, χ, is the diffusion coefficient, equal to one, and is inversely pro-
portional to the distance of the interface in square.

3.2 Numerical Methods and their Discretizations

The governing mass (3.1) and Navier-Stokes equations (3.2) form the
mathematical model for the motion of fluids, as was discussed recently.
They constitute a set of non-linear Partial Differential Equations (PDEs)
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and can provide an analytical solution for the unknown parameters (ve-
locity and pressure) only for very few simplified cases such as 2D potential
flows. For time-dependent and flows with complex behaviour these PDEs
are solved numerically in the context of Computational Fluid Dynamics
(CFD). The unknown parameters are generally solved on a discrete set
of points in space which comprise a mesh. Also, the time variable is dis-
cretized. Various discretization schemes may be used for this purpose,
where the most common used schemes are Finite Differences (FD), Finite
Elements (FE) and Finite Volumes (FV).

In this thesis, the simulations of the elastically mounted rigid circu-
lar cylinder, where an IB method represents the surface of the moving
object, are conducted using the FD approach. An in-house code was
used for this area. The simulations of the fluid dynamics for the flexi-
ble cantilever, on the other hand, are conducted using the FV approach
at the price of lower accuracy when compared to finite differences. The
OpenFOAM software package, which is based on C++ programming lan-
guage, was chosen as the CFD tool box. Moreover, the solution of the
unknown (displacements) for the flexible cantilever are calculated using
the FE approach and is, as the fluid counterpart, based on C++ lan-
guage as well. OOFEM is the name of the software package that is used
to solve the deformations, which is a finite element code with object ori-
ented architecture. Furthermore, it is as OpenFOAM, an Open Source
code with libraries including mechanical, transport and fluid mechanics
solvers.

A side-note; To distinguish the two types of simulations used in this
thesis the solvers used for the fluid-structure interaction in the simula-
tions of the elastically mounted rigid circular cylinder and flexible can-
tilever exposed to cross-flow will hereafter be denoted as FSI-solver1 and
FSI-solver2, respectively.

3.2.1 Finite Differences and Staggered Grid Formulation

For the discretization of the fluid part of the FSI-solver1 a Finite Dif-
ference scheme has been used to the set of governing equations (3.1,3.2)
which take the following non-dimensional forms:

∇ · (v?) = 0, (3.10)
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∂v?

∂t?
+ (v? · ∇)v? = −∇p? +

1

Re

(
∇2v?

)
+ Φ, (3.11)

where Φ are momentum source terms, which will be explained further in
Chapter 6. For the non-dimensionalization procedure, see PAPER4.

The finite difference approximation to the Navier-Stokes equations
(3.11), defined in the Cartesian frame work, leads to a discrete set of
algebraic equations, which at position i and time n can be written as

T p(φ) + vni Cq(φ) = −Qw(φ) + αDr(φ), (3.12)

where T , C, Q and D are difference operators for the temporal, convec-
tive, pressure and diffusive terms, respectively, and the superscripts p, q,
w and r stand for the order of accuracy in relation to the mesh spacing.

For solving the governing equations of fluid mechanics numerically,
the continuous derivatives of continuity- and the momentum equations
are discretized on a fixed Cartesian staggered grid. It is a mesh with
equally spaced grid points, i.e. 4x = xi+1 − xi = 4y = yi+1 − yi =
h. Such a grid is characterized by a structured mesh and composed of
hexahedral cells (in 3D), where the dependent velocity components are
computed on the cell faces and pressure is computed at the center of the
control volume, as shown in Figure 3.1. The main advantage of using
a staggered grid, apart from its high accuracy capability, is that odd-
even decoupling between the pressure and the velocity, which leads to
checkerboard oscillations, can be avoided. Nevertheless, a disadvantage
with staggered grids is that it might be difficult to represent complex
boundaries accurately.

Spatial discretization

The spatial discretization is performed by finite differences using local
Taylor-series expansion of the derivatives in (3.10) and (3.11). Using a
second order central difference scheme to discretize the convective terms
in the momentum equations may under certain conditions lead to nu-
merical instabilities. These instabilities can be avoided if the convective
terms are instead discretized in such a way that they are discretized using
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Figure 3.1: Two-dimensional staggered finite-difference grid.

a first order upwind scheme,(
v
∂φ

∂x

)
i

≈ viC1(φ) = vi
φi − φi−1

h
+ T.E., (3.13)

T.E. = −1

2
|v |h∂

2v

∂x2
+O

(
h2
)
. (3.14)

where the second derivative in the leading term of the truncation error
(T.E.) implies numerical dissipation and hence numerical stability.

First order accuracy is not clearly adequate from an accuracy point
of view and therefore higher order discretization is required. A third
order upwind scheme proposed by Rai and Moin [68] is applied to the
convective term(

v
∂φ

∂x

)
i

≈ viC3(φ) = vi
(φi−2 − 8 (φi−1 − φi+1)− φi+2)

12h

+ | vi |
(φi+2 − 4 (φi−2 + φi−1 + φi+1) + 6φi)

12h
+O

(
h3
)
,

(3.15)

where the leading term of the truncation error (− 1
12 |v |h

3 ∂4u
∂x4

) includes
the fourth derivative, and is hence dissipative.

The diffusive and the pressure terms, D4(φ) and Q4(φ), are dis-
cretized using a standard fourth order central scheme.
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Defect correction

A direct application of the higher order discretization schemes may
lead to a less robust solver with considerably slower convergence rate.
Instead, Fuchs [69] introduced a so-called “single-step” defect correction
in order to combine numerical stability and efficiency of the lower-order
schemes while maintaining higher order accuracy. The equations are
solved using first and second order schemes, however, with a RHS ac-
cording to (3.17)

T p(φ)ni + vni C1(φ)ni − αD2(φ)ni = Eφ. (3.16)

Here Eφ is the defect correction term which is defined as the difference
between the higher and the lower order discrete approximations of the
previous time step

E(φ) = vn−1
i

(
C1(φ)n−1

i − C3(φ)n−1
i

)
−α

(
D2(φ)n−1

i +D4(φ)n−1
i

)
. (3.17)

The iteration process is continued until |(φ)ni − (φ)n−1
i | < δ, (where δ is

a prescribed small number) at which time the low order terms almost
cancel. Also, note that the higher order terms can be set to any order of
accuracy.

Temporal discretization

The computational code used in this thesis utilizes a three level sec-
ond order implicit scheme for the discretization of the temporal deriva-
tive, T 2(φ); (

∂φ

∂t

)n+1

≈ 3φn+1 − 4φn + φn−1

24t
+O

(
4t2

)
. (3.18)

Fluid Solver

For incompressible flows the solution of the system of governing equa-
tions require an explicit coupling between the pressure and velocity in
the otherwise unbalanced equations. This is done by solving the classical
Poisson equation, where the Laplacian (∇2p) of the pressure is explicitly
expressed in terms of the velocity.
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The solution procedure of the system of equations is based on the
SIMPLE algorithm from Patankar [70], which is a segregated approach
for the evaluation of the approximate relation between the necessary (pre-
dictions and) corrections for pressure and velocity. It is necessary in the
sense that momentum- and the continuity balance need to be satisfied due
to the segregated approach. In conjunction with the SIMPLE algorithm
a multi-grid method is used that employs the Gauss-Seidel relaxation
technique iteratively. The overall purpose of the multi-grid approach is
to accelerate the solver, where the Gauss-Seidel scheme smooths the ap-
proximations in the sense that local high-frequency errors in the solution
is reduced. Subsequently, the low-frequency errors are reduced at a rate
inversely to the number of cells [71].

3.2.2 Finite Volumes and Collocated Grid Formulation

The computational domain of the fluid part in FSI-solver2 utilizes the
Finite Volume method to formulate the solution domain, (3.6) and (3.7),
in control volumes. Here, the solution is sought at points/nodes posi-
tioned in the centre of these volumes. An unstructured mesh consisting
of tetrahedral elements have been used for this purpose, although general
polyhedral shapes are available for the description of control volumes in
OpenFOAM. Moreover, the grid is of collocated type, i.e. all dependent
variables share the same control volumes [72]. Furthermore, the solution
equations are re-formulated for a temporally varying domain, i.e. control
volumes with time-dependent volumes V(t) and surfaces S(t).

The FV method discretizes an integral form of the governing equa-
tions leading to conserved properties of the quantities in the mass and
momentum equations, (3.6) and (3.7), respectively. The corresponding
discretized mass and momentum equations take the following form

∑
f

(v · dA)n+1
f = 0, (3.19)

39



3. Fluid Motion

m∑
i=0

(αi(v)n+i
p +

βi4t
Vp

∑
f

[(((vf − vm) · dAf )vf )−

(νeff )f (∇v)f ]n+i) = 4t
m∑
i=0

(βi(−(∇p)n+i
p )),

(3.20)

after Gauss theorem together with a multi-step time-integration method
being used [73]. The reader is referred to PAPER1 for more detailed
information.

Spatial Discretization

The Navier-Stokes equations in (3.7) are of second order as the diffu-
sion term includes the second derivative of a generic variable, say φ = v.
To achieve a satisfactory numerical accuracy the order of the discretiza-
tion method needs to be equal to or higher than the order of the equation
that is being discretized. In (3.20), a Gaussian integration scheme of 2nd
order was used for the discretization of the convective term. However,
the accuracy of the discretization method depends on the assumed vari-
ation of the function φ = φ(x, t) in space and time around a point P
[72]. In order to obtain at least a second-order accurate method, a linear
variation must be fulfilled in both space and time. This is understood
if the Taylor series expansion in space of a function around a point x is
considered:

φ(x) = φp + (x− xp). (∇φ)p + T.E., (3.21)

where T.E. = 1
2(x − xp)

2 : (∇∇φ)p and the operator “: ” is the inner
product of two 2nd rank tensors, creating a scalar. Clearly, the trunca-
tion error (T.E.) shows that function φ(x) is 2nd order-accurate in space.
It is assumed that the same holds in time.

The discrete set of the convective term in (3.20), require the variable
φ to be evaluated in the center of a (2D) face which is shared between
two (3D) volume cells based on a three-dimensional control volume. This
interpolation procedure can be done, among else, linearly as was men-
tioned above. Indeed, OpenFOAM provides a variety of interpolation
routines, e.g. upwinded convection schemes, TDV schemes and NDV
schemes, where each of these contain further subcategories.
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3.2. Numerical Methods and their Discretizations

Figure 3.2 shows the linear, also called Central Differencing (CD),
scheme applied between two cells with centres P and N that share the
face f. The corresponding interpolation obeys as [72]

Figure 3.2: Face Interpolation scheme.

φf = fxφp + (1− fx)φN , (3.22)

where fx = fN/PN and is defined as the ratio between the two dis-
tances, fN and PN . It is known that second order accuracy schemes
can cause non-physical oscillations. An alternative interpolation scheme
that might be the Upwind Scheme (UD),

φf =

{
φp, if F ≥ 0 ,

φN , if F < 0 ,
(3.23)

where F represents the mass flux through the face. Although this scheme
ensures for boundedness the face values of φf are obtained with only first
order accuracy.

The Blended Differencing scheme (BD) offers a possibility to pre-
serve both boundedness (UD scheme) and accuracy (CD scheme) of the
solution via a blending factor, γ:

φf = (1− γ)φfUD
+ γφfCD

. (3.24)

It can clearly be seen that depending on the value of γ, 0 ≤ γ ≤ 1, a
diffusive (UD) scheme, γ = 0 or a dispersive (CD) scheme, γ = 1, is
obtained. In this thesis, γ equal to 0.3 has been used throughout the
investigation in all papers.
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3. Fluid Motion

The diffusive term, (∇φ)f , is decomposed into orthogonal and non-
orthogonal parts to minimize the non-orthogonality error. Central dif-
ference approximations are applied to the orthogonal part while face
interpolation of the gradients of the dependent variables is used for the
non-orthogonal parts.

Temporal Discretization

The temporal terms are discretized using the implicit 2nd order (im-
plicit Backward) scheme, which in a discretized form can be written as(

∂φ

∂t

)n+1

=
3φn+1 − 4φn + φn−1

24t
, (3.25)

where the indices n+ 1, n and n− 1 correspond to time levels t+4t, t
and t−4t, respectively.

Fluid Solver

The solution procedure of the discretized set of governing equations
are solved sequentially. Moreover, the required pressure-velocity coupling
is done using the PISO algorithm in FSI-solver2 [74], whereas a PIMPLE
algorithm [74], which is a merged PISO-SIMPLE method, has been used
in the CFD simulations of a stiff cantilever beam.
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CHAPTER 4

Turbulent Flows

4.1 Phenomenological Description

Flows occurring in industrial facilities, and also in nature, are mostly
of turbulent character. In general terms, turbulence, which is a property
of the flow and not the fluid, occurs beyond a certain threshold when the
viscous forces are no longer able to damp out the flow instabilities caused
by disturbances. Depending on the flow conditions, this threshold be-
comes case-specific and varies for e.g canonical pipe flows and flows past
rigid objects with various shapes. It can be observed that beyond this
critical threshold, which is determined by the Reynolds number (2.1),
the flow regime exhibits a three-dimensional character with highly ir-
regular and random motions making statistical methods a necessity in
the analysis and quantification of such flows. Moreover, turbulent flows
are dissipative/diffusive and unlike laminar flow regimes, the chaotic mo-
tions consist of a wide range of length- and time scales that need to be
considered a priori.
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4. Turbulent Flows

Energy Cascade and Scales in Turbulence

Traditionally, the various length scales of turbulent structures have
been categorized by means of the cascade of their energy contents. This
is quite a central procedure in the analyses of turbulent flows and demon-
strates how the kinetic energy of turbulent fluctuations is being trans-
ferred by a break-up process of the largest eddies, which are restricted by
the flow geometry, to the smallest scales at which the kinetic energy is
dissipated into heat by a viscous process. Nevertheless, it is not always
the case that energy becomes transferred from eddies of large scales to
the small scales. The reverse process, i.e. energy being transferred from
the small scales to the larger ones, may also be encountered. This phe-
nomenon, named as backscatter, is important and needs to be considered
when dealing with numerical solutions of turbulence flows.

Although in general, the large eddies are anisotropic for sufficiently
large Reynolds number, the small-scale turbulent motions can be approx-
imated as statistically isotropic according to Kolmogorov’s hypothesis of
local isotropy [75]. This assumption leads to the definition of the en-
ergy spectra for various scales and the ranges as shown in Figure 4.1 and
presented below.

/l0 f

Figure 4.1: Energy spectrum of turbulent flow, E(k), as a function
wave number, k.
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4.1. Phenomenological Description

Energy containing range

The turbulent kinetic energy is mainly produced at the largest eddies,
referred to as integral length scale and denoted as l0 and belonging to
the energy containing range in the energy spectrum (Figure 4.1). In
homogeneous isotropic turbulence with zero mean velocity, the size of
these scales can be estimated via a spatial autocorrelation function:

f(r) =
v′(x)v′(x+ r)

v′(x)v′(x)
, (4.1)

where v′ is the velocity fluctuation at a given point, r is the distance from
the point x and the overbar denotes a time average operation. The inte-
gral length scale is therefore the integral of the autocorrelation function
as

l0 =

∫ ∞
0

f(r) dr, (4.2)

which represents the mean distance at which the velocity fluctuations are
correlated in the flow.

Viscous subrange

The viscous subrange is dominated by the (smallest) Kolmogorov
scales which are uniquely determined by the (kinematic) viscosity, ν,
and the dissipation rate, ε, according to Kolmogorov’s first similarity
hypothesis. At these scales, the eddies do not break up further, instead,
the turbulent kinetic energy is converted into heat by viscous dissipa-
tion. Appropriate dimensions for the Kolmogorov scales is obtained by
combining ε and ν according to:

η ≡
(
ν3

ε

)1/4

, tη ≡
(ν
ε

)1/2
, vη ≡

(
η

tη

)
= (νε)1/4 , (4.3)

where η, tη and vη are the length, time and velocity scales, respectively.

Inertial subrange

Kolomogorov’s second similarity hypothesis states that at sufficiently
high Re number there exist a range of scales such that η � l � l0,
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4. Turbulent Flows

where the statistics of the fluid motion is uniquely determined by the
dissipation rate of the turbulent kinetic energy, ε, independently of the
viscosity, ν. The Taylor length scale, λf , belongs to this range, at which
inviscid processes are dominant and external factors such as boundary
conditions do not influence the scales. The characteristic length scale
can be defined as:

λ2
f =

−2

d2 f(r)/dr2|r=0
, (4.4)

which is based on the second derivative of the autocorrelation function
at r = 0 in (4.1). The Taylor length scale has no clear physical inter-
pretation [75], however, it can be a useful reference when estimating the
required spatial resolution for large eddy simulation (LES).

The inertial and viscous subranges are categorized under a particular
name according to Kolmogorov’s hypotheses; the universal equilibrium
range. By the name, this is the range where turbulence is in equilibrium
in the sense that the production of turbulent kinetic energy equals the
dissipation rate. The corresponding energy spectra associated with the
inertia subrange is given by

E = ε2/3(k)−5/3, (4.5)

where k is the wave number and related to the length scales λ by k =
2π/λ in Figure 4.1.

4.2 Large Eddy Simulation

It was shown that turbulent flows for sufficiently high Reynolds num-
bers involve a wide range of scales in time and space, extending from the
largest integral length scales to the smallest ones, i.e. Kolmogorov scales.
Except for very low Reynolds numbers, it is not feasible from a computa-
tional framework to resolve all the scales down to the Kolmogorov scales.
Additionally, the smallest scales might not always pertain any significant
role in the overall dynamics of the fluid flow. Instead, one might be in-
terested in the behaviour of the larger scales that might interact with
for example a vibrating or deformable body. Therefore, techniques are
nowadays available which model the unresolved scales instead of resolv-
ing them.

46



4.2. Large Eddy Simulation

Since turbulent flows only have meaning in a statistical sense, the
average quantities of the dependent variables become of interest. Con-
sider a generic variable that can be decomposed into its averaged, f̃ , and
fluctuating, f ′, components such that:

f = f̃ + f ′. (4.6)

Different filtering procedures, in addition to time averaging, exist and
when these are applied to the governing equations of fluid motion in
(3.1) and (3.2) each of them lead to distinct different solution approaches
in the CFD framework. The corresponding solution approaches can be
summarized as follows:

• Temporal/Ensemble averaging ⇐⇒ (RANS/URANS)

• Spatial filtering ⇐⇒ (LES)

• No-averaging, completely resolved ⇐⇒ (DNS)

The outcome from filtering and averaging procedures is, generally speak-
ing, to introduce additional terms called turbulent stress tensors, i.e.
τ T = ṽv − ṽṽ, where the unknown quantities, ṽv, make the set of gov-
erning equations ”unclosed”. Hence, the essence of turbulence modelling
becomes the one of expressing the unknown terms as a function of the
filtered variables and their derivatives.

In Reynolds Averaged Navier-Stokes (RANS) equations, where the
instantaneous governing equations are ‘filtered’ in time, the averaging
procedure introduces an extra unknown quantity called the Reynolds
stresses. The approach relies on the modelling of the unknown term by
‘discarding’ all of the scales at the averaging procedure in the turbulent
spectrum, see Figure 4.1. The most used models within RANS framework
are the Reynolds stress models, and two equation models. The main
drawback with RANS is the lack in capturing the transient dynamics
most often associated with the unsteady fluctuations.

In Direct Numerical Simulations (DNS), on the other hand, all of the
scales down to the Kolmogorov scale are resolved. In physical space the
resolution of the smallest dissipative motions requires a sufficiently grid
spacing, i.e. 4x ≈ 2.1η [75]. Nevertheless, the profit in detailed resolu-
tion of the turbulent scales is inhibited in the computational effort as the

47



4. Turbulent Flows

total contribution of spatial and temporal computations yield operations
being proportional to ∼ Re3.

Explicit Filtering of LES and SGS models

The existence of the inertial subrange (Figure 4.1), where the small
scales have a universal character, is appealing from the modelling point
of view. Indeed, this property is exploited in the LES approach.

As discussed earlier, in LES the instantaneous governing equations
are filtered by employing an (explicit) spatial filter (either spectral or in
physical space):

f̃(x) =

∫
f(x′)F4(x− x′)dx′, (4.7)

where F4 is the LES filter kernel whose filter width, 4, can either be
fixed or adaptive. The most commonly used explicit filters are the top-
hat and the Gaussian filter in the physical space and the cut-off filter in
the spectral space. As mentioned above, the filtering introduces unknown
terms in the governing equations according to

∇ · ṽ = 0, (4.8)

∂ṽ

∂t
+ (ṽ · ∇)ṽ = −∇p̃+∇ · (ν∇ṽ)−∇ · τ̃ T + b̃, (4.9)

where τ̃ T = ṽv − ṽṽ is the unclosed term that represents the unre-
solved sub-grid-scales fluctuations and is normally called the sub-grid
scale stress (SGS) terms that needs to be modelled. Several SGS-models
have been presented in the literature and a good overview is presented
by Pope [75]. Among these are the Smagorinsky model, Germano’s Dy-
namic model and the Scale Similarity model. In a concise manner, what
can be said about the role of the SGS-models in general are, except
for representing the effect of the unresolved scales on the resolved ones,
to supply the turbulent kinetic energy of the fluctuations with correct
amount of dissipation, take into account for backscatter and also provide
adaptivity for low Reynolds numbers flows.

It is not the intention to go through the details of these models,
instead the reader is referred to the literature [75].
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4.2. Large Eddy Simulation

Implicit Filtering of LES

The idea with implicit filtering is that the discretized numerical schemes
replace the role of the (explicit) SGS-models, which is to account for dis-
sipation of turbulent kinetic energy at small scales and to account for
the effects of the unresolved scales on the resolved ones. In this case no
SGS-models are used and hence, the filtered field variables in (4.8) and
(4.9) are equivalent with the discretized field variables

f̃ ≡ D(f), (4.10)

where D(·) is a discretization operator. It may be shown that as the
grid size is decreased the effect of the SGS-terms is of the same order
of the truncation error introduced by the discretized numerical schemes,
e.g. the T.E. error in the convective term used in the in-house code and
the blended scheme in OpenFOAM, discussed earlier. Thus, numerical
schemes include the necessary dissipation representative for the smallest
scales and thereby ensuring that no accumulation of turbulent kinetic
energy will take place which otherwise will cause divergence of the nu-
merical solution procedure.

For ILES schemes it is important that the amount of dissipation is
not too large. This puts a restriction to have adequate grid resolution
such that considerable part of the turbulent energy spectrum is resolved.
This can be achieved by employing discretization schemes of high order
accuracy enough such that its spectral behaviour damp only modes that
are about or in the best way equal to the grid size, i.e. 4 ≈ h. Thus,
if the spatial resolution is of the Taylor scale the rate at which energy is
cascaded to the small scales becomes solely dependent of the physics only
and hence, the effects of the numerical viscosity (the effect of SGS-terms)
on the larger eddies can be neglected.
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CHAPTER 5

Solid Body Motion

This chapter treats the governing equations, which model the motion
of a solid body, and the corresponding numerical formulations. Firstly,
the underlying theory of the mathematical model for the deformations
of the flexible cantilever beam is presented. Thereafter, a numerical sec-
tion provides the approximate discrete formulations of the mathematical
equations.

5.1 Theory of Solids and their Deformation

The goal here is to determine the large-deformation (with a specific
measure) of a continuous body in the finite element (FE) context, which
is established by accounting for the geometric non-linearity in the for-
mulation of the equilibrium equations.

Most commonly, the structural equations are described using La-
grangian frame-of reference, where material derivative in (3.3) becomes
only a partial derivative with respect to time, such that the momentum
equations become

ρsü = ∇ · σ + ρs bs. (5.1)
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5. Solid Body Motion

Here, ρs denotes the density of the structure, u the displacement of the
material point in space, bs the external body forces (which are assumed
to be of insignificant size) and σ is the (symmetric and) second order
Cauchy stress tensor defined in the current configuration.

However, it is desirable to seek a stress tensor in the reference config-
uration instead, while maintaining its’ symmetrical properties. Making
use of Cauchy’s theorem and Nansons formula [76], the Cauchy’s stress
tensor σ is transformed into a second order tensor referred to as the sec-
ond Piola-Kirchhoff stress tensor defined as, S = F−1 P, where F and P
are known as the deformation and first Piola-Kirchhoff stress, tensors,
respectively. Inserting the second Piola-Kirchhoff stress tensor relation
into (5.1) brings the symmetrical tensor properties to the equation of
motion

ρsü = ∇ · (SF) + ρs bs. (5.2)

5.1.1 Total Lagrangian Formulation

In this thesis the Total Lagrangian (TL) formulation has been used
to describe the motion of the material points. The TL method describes
the motion by the total displacement field, u(x0), with respect to the ini-
tial (reference) position, x0, of the material point. Another formulation
is the Updated Lagrangian (UL) formulation, where the material points
are referred to the current position, i.e. the last-calculated configuration.
The difference between the two methods lies in their numerical efficiency
[77]. The TL method generally requires more memory but less compu-
tational time than the UL method because spatial derivatives are with
respect to a fixed frame and thus need to be computed once. The UL
method, on the other hand, requires updated derivatives each iteration
because the reference configuration changes.

Furthermore, concerning the physical quantities such as stress and
strain, the TL formulation leads naturally to deformations described in
terms of the Green strain tensor, E, corresponding to the conjugate Piola-
Kirchhoff stress tensor, S.

Multiplying (5.2) with a virtual displacement, δu, and integrating
over the initial volume using Green-Gauss theorem together with the

52



5.1. Theory of Solids and their Deformation

divergence theorem [78] results in the following virtual work expression∫
v
ρ δuT ü dv +

∫
v
ÊT S dv −

∫
s
δuT t ds−

∫
v
ρ δuTb dv = 0. (5.3)

For this dynamic loading situation, any lack of equilibrium may be
considered equivalent to a distribution of residual forces, r(x0), account-
ing for the difference in the internal, δVint =

∫
v ÊTS dv, and external

virtual work, δVext =
∫
s δu

T t ds −
∫
v ρ δu

Tb dv, plus a virtual loading,
δVdyn =

∫
v ρ δu

T ü dv. For a solid body, with suitably discretized dis-
placement field and loading, the Newton-Raphson method can be used to
eliminate a discrete set of residual forces and hence establish equilibrium.
This is, among else, covered in section 5.2.

5.1.2 Constitutive Relationship and Element Formulation

So far, nothing has been mentioned about the material model used
in the structural analysis of the solid. Throughout in this thesis, an
isotropic and linear elastic material model has been used to link the ma-
terial stresses to its strain law and thereby closing the set of equations in
(5.2). A suitable strain measure for the symmetric second Piola-Kirchhoff
stress tensor is the Green-Lagrange’s strain, which is invariant to body
rotations. Evidently, a one-to-one (linearly) relation between the sym-
metric second Piola-Kirchhoff stress and the Green-Lagrange’s strain can
be established (in matrix form) as

S = DE, (5.4)

where D is a constant fourth order constitutive tensor, also called the
tangent(elastic) stiffness tensor, which depends on the Green’s strain.
Furthermore, the strain-displacement relation can be written in an infor-
mative and compact form given by

E =

[
∇u +

1

2
∇u · (∇u)T

]
. (5.5)

Here, the difference between the formulation for small-deformation and
large-deformation is clearly evident through the second non-linear term.
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The strain-displacement relation in (5.5) has been based on three-
dimensional tetrahedral elements as shown in Figure 5.1. This is a
four-node tetrahedra finite element, where its topology is such that each
node consists of three degrees of freedom for translational displacements,
ux,uy,uz. Hence, rotations are not considered. Here, the unknown dis-
placements, u, are computed by using linear approximation between the
nodal points in each element and the strains, in turn, are computed
by differentiating the shape functions, Ni, which enable interpolation of
polynomials within the element according to

u (x, y, z) =
4∑
i

Ne
iui. (5.6)

Indeed, the shape function belonging to a specific node has a universal
property, which states that the shape functions is zero at all nodes which
it doesn’t belong to,

N e
i =

{
1 at nodal point i
0 at all other nodal points.

(5.7)

Moreover, the strain components are all evaluated by performing a full
integration by using four point Gauss integration formula. The corre-
sponding weights, w i, and Gaussian coordinates, ξi, can be found in
references [79, 80].

1

2

4

3
1

2 3

4

Figure 5.1: Linear tetrahedral element, definition and node numbering.
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5.2 Numerical Treatment of Solids

This section reports briefly the Finite Element discretization tech-
nique employed to the momentum equations of the dynamically loaded
flexible cantilever beam. Also, the utilized time-marching scheme is pre-
sented and shortly discussed.

5.2.1 Non-linear Finite Element Formulation

The finite element (FE) formulation for geometrical non-linear prob-
lems suitable for large deformations and small strains, corresponding to
the virtual work expression in (5.3) can be approximated as

cT
(∫

v
ρNTNä dv +

∫
v
BTS dv −

∫
s
NT t ds−

∫
v
ρNTb dv

)
= 0, (5.8)

where the displacement field, u, and the arbitrary virtual displacements,
δu, are approximated by the shape functions, N, according to

u (x, t) = N (x) a (t) , δu (x, t) = N (x) c (t) , (5.9)

where a is the nodal displacement vector. Evidently, (5.8) describes the
linear momentum of the system in a weighted sense for which the system
of equations has to be solved for. This statement gives that (5.8) can be
written as

Mä + fint − fext = 0, (5.10)

where the mass matrix, M, is defined as

M =

∫
ρNTNä dv, (5.11)

and

fint =

∫
v
BTS dv, fext =

∫
s
NT t ds−

∫
v
ρNTb dv. (5.12)
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Non-linear Dynamic Loading

Two general classes of algorithms for dynamic problems exist, im-
plicit and explicit. Explicit algorithms [81] tend to be inexpensive in
their solution procedure per time step since the solution may be ad-
vanced without storing a matrix for solving a system of equations and
therefore do not require large storage of data. However, numerical stabil-
ity requirements restricts the problem to small time steps. On the other
hand, implicit algorithms are numerically stable and, hence, permit for
larger time steps. But, the profit in numerical stability is somehow lost
in numerical efficiency due to high storage requirements of data since a
matrix system has to be solved per time step in order to advance the
solution.

In this thesis the implicit method has been chosen for stability rea-
sons. Especially, the long duration character of the oscillating cantilever
beam is well suited for implicit formulation of the equation of motion,
where the response dynamics is mostly controlled by the low frequency
modes.

Dynamic problems with essential non-linearities are mostly solved by
time integration of the non-linear equations of motions. Traditionally
these problems have been solved by the so-called collocation-type meth-
ods, where the equation of motion is matched at selected points with
suitable assumptions regarding the relation between displacement, ve-
locity and acceleration, see e.g. [76]. In implicit methods, equilibrium
conditions are considered at the same time step for which the solution
is sought. If the solution is known at time t and the unknown displace-
ments are sought at time t+4t, then the discretized version of (5.10) at
time t+4t becomes (by adding damping into the system) as follows:

Mät+4t + Cȧt+4t + f int (a)t+4t = f extt+4t. (5.13)

This is achieved by predicting the nodal velocity, ȧ, and, acceleration, ä,
with an appropriate method, while the displacement, a, is solved for in
the solution of the equations of motion. There exist several different nu-
merical techniques to achieve this, such as Newmark-beta method, Crank
Nicholson method, two-point Backward Euler and three-point Backward
Euler method, to name a few.
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5.2. Numerical Treatment of Solids

In this thesis, the three-point Backward Euler method, e.g. [82], has
been used for the time-marching procedure and is based on the following
assumptions for the discretized displacement and velocity:

at+4t = at +4t ȧt + (4t)2 /2 ät+4t,

ȧt+4t = −4/ (24t) at + 3/ (24t) at+4t + 1/ (24t) at−4t.
(5.14)

Moreover, the internal force vector in (5.13), f int (a)t+4t, is a non-linear
function of the displacement, a, corresponding to the stress-strain rela-
tion at time t+4t. Nevertheless, the internal force vector needs to be
expressed in terms of the previous time step, t, in order to be compatible
for implicit time integration. Hence, the internal forces are predicted by
linearization utilizing the tangent stiffness method as:

f int (a)t+4t = f int (a)t + K (a)t δa, (5.15)

where, K (a)t = ∂f int/∂at, is the tangential stiffness matrix evaluated at
time, t, and , δa = at+4t − at, is the incremental displacement between
two time steps in the upwind sense.

In conclusion, the solution to (5.13), as a function of the unknown
displacement increment, obtains a linearized character by expressing the
discretized velocity and acceleration as a function of the displacement
increment via (5.14) and by utilizing the linearized internal force vector
defined in (5.15), which as a sum up yields:

M [b0 δa− b2 ȧt] + C [b1 δa− b3 δa−] + f int (a)t + K (a)t δa = f extt+4t,
(5.16)

where the previous incremental displacement is defined as, δa− = at −
at−4t, and the coefficients are ,b0 = 2/ (4t)2, b1 = 3/ (24t), b2 =
2/ (4t), and b3 = 1/ (24t).

In general, the solution to (5.16) yields an approximate displacement
increment, δa. To avoid the development of numerical errors and to
improve the accuracy of the solution, a Newton-Raphson iteration scheme
is applied within each time step. The details of the solution procedure for
the non-linear problem using the three-point Backward Euler algorithm
are outlined in Table 1 [82].
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A side note; although the damping matrix, C in (5.16) is explicitly
shown it is not numerically considered in the simulations in order to al-
low for worst case scenarios in the structural dynamics. However, there
exist an alternative to model it as a Rayleigh damping C = αM + βK.

Algorithm 1 Non-linear (dynamic) solution procedure using three-point
Backward Euler method.

1. Initialize initial conditions a0,a1,a2,a6

2. Calculate constants
b0 = 2

(4t)2 ; b1 = 3
(24t) ; b2 = 2

(4t) ; b3 = 1
(24t) ;

3. Form the matrices M, C and Kt .
4. Form the effective stiffness matrix, assuming linear behaviour

K?
t = b0M + b1C + Kt;

5. If tangent stiffness method is used, optionally update Kt

Kt =
∫
v BTDB dv;

6. Form the effective load vector
f?t+4t = f extt+4t − f intt+4t + M (b2ȧt) + C (b3 δa−);

7. Solve for initial displacement increment
δa0 = (K?

t )
−1 f?t+4t;

8. Iterate for dynamic equilibrium, i = 0:
(a) i = i+ 1
(b) Evaluate acceleration, velocity and displacements using (5.14)
(c) Evaluate the residual force

Ri−1
t+4t = Fext

t+4t−
(
Mäi−1

t+4t + Cȧi−1
t+4t + f int (a)i−1

t+4t

)
;

(d) Solve for the corrected displacement increments
4ai = (K?

t )
−1 Ri−1

t+4t;
(e) Evaluate the corrected displacement increments

δai = δai−1 +4ai;
(f) Check convergence in terms of residual norm, relative dis-

placement norm, etc.
(g) Return to step 5 to process the next time step, 4t.
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Non-linear Static Loading

A similar approach as for the dynamic loading procedure can be es-
tablished for non-linear static structural problems. Following Ristinmaa
and Ljung [83], the initial problem to be solved is again (5.10), with the
difference that the dynamic term is neglected and instead static equilib-
rium equations must be fulfilled, i.e.

R (a) ≡ f int (a)− f ext = 0, (5.17)

where it is assumed that the external loading does not depend on the dis-
placements. To obtain an iterative format based on the Newton-Raphson
method a Taylor expansion of (5.17) around an equilibrium state is made.
It is assumed that the state (a + da) is in equilibrium where da denotes
small increment in nodal displacements. A truncated Taylor series ex-
pansion of (5.17) yields

R (a + da) = R (a) + dR (a) , (5.18)

where R (a + da) = 0 at equilibrium. It should be noted that the differ-
ential in the Taylor series expansion in (5.18) is usually called directional
derivative and is equal to

dR = dfint =

∫
v
dBTSdv +

∫
v
BTdSdv. (5.19)

A further simplification of (5.18), by using (5.19) yields

0 = R(a) + K d(a), (5.20)

where the tangential stiffness matrix is defined as

K =

∫
v
BTDBdv +

∫
v
HTRHdv. (5.21)

The first term in (5.21) is related to the material model, whereas the sec-
ond is associated with non-linear geometry changes. A summary of the
solution procedure for non-linear static problem, based on load control
method (displacement control is another choice), is shown in Table 2.
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5. Solid Body Motion

Algorithm 2 Total Lagrangian formulation for non-linear Static Load-
ing.

1. Evaluate initial load increment
f extn = f extn−1 +4f extn

2. Form and optionally update the stiffness matrix
Kn =

∫
v BTDBdv +

∫
v HTRHdv

3. Solve for initial displacement increment
δa0

n = (Kn)−1 Rn

4. Iterate for dynamic equilibrium, i = 0:
(a) i = i+ 1
(b) Evaluate approximation to the displacement

ai−1
n = an + δai−1

n

(c) Evaluate the residual force
Ri−1
n = f extn − f int (a)i−1

n ;
(d) Solve for the corrected displacement increments

4ain = (K?
n)−1 Ri−1

n ;
(e) Evaluate the corrected displacement increments

δain = δai−1
n +4ain;

(f) Check convergence in terms of residual norm, relative dis-
placement norm, etc.

(g) Return to step 1 to process the next loading step, n.
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CHAPTER 6

Two-way FSI Methodology

This chapter describes, briefly, the methodologies in the treatment of
the interaction between fluid and solid domains for both flexible and rigid
bodies firstly, from a general perspective, and thereafter, the specifically
utilized techniques in each case are concisely outlined.

6.1 Interface Treatment and Flexible Cantilever

Computational fluid-structure interaction (FSI) emerged in the early
1960’s in conjunction with the need to deal with linear problems in acous-
tics, vibrations and flutter [84]. The first attempt to tackle the multi-
physical problem was using formulations in the frequency domain due
to the limited computer capacity available [85]. Time-domain FSI had a
breakthrough first in the 1970’s as non-linear properties of the fluid and
structure become more highlighted within the FSI-context. For (parti-
tioned) fluid-structure interaction, the Finite Element Method (FEM)
has been the natural choice to discretize the structural problem whereas
there is no universal methodology for the fluid field. Instead, the choice
of method in the fluid discipline is to some extent problem-dependent.
Nevertheless, commonly used discretization techniques rely, among oth-
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6. Two-way FSI Methodology

ers, on the Finite Differences (FD) and Finite Volumes (FV) approaches
which were discussed in chapter 3.2.1 and 3.2.2, respectively. Within the
FSI-context, factors such as time-marching methods and, in particular,
treatment of fluid-solid interface arise as issues of complexity common
for both fields. Interface treatment and its proceedings deserve a par-
ticular emphasis since this is one of the key parts of the partitioned FSI
coupling procedure.

In this thesis, the FSI-methodology for the flexible cantilever beam
case relies on the partitioned approach which retains separate domains
for fluid (ΩF ) and solid (ΩS) fields. In fact, the fluid and solid domains
are unionly integrated by considering the respective boundaries of fluid
(ΓF ) and solid (ΓS), and the mutual interface boundary, (ΓF/S). These
boundaries are shown in Figure 6.1 together with an illustration of a
typical time-marching scheme.

F F

S

S
F/S

F F

S

F/S
S

time

t1

t2
F F

S

S
F/S

Figure 6.1: Fluid-structure interaction problem subdivided into fluid
and solid domains with inherent boundaries.

Proper treatment of fluid and solid interfaces, (ΓF/S), can be accom-
plished by considering certain relevant parameters. The first parameter
to consider is whether the fluid and solid meshes are mutually in a match-
ing or non-matching state. Traditionally, it is claimed that a denser fluid
mesh is required to resolve the small scales in the fluid flow and thus, a
coarse mesh for the solid domain is seen as satisfactory. This has been
the general approach to treat fluid-solid interfaces within the FSI com-
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6.1. Interface Treatment and Flexible Cantilever

munity. Moreover, the process of data transfer from fluid to solid, and
vice versa, at the fluid-solid ‘wet’ interface is not straight-forward and re-
quires a thoroughly consideration for non-matching interfaces. The data
transfer can be summarized in the following scheme:

F ⇒ S Interface fluid stresses/pressures are transferred to
structural nodes.
F ⇐ S Structural displacements are transferred as interface
fluid-particle velocities.

A second consideration would be based upon the technique used to
communicate the exchange of data transfer between the fluid and solid
domain. Felippa et al. [84] discusses three interface treatment proto-
types. The first one, being the oldest and easiest to implement, is the
Direct Force-Motion Transfer (DFMT) scheme, where the exchange data
is transferred directly. Depending on the fluid problem necessary inter-
polation routines can be employed. In the Mortar scheme, the interface
freedoms are linked through Lagrange multipliers instead. The multi-
pliers are distributed (delta) functions interpretable as surface tractions.
The last scheme, named Localized Lagrange Multipliers (LLM), uses a
kinematic ‘frame’ between the fluid and solid domain to transfer the
exchange data.

Figure 6.2: Sketches for realizations of three interface treatment pro-
totypes. Left; DFMT, Middle; Mortar, Right; LLM.

Independent of which variant of ‘gluing’ technique is preferred, match-
ing or non-matching, there are critical aspects that needs to be considered
ahead any interface treatment method is utilized:

• Method flexibility; Both matching and non-matching meshes should
be optional.
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6. Two-way FSI Methodology

• Flux consistency; Mass and momentum should be considered over
the interface.

• Energy conservation; Energy should not be produced or dissipated
at the interface.

• Time stepping stability and accuracy; Should be independent on
the choice of interface treatment (applicable for partitioned time
stepping).

• Computational flexibility; Handle non-linear problems and paral-
lelization friendly.

The handling of mesh motion arises as an auxiliary component that
needs to be considered when developing interface treatment methods
in fluid-structure interaction simulations. Traditionally, this has been
done using an Eulerian (fixed) formulation for the fluid while a La-
grangian formulation has been used for the structural part. The Arbi-
trary Lagrangian-Eulerian (ALE) formulation, combining both the Eule-
rian and Lagrangian formulation, has been the approach used for defor-
mation of the fluid mesh in response to the structural deformations [86].
Alternatives to the ALE approach include immersed boundary method
and fictitious domain method among others. These methods to some
degree involve the more general Lagrange multiplier approach and use
fixed fluid mesh. The advantage of the ALE approach over fixed-mesh
alternatives is the ability to maintain high-quality meshes near the struc-
ture’s interface, resulting in more accurate solutions on the fluid side [87].
Nevertheless, with ALE a further non-linearity is introduced into the FSI
system of equations, as a new equation for the fluid domain motion is
required, which also contributes to the overall computational time.

6.1.1 Explicit Coupling

Conventional sequential staggered (CSS) schemes are the most basic
and popular partitioned (explicit) algorithms for solving FSI problems
[88]. The procedure involves first a prediction of the structure’s motion
(pun+1

s ), solution of the (e.g. ALE) fluid domain in order to compute the
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6.1. Interface Treatment and Flexible Cantilever

(normal and shear) stresses acting on the fluid interface (σn+1
f ), extrac-

tion for (viscous and pressure) forces acting on the structure, (σn+1
s ) and,

finally, solution for the new structure displacement (un+1
s ). The princi-

pals of the CSS scheme is shown in Figure 6.3. Since no convergence is
checked between the predicted and computed structural displacements at
the end of a time-step this method is not able to guarantee a matching
of the boundary conditions at the interface. As a result, destabilizing
effects may be introduced through interface discretization [89]. More-
over, due to a time-lag between the structural and fluid computations,
the CSS schemes are at most 1st order accurate in time at the boundary
interface [89].

Solve Fluid

Solve Solid

Move Fluid Mesh

t=t+ 

> end

t

START

ENDYes
t t

No

Figure 6.3: Conventional sequential staggered (CSS) approach.

Despite the great simplicity and low computational cost of explicit
partitioned schemes they suffer from two major problems, (i); the numer-
ical instability of the coupling scheme caused by energy production along
the interface due to time lag [90, 89] and (ii); lost of temporal accuracy
of the coupled analysis.

Jaiman et al. [91] presented a novel staggered coupling method which
improves the stability and accuracy for explicitly coupled staggered fluid
and structure problems, named the Combined Interface Boundary Condi-
tion (CIBC) method. Here, the relative physical and geometrical proper-
ties at the fluid and solid interface, not considered for the CSS procedure
and otherwise leading to artificial energy production, are taken account
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6. Two-way FSI Methodology

for by introducing high-order interface corrections. More specifically, the
CIBC method requires a coupling parameter for combining the spatial
and temporal derivatives of velocity and momentum fluxes by construct-
ing PDEs from the interface continuity conditions.

Despite the presented robustness of the CIBC scheme by Jaiman et
al. [91] there are challenging questions concerning practical applications
of such methods. One such is to find suitable values for the coupling
parameter. Furthermore, the validity of these solution procedures is not
verified for applications when the densities of the two sub-domains are
in the same range, as is the case in hydroelasticity simulations.

As was mentioned in the Introduction, an implicit coupling scheme
has been chosen for the work in this thesis accounting for the added-mass
effect (and the instabilities caused by it) and hence, the solution of both
fluid and structural problems are repeated until dynamic equilibrium is
achieved.

6.1.2 Implicit Coupling Strategy

Relaxation techniques usually serve as a conventional approach on the
treatment of interface displacement of the fluid mesh, uf , in implicitly
coupled FSI problems. The relaxation used in this thesis is established
by Aitken relaxation [92]. The Aitken relaxation factor, ω, is defined
in (6.1), where i is the sub-iteration number and us is the structural
displacement at the interface, is applied to the displacement of the fluid
interface according to uif = (1−ωi)ui−1

f +ωiu
i−1
s . Prior to the relaxation,

however, the fluid mesh interface is moved according to a second order
extrapolation based on Taylor expansion.

ωi = −ωi−1
(ui−1

s − ui−1
f ) · ((ui−1

s − ui−1
f )− (ui−2

s − ui−2
f ))

‖(ui−1
s − ui−1

f )− (ui−2
s − ui−2

f )‖22
, i = 2, 3, 4, ...

(6.1)
The fluid-structure interaction procedure is accomplished by com-

munication of fluid stress information from the flow to the structure and
structural displacement from the structure to the fluid domain. This
convention is obviously a prerequisite for stability reasons and thus the
reversing, i.e. imposing stress boundary condition on the fluid and ve-
locity on the solid is avoided, as discussed by Bathe and Zhang [93].
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6.1. Interface Treatment and Flexible Cantilever

This leads to the following requirements at the fluid/solid interface cor-
responding to no-slip and compatibility conditions;

vm =
du

dt
(6.2)

σs · n = σf · n, (6.3)

where, n, is the unit normal on the interface, vm, the mesh velocity
associated with the ALE formulation and σ denotes the stress acting on
either of the sub-domains.

In Figure 6.4, a schematic drawing of the implicit coupling is shown.
The procedure could be described as follows; First the fluid velocities and
pressure is solved using a suitable solver (PISO in this case). Next the
pressure and viscous forces asserted on the solid are transferred from the
fluid to the structural solver to act as a boundary condition. Next, the
structural displacements is solved for, which in turn, become boundary
conditions for the moving mesh. Subsequently the convergence criterion
is evaluated,‖(ui+1

f − ui+1
s )‖2 /max(‖u0

f − u0
s‖2) < Tol , where Tol is

the relative tolerance and the max indicates that the largest norm up
till time t is used. Next, assuming that the first sub-iteration (i = 0) is
considered, the sub-iteration number is increased by one, i+ +, and the
Aitken relaxation step is performed. Note that the first relaxation factor,
ω1, needs to be either specified by the user or computed in some other
way. In this work the first relaxation factor in the first time-step is user-
defined whereas in the following time-steps the last relaxation factor from
the previous time-step is used. The new fluid interface displacement, u1

f ,
has now been estimated and the fluid mesh is to be moved. Next up
is solving the flow equations and after that the structural equations.
When this is done the convergence criterion is once again evaluated.
Assuming that the convergence criterion is fulfilled the iteration now
goes to the next time-step and if the total time exceeds the end time,
tend, the simulation is stopped.

Interface Communication

An introductory description of the interface treatment applicable to
non-matching interfaces was outlined in section 6.1. Non-matching in-
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Solve Fluid

Solve Solid
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Figure 6.4: Partitioned approach for implicitly coupled FSI with relax-
ation technique.

terfaces can be desired due to reasons such as different discretization
techniques for the subdomains (finite volumes vs. finite elements), dif-
ferent types of grids and different grid resolutions. Consequently, a grid-
to-grid data interpolation and transfer becomes unavoidable. However,
transfer of data in combinations with interpolation routines not only
are time-demanding operations but also require extra care in the overall
procedure.

It is the lack of energy conservation at the fluid and solid interface
that forms an essential feature from a physical point of view when con-
sidering different coupling schemes that utilize non-matching interface
approach. This effect is concerned with integral quantities such as the
(viscous and pressure) forces. Lesoinne et al. [94] describe the conserva-
tive interpolation approach for the transfer of forces which ensures that
the resultant loads on both grids are exactly the same. It is a technique
that, first, integrates the fluid stresses that resides on the fluid and solid
interface and afterwards, distributes the resultant forces to the structure
by means of regular interpolation routine, as demonstrated in Campbell
and Breuer [13, 95]. In particular, Campbell, discusses the importance
of the quantities to be transfered; a transfer of the stress values (in-
stead) to the structure face and then integrating the stress to compute
the forces gives rise to an inconsistency in the load balance between the
two subdomains.

To avoid the disadvantages associated with interpolation matching
grids on the fluid and solid sides have been used throughout this work.
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6.2. Moving Boundaries and Rigid Cylinder

There are also theoretical results proving stability when using matching
interfaces, however, it should be noted that the results are limited to
FEM in theory.

6.2 Moving Boundaries and Rigid Cylinder

Historically, various computational techniques have been utilized in
order to (numerically) consider the solid domain, i.e. the rigid circular
cylinder, in the fluid-flow simulations.

Stationary bodies are normally described by using body fitted struc-
tured or unstructured grids, where the boundaries become well defined
and the specification of the boundary conditions are straight forward.
Within finite differences a disadvantage of these methods is the required
co-ordinate transformation which is a time-demanding cost in terms of
computational operations.

Geometric complexity in combination with moving boundaries fur-
ther increase the computational challenges, since these properties require
regeneration or deformation of the grid as the boundary is moved. De-
forming grids, for example, follow the boundary motion and preserve
the shape at the same time. The main drawback is that re-meshing is
required when the grid is too deformed. This leads to an interpolation
process between the old and the new grid.

An alternative to the above-mentioned approaches is to use overlap-
ping grids. This technique allows the main region of the problem to be
divided into subregions in the sense that a union of all grids cover the
total domain of interest. The required boundary conditions on the object
is set quite easily, whereas the interpolation procedure between different
grids may cause a loss of accuracy.

In the Arbitrary Lagrangian Eulerian (ALE) method, the boundary
between the fluid and solid is well defined as for structured/unstructured
grids. However, the method has difficulties in the handling of large de-
formations and rotations where the fluid mesh elements may become
distorted resulting in reduced accuracy. As a result, solution strategies
for engineering CFD problems need to be able to cope with flow com-
plexity but at the same time retain the numerical accuracy and efficiency
of the simulations performed on various kind of grids.
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6. Two-way FSI Methodology

Fixed Cartesian grid is an example of methods where the advan-
tage of easy implementation of higher-order discretization are preserved.
Furthermore, there is no need for mesh regeneration. However, repre-
senting complex solid boundaries on a Cartesian grid requires additional
treatment. Immersed Boundary (IB) methods is a numerical approach
for relating the fluid- and solid domains on Cartesian grids. The idea
is that the fluid domain is represented by a fixed mesh, wherein the
solid domain is represented by momentum sources enforcing the required
boundary condition.

The use of momentum sources to describe boundaries, also referred
to as ‘virtual boundary’ methods, can be traced back to the pioneering
works by Peskin [96] who proposed an IB method for studying the flow
of blood past an elastic (2D) heart valve computed with a finite differ-
ence method. Goldstein et al. [97] developed a pseudo-spectral method
related to Peskin’s [96] immersed boundary approach where they used a
feedback scheme (similar to PI-regulator) based on control system theory
in order to compute the force field on the boundary. Mohd-Yusof [98] de-
rived an alternative formulation (to the one presented by Goldstein et al.
[97]) of the forcing. This is also an pseudo-spectral code, however, it does
not suffer from the stability issues of the discrete-time equations when
the immersed boundary technique is combined with spectral methods.
Further, Fadlun et al. [99] compared the forcing methods by Goldstein
et al. [97] and Mohd-Yusof [98] by using a second order finite differ-
ence scheme, and found that the latter is more efficient due to a higher
achieved CFL-number without loosing stability.

Young et al. [100] developed a numerical model for computing the
flow and heat transfer problems with moving and complex boundaries.
The technique here, followed the immersed boundary method in the ALE
framework (to reduce numerical diffusion near the immersed boundary)
with direct forcing formulation proposed by Mohd-Yusof [98]. The major
drawback of this method is the relatively low accuracy proximate to the
boundary due to the spreading of the forcing function or the interpolation
scheme.

Kim and Peskin [101] have applied the immersed boundary (IB)
method to study fluid-structure interaction in 3D parachute aerodynam-
ics. They used the penalty immersed boundary (pIB) method in order
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to take into account the inertial and gravitational effects of boundary
mass in an immersed boundary computation. It was shown that the
IB methodology is capable of simulating the detailed structure of an
immersed boundary, its ability to handle large deformations without re-
gridding and in particular, its ability to handle collisions without the use
of any special collision detection algorithm.

6.2.1 Boundary Conditions

As was mentioned above the idea of using IB-method is to model the
rigid body, which represents a discontinuity in the flow field, by intro-
ducing momentum source terms into the flow field (momentum equation
(3.11)). The main idea is based on Newton’s third law of action- and
reaction between the fluid and solid domains. Consider a boundary in
the form of a closed surface Γ in a domain Ω with the parametrization
of the surface given by Xi(si, t), then the force in the flow field can be
written as

Φi (xj , t) =

∫ ∫ ∫
Ω
Fi (sj , t) δ (xj −Xj) dx1dx2dx3, (6.4)

where Fi is the force on the surface and δ is the three dimensional Dirac
delta function. Hence, the source terms will only be non-zero at the lo-
cation of the boundary. However, discretizing the computational domain
using a Cartesian grid will in the general case lead to that the nodes on
the grid will not coincide with the location of the surface of a body of
arbitrary shape. The presence of the boundary must therefore be rep-
resented by source terms in positions away from the actual boundary
location. This can be achieved in different ways, for example by approx-
imating the Dirac function by a normalized Gaussian distribution [102]
or by assuming a certain distribution of the velocity field normal to the
boundary [103]. Here, a brief description of the numerical procedure
developed by Revstedt and Fuchs [104] is presented:

1. Discretization of the boundary surface: The (2D) boundary surface
is discretized in such a way that the node distance is somewhat
smaller than the (3D) fluid-mesh.
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2. Applying the correct boundary conditions: The desired boundary
condition on the surface nodes is satisfied by applying the no-
slip condition. This implies that the velocity on the surface nodes
should vanish or at least approach zero (providing that the bound-
ary is fixed). Since the fluid-mesh and surface-mesh nodes do not in
general coincide the appropriate variables (in this case the three ve-

locity components vfi ) need to be determined on the surface mesh.
Revstedt and Fuchs [104] investigated two methods in order to
determine the velocity at the surface nodes, namely: Lagrange in-
terpolation and Gaussian weighted averaging. They found that the
Gaussian method gives faster convergence and was less computa-
tionally expensive than the Lagrangian method. For this reason,
the Gaussian interpolation scheme for the boundary velocity vfi has
been used

vfi =

∫ ξ+2

ξ−2

∫ κ+2

κ−2

∫ $+2

$−2
viGF dξ dκ d$, (6.5)

where ξj is the boundary position normalized with the mesh spacing
and GF is a Gaussian distribution function

GF =
1(

ς
√

2π
)3 e(−ξ2+κ2+$2)/2ς2 , (6.6)

where ς is the variance of the Gaussian distribution function.

3. Determining the defect to the surface force: The surface force con-
tributions are estimated in order to satisfy the boundary condition,
which for a solid object implies that vfi vanishes. This is achieved
by calculating the velocity defect, which is the difference between
calculated velocity on the boundary vfi , and the prescribed bound-
ary condition vbi

Fni = Fn−1
i +

(
α
vdef
h2

)n
, (6.7)

where Fi is the surface forces, α is a relaxation parameter (propor-

tional to Reynolds number), vdef = vfi −vbi is the velocity defect, h
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(i,j)

i

j

Figure 6.5: A schematics of the Immersed Boundary mesh crossing the
fluid mesh.

is the node distance of the computational grid and n is the iteration
number within one time step. Figure 6.5 illustrates the procedure
of estimating the velocity defect.

4. Distribution of the surface forces: The final step of the algorithm
is the distribution of the surface forces Fi to the computational
domain. However, it should be mentioned that the boundary is
represented by a discontinuity which mathematically can be de-
scribed by a Dirac δ-function with the following properties∫ ∞

−∞
δ(x− xi) dx = 1, δ(x− xi) =

{
∞, x = xi,
0, x 6= xi.

(6.8)

Nevertheless, this cannot be represented on a discretized grid and
instead the Gaussian distribution in (6.6) is used in order to transfer
the forces back to the computational grid and the source terms can
then be written as

φi =
1

N

N∑
i=1

GF Fi, (6.9)

where N is the number of contributions from the surface to certain
grid point.
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The above method of estimating the the source terms has been used
in preliminary stage of this thesis work [105, 106]. In the study of PA-
PER4 a recent extension of the virtual boundary method, with improved
numerical efficiency and accuracy, developed by Duwig and Revstedt (not
yet published) was used. In this method the following expression is em-
ployed for the discretized source terms:

Φi = C1
(v′i − vi)
4t

e−C2d2 , (6.10)

where C1 and C2 are positive constants, v′i is the target velocity of the
solid surface and d is a positive function which should increase rapidly
with increasing distance from the solid boundary. If the body is consid-
ered as thick (i.e. spans over several computational nodes) d will be set
to zero inside the body and to a large positive value, typically 106, far
away from the body. In computational cells cut by the surface mesh d is
set as a function of the normal distance from the computational node to
the virtual surface. This strategy is also employed for bodies of sub-grid
thickness. Hence, in this method the surface mesh is only used to keep
track of the surface position and for calculating the normal directions of
the surface. No variables are calculated on the surface mesh and hence
there is no need for distribution of the force from it. Unpublished results
by Duwig and Revstedt indicate that this kind of strategy gives a second
order accuracy of the boundary formulation.

Solving the Equation of Motion for a Rigid Cylinder

The equation of motion of an elastically mounted cylinder, may be
written as

m
d2x

dt2
+ b

dx

dt
+ kx = Fx, (6.11)

where Fx is the instantaneous lift force and x is the transverse displace-
ment. It is common practice to express (6.11) in a non-dimensional form
using the structural quantities

x? =
x

D
, t? = tωN , ζ =

b

2
√
km

, (6.12)
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for the mass m, damping b, and spring stiffness k, which leads to the
following form of the equation of motion, (6.11):

d2x?

dt?2
+ 2ζ

dx?

dt?
+ x? = CxnV

?2 , (6.13)

where Cx = 2Fx/(ρV
2
∞DL) is the transverse force coefficient and n =

ρD2L/(2m) is a mass parameter. In this case, the structural parameters
defining the behaviour of the system are ζ, n and V ?. It can be seen
that, ωN = 2πfN is used in the scaling of velocity, which leads to the
reduced velocity, V ?. A disadvantage of this kind of scaling is that at
zero mass m = 0, or zero stiffness k = 0, it will yield an infinite damping
coefficient, ζ. To avoid this, one may instead use the flow parameters to
non-dimensionalize the equation of motion, cf. Shiels et al. [53]. This
approach leads to the following non-dimensional form of the cylinder
equation of motion

m?d
2x?

dt?2
+ b?

dx?

dt?
+ k?x? = Cx(t), (6.14)

where the force coefficient is defined as earlier: Cx(t) = 2Fx(t)/(ρV 2
∞DL).

At the end of each time step after calculation of the force acting on
the cylinder, the equation of motion for an undamped cylinder is solved
based on (6.14). Here, the right hand side of (6.14) is determined by
integrating the source term in the x-direction momentum equation over
the whole volume. Equation (6.14) is then split into a system of two 1st
order ODEs:

dx?

dt?
= v?, (6.15)

m?dv
?

dt?
+ b?v? + k?x? = Cx(t). (6.16)

Solely, the system of equations are solved using a first order Euler back-
ward scheme

xn+1 = xn + ∆tvn, (6.17)

vn+1 = vn +
∆t

m?
[Cx(t)− b?vn − k?vn] . (6.18)
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CHAPTER 7

Post-processing Tools

This chapter describes briefly the kernel of the toolboxes used in the
post-processing procedure of the conducted simulations, which are the
two decomposition techniques, POD and DMD, for obtaining approxi-
mated descriptions of multidimensional systems in a statistical manner.

7.1 Proper Orthogonal Decomposition (POD)

The vortex shedding characteristics and the flow pattern behind mov-
ing objects such as cylinders and cantilevered beams are substantially
altered during fluid-structure interaction which leads to the demand of
a comprehensive understanding of the non-linear behaviour in the flow
field. For this reason, a statistical approach based on Proper Orthogonal
Decomposition (POD), as presented by Berkooz et al. [107] is used in
this thesis to extract the coherent structures, referred as dynamics with
temporal life cycle which captures relevant spatial scales.

The POD procedure extracts a basis for a modal decomposition of
a given ensemble of data, e.g. velocity, pressure, vorticity etc. The
data ensemble, which may contain scalar- or vector-valued functions,
can be obtained experimentally or numerically and (for simplicity) it
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is introduced in the context of the scalar velocity field vj . Given this
ensemble data v(x, t), the POD is applied by seeking a base of spatial
eigenfunctions Ψ(x) such as

v(x, t) = a0Ψ0(x) +
∞∑
n=1

an(t)Ψn(x), (7.1)

where the first and second term of (7.1), represents the mean field (mode
0) and the dynamics of the flow field (the subsequent modes), respec-
tively, and an(t) are the time coefficients. Especially, Ψ(x) is sought
such that the quantity

〈|(v,Ψ)|2〉
‖Ψ‖2

, (7.2)

is maximized. Here, < · > denotes an ensemble average, (�, �) an ap-
propriate inner product and ‖ � ‖ a norm for the space L2(Ωx) of square
integrable functions, where Ωx is the physical domain considered. The
physical meaning of (7.2) is that the procedure seeks to decompose the
ensemble of realizations of the function v(x, t) onto a base that would
maximize the variance content of the N -first modes for any integer N ,
as reported by Berkooz et al. [107]. Nevertheless, the problem formula-
tion of (7.2) can be recast as the solution of the Euler-Lagrange integral
equation by applying the variational calculus according to∫

Ωx

〈v(x) v(x′)〉Ψ(x′) dx′ = λΨ(x), (7.3)

which represents an eigenvalue problem whose kernel is the cross-correlation
tensor, defined as R(x, x′) = 〈v(x) v(x′)〉. To each eigenvalue λn corre-
sponds an eigenfunction Ψn or POD-mode. The eigenvalues are ordered
in decreasing order (λn > λn+1) and the modes are normalized so that
(Ψn,Ψn) = 1. Furthermore, with reference to (7.2), the POD modes
are optimal in the sense of capturing, on average, the greatest possible
fraction of total kinetic energy for a projection onto a given number of
modes, as reported by Smith et al. [108]

In practice the field variable v(x, t) is collected on a discrete grid
and therefore is not a continuous function of time. Instead the field
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realizations consist of a finite number N , where each of these has a value
vk(xm, tk) in each of the M grid points as:

vk =


ak1
ak2
...
akM

 , k = 1, ..., N. (7.4)

This leads to solving an eigenvalue problem with matrix dimensions
(M × M), which is not computationally a feasible procedure. Instead,
the discretization of the eigenvalue problem has been performed by us-
ing the so-called Method of Snapshots presented by Sirovich [109], which
transforms (7.3) into an (N × N) eigenvalue problem, where N is the
number of samples (snapshots). With this method the discretized eigen-
value problem in matrix form is formulated as:

b(1,1) . . . b(1,N)

b(2,1) . . . b(2,N)

...
. . .

...

b(N,1) . . . b(N,N)



c(1)

c(2)

...

c(N)

 = λ


c(1)

c(2)

...

c(N)

 , (7.5)

where

b(j,k) =

∫
Ωx

v(j)(x) v(k)(x) dx, c(k) =

∫
Ω
v(k)(x′) Ψ(x′) dx′. (7.6)

Equation (7.5) is an N ×N eigenvalue problem where the corresponding
solution consists of N eigenvectors cn with N eigenvalues λn. This allows
the eigenfunctions, i.e. the POD modes to be reconstructed from the

coefficients c
(k)
n via

Ψn(x) =
1

λnN

N∑
k=0

c(k)
n v(k)(x), (7.7)

which reveals the eigenfunctions as linear combinations of the snapshots.
The time coefficients may be computed by projecting the POD modes
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onto the velocity field [107, 108], which for the n-th mode and k-th sample
reads:

akn =

M∑
m=1

Ψn(xm) vkm. (7.8)

In the exploratory work of this thesis the above mentioned approach
was used in order to evaluate the POD modes [106]. In PAPER3 how-
ever, the POD modes have been extracted using a singular value decom-
position. Basically, a correlation matrix of the field variables is singular
value decomposed such that instead of solving a large (M × M) eigen-
value problem one may instead solve a (typically) smaller one (N × N)
(as is the case in Sirovich method) and then calculate the desired POD
modes. The reader is referred to PAPER3 for the details.

7.2 Dynamic Mode Decomposition (DMD)

Dynamic Mode Decomposition is a recently developed data-based
method for extracting dynamic information from a data set sampled
at a fixed temporal/spatial interval [110, 111]. The method to extract
the dynamical characteristics, is applicable to both experimental and nu-
merical flow field data and no explicit information about the underlying
system matrix (A) is needed.

Generally, a temporal snapshot sequence of N data fields consisting
of a set of column vectors {vi}Ni=1, vk ≡ v(tk), can be presented as

VN =
[
v1, v2, v3, ..., vN

]
, (7.9)

where an ordered sequence of data is expected to take place, separated
by a constant sampling time 4t. As a first step, it is assumed that the
flow field, vk, can be written as a linear combination of the subsequent
flow field vk+1, by using a linear operator A

vk+1 = Avk, (7.10)

for k = 1, 2, ..., N−1. This assumption gives a linear tangent approxima-
tion since the original data set stems from the non-linear Navier-Stokes
equations. Moreover, the procedure allows for computing approximate
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7.2. Dynamic Mode Decomposition (DMD)

eigenvalues and eigenvectors simply by projecting the high-dimensional
matrix A onto a Krylov subspace assuming the linear mapping is con-
stant.

It can be shown that as the number of snapshots increases (as the
data sequence given by VN captures the underlying physical process),
the flow field given by (7.10) is assumed to approach a linear dependency.
When this limit is reached, i.e. beyond a critical number of snapshots,
the vector vN can be expressed as a linear combination of the previous
N − 1 vectors vi,

vN =

N−1∑
i=1

vici + r, (7.11)

where r is the residual and {ci}N−1
i=1 = {c1, c2, ..., cN−1} are the weights.

Following [112], the weights ci are obtained via least squares calculation
so as to minimize the residual, since equation (7.11) is an overdetermined
system. This yields

AVN−1 = VN−1W + reTN−1, (7.12)

where the matrix W is of companion type and given by

W =


0 0 . . . 0 c0

1 0 0 c1

0 1 0 c2
...

. . .
...

0 0 . . . 1 cN−1

 . (7.13)

The W matrix typically approximates a low-dimensional system ma-
trix representation of the full system matrix A, with a solution that
approximates some of the eigenvalues (λj) of A. Thus, the problem
becomes one of finding the eigenpairs (λ, x) for the matrix W,

Wx = λx, (7.14)

where the eigenvectors, x, provide a linear combination of basis coeffi-
cients in order to extract the corresponding dynamic modes

Ψj = VN−1xj . (7.15)
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The associated eigenvalues (λj) provides the growth rate, σj = <{ln (λj)}
/4t, and the frequency, fj = ={ln (λj)}/2π4t, of the corresponding
eigenmode Ψj .

The W-matrix method might cause an ill-coonditioned algorithm
when extracting the dominant dynamic modes [110]. An alternative to
the companion matrix yielding a more robust implementation is the so-
called ‘full matrix’ approach, W̃, which is related to W via a similarity
transformation by using a singular value decomposition of the extracted
flow field data [110]. Both of these methods have been used in this thesis,

where the DMD formulations based on W̃ can be seen in PAPER3.
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CHAPTER 8

Unpublished Work

The experimental study of an elastically mounted circular cylinder
was performed in collaboration with Dr. S.M. Hosseini, who also de-
signed the cylinder and conducted image processing of the gathered data.

Experimental Study of VIV of a Circular Cylin-
der

The present experiments were performed in a confined water-channel
made of plexiglass, at Lund University. The working section had a cross-
section area of 10 cm × 10 cm and a length of 30 cm. The free-stream
velocity V∞ was varied in between 0.042 m/s and 0.28 m/s in order
to capture the expected high-amplitude of oscillations from numerical
simulations. The cylinder was 9.16 cm long and had a diameter D of
1 cm giving an aspect ratio of 9.16. Moreover, the supporting plates
at which the ball bearings were placed had a thickness of 0.34 cm each.
The diameter d of the ball bearings were varied between 0.3 and 0.4 cm
depending on the relative resistance to the cross-section. The Reynolds
number based on the free-stream velocity V∞, the cylinder diameter D
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and a kinematic viscosity ν at room temperature (24 Celsius degrees)
of 1.004 x 10−6 m2/s was, analogous to the free-stream velocity, varied
between 415 and 2759.

Within numerical simulations the response dynamics is presented in
the plane of {A?, V ?} and {(f?/f?N ), V ?}. For this reason, a correspond-
ing set of structural- and flow parameters has to be chosen in the experi-
ments in order to be able to match an equivalent flow regime as for numer-
ical simulations. Nevertheless, the matching of equivalent flow conditions
(between numerical simulations and experiments) requires suitable pump

equipment and correct stiffness, since fN = 1
2π

√
k
m and V ? = V/(fND).

For this set of experiments a cylinder made of plexiglass with a density
of ρplexyglas = 1190 kg/m3 was used. Moreover, the rigid cylinder was
assembled symmetrically in the test-section with four extension-springs
mounted on each side (up and down), where each spring had a stiffness of
k = 6 N/m. Further, before the experiments could start a pre-calibration
was conducted in order to evaluate the actually spring stiffness experi-
enced of the complete set of cylinder-spring system in the transverse
direction to the free-stream flow. From the calibration data the (aver-
aged) stiffness of the cylinder-spring system is evaluated to kstiffness =
3.22 N/m. A schematic diagram of the experimental arrangement and
the rigid cylinder in the test-section, which is allowed to move in two-
degrees of freedom is shown in Figure 8.1 and 8.2, respectively.

Figure 8.1: A schematics of the experimental arrangement.
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Figure 8.2: Pictures of the cylinder assembling in the test-section.

Image Processing

The amplitude and frequency motion of the cylinder, and, the lift and
drag forces was measured by using a high-speed Phantom V 7.1 camera
composed of 256 × 256 pixels and 200 fps frame rates. In total, 6000
frames were captured in each measurement and the time difference be-
tween each two frame was 0.005 sec. Each image has a size of 30 × 30
mm2, which yields a resolution of 0.12 mm/pixel.

For post-processing of the data, a ‘movement target’ consisting of
a black tape of rectangular shape was assembled on the center of the
cylinder’s cross sections with the size of 1.2 × 7.8 mm, which is 100
times smaller than the displacement of the cylinder. Figure 8.3 (a) and
8.3 (b) show the moving target and a sample of one particular image,
respectively.

Further, the collected data was evaluated by utilizing an image-
processing program which detects the instantaneous motion of the mov-
ing target, i.e. the cylinder. This allows to calculate the amplitude of the
motion by positioning the center of the rectangular target in each frame
and in turn determine the displacement of the target between each two
continual frames. The details of the image-processing can be described
briefly (chronologically) as follows:

1. A Gaussian filter is applied to each image.
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(a) A sample image.
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(b) Movement target.

Figure 8.3: Image processing and detection procedure.

2. A threshold value is evaluated based on the PDF distribution of
each pixel value in order to convert all frames to binaries.

3. The binary frames are used to detect each pixel at the boundary
of the target.

4. A straight line is fitted to each side of the target by using geometri-
cal (x, y) information of the position of each pixel at the boundary.

5. A double PDF method is applied to calculate the slope of each
fitting line.

6. The final shape of the target is determined by estimating the area
of the four fitting lines.

7. Finally, the position of the target, and hence the cylinder, is deter-
mined by evaluating the center of the target based on the previously
calculated area.

Following this procedure, the velocity (v) and the acceleration (a) of the
oscillating cylinder can be evaluated by evaluating the spatial (4x) and
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temporal (4t) distance between two frames according to:

v =
4xi
4ti

, a =
vi+1 − vi
4ti

, (8.1)

where i is the number of frame. The accuracy of the image-processing
was estimated by evaluating the cross section of each rectangular target
and compare with the calibration image. The total number of pixels
in each target is 650 pixels and the uncertainty was estimated to ±6
pixels, which gives an error of almost one percentage. Based on this,
the maximum frequency of the cylinder motion was estimated to 10 Hz,
which yields that at least 20 data points were collected in each cycle
(between upper and lower turning points) of oscillation since the frame
rate was 200 Hz.

Preliminary Results

The experimental results of the cylinder, allowed to move in-line and
transverse to the fluid flow, is depicted in Figure 8.4. The presented
results are shown only for the transversal motion though. Here, it can
be observed that the amplitude response is represented by the initial and
the lower branches for low and high reduced velocities, respectively. Fur-
ther, the characteristics of the amplitude of motion shows that percepti-
ble high-amplitude of oscillations, characterized by the synchronization-
range, occurs for reduced velocities in the range, V ? ≈ 3 − 6. This
behaviour seems to be a reduced version of the data presented by Kha-
lak and Williamson [3] and Cesur [5], at which the synchronization region
appears for V ? ≈ 3 − 10 and V ? ≈ 4 − 9, respectively. In addition, the
maximum amplitude of oscillations seems to be reduced with a factor of
about 1.36 compared with the numerical simulations of Cesur [5], which
where performed for similar flow and set-up conditions.

The frequency response of the cylinder motion shows that, even
though not as distinct, that the cylinder-spring system is composed of a
the three-fold dynamic state, i.e. the shedding frequency for a stationary
cylinder, the natural frequency in still-water and the in vacuo natural
frequency.

The explanation for the discrepancy between the experiments and
found results (as those mentioned above) may be related to a series of
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sources. Among these, the human factor is one of them e.g. in the
assembling process, in the camera monitoring and in particular in the
process of flow regulation for desired level. Besides these influences, it
was observed during the experiments that the cylinder was intermittently
inhibited in its motion, changing between a rapid and slow, but incoher-
ent motion for a given flow rate. It is not yet known whether if this
behaviour is caused by uncontrolled friction in the test-section or if it
is actually the free-stream turbulence that alters the cylinder response
dynamics since, with reference to Khalak and Williamson [3] and other
related co-works, no free-stream turbulence has been reported in their
experimental studies.
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Figure 8.4: Amplitude and frequency response of the transversal cylin-
der motion from experiments for m?=1.35.
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CHAPTER 9

Concluding Remarks

This chapter presents the overall achieved conclusions in this thesis
work, which are based on the results of four manuscripts. For a better
understanding, the reader is primarily referred to these manuscripts.

Large eddy simulations of fluid-structure interaction problems are
carried out in this thesis work. The main effort has been placed on
clarifying in which way and how flow structures in the near-wake of
certain bluff bodies interact with the corresponding objects.

The results of three-dimensional flow around an elastically mounted
circular cylinder show that a strong shedding mechanism dominates com-
pletely the flow in the synchronization region. When the cylinder is
at a state just prior to the initial branch the natural frequency clearly
dominates the cylinder motion unlike its corresponding wake structure
contributing with relatively weak influence. For the posterior part of
the lower branch, although the cylinder-wake dynamics have similari-
ties with ‘prior-to-the initial branch’, the flow-cylinder dynamics was
rather complicated and the inherent frequency content was much more
broadband. In summary, it was suggested that vortex-pairing of a low-
frequency mode and vortex shedding was the underlying mechanism of
the flow-(single) cylinder dynamics.
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Non-staggered (and similarly for staggered) multiple cylinders at ‘prior-
to-the initial branch’ showed that upstream cylinders oscillate in-phase.
The symmetry of the dominating wake structure was, however, the same
as in the synchronization region, where the upstream and downstream
cylinder pairs oscillated (almost) 180◦ out-of phase. A similar obser-
vation was found for a very resilient mode in the posterior part of the
lower branch for multiple cylinders placed in a non-staggered arrange-
ment. Two opposing mechanisms were suggested, one competing for the
(upstream) cylinders to oscillate in phase, and the other one being the
ordinary shedding for an oscillation (roughly) 180◦ out-of phase.

A low-frequency mode (representative for a specific decomposed wake
structure) was also detected in the simulations of both stiff and flexible
cantilever beam. It was observed to be formed around the separation re-
gion behind the beam with rather large structures. It was enthralling to
realize (by verification) that the interaction of this low-frequency mode
with the shedding mode induced new modes, which in turn gave rise,
through interference effects, to a beat frequency in the force and dis-
placement. As a result, an increase in the concentration of near-wake
structures around the flexible beam could be observed (via projection of
modes) at certain instants in the temporal domain which was seen as
increased transversal and streamwise forces attained at the beam.

As a close-up, a direct one-to-one tracing of the mutual beam-wake
dynamics was conducted to outline the difference in the dynamics be-
tween a stiff and a cantilever beam. This was done for one loading cycle,
consisting of moderate and intensive forcing, by investigating the charac-
teristics of the unsteady flow structures in the wake in conjunction with
the response of the beams. The difference(s) in the high forcing situation
between the two beams was coupled to the change in the entrainment
effect associated with the downwash flow, which for the flexible beam,
is not able to disturb the von-Kármán vortices shed from the side-walls
of the beam as intense as for the stiff beam case. Hence, the enhance-
ment of the strength of the von-Kármán vortices in conjunction with a
decrease of the base pressure (due to a less downwash) behind the beam
leads to an increase of the total forces in the different directions.
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CHAPTER 10

Summary of Publications

PAPER I

A. Feymark, A. Cesur, N. Alin, C. Fureby, J. Revstedt, R. Bensow.
“Fluid-Structure Interaction using Parallel Open Source Software with
Application in Hydroelasticity”. Submitted to Journal of Computational
Physics, 2013.

In this paper a numerical methodology based on Implicit Large Eddy
Simulation capable of providing high fidelity predictions of Fluid-Structure
Interaction with application in hydroelasticity is proposed. Furthermore,
a fully parallel and strongly coupled solution algorithm is utilized in order
to avoid numerical instability phenomena. One major reason to instabil-
ity is the added mass effect, typically arising when the densities of fluid
and solid are comparable as in hydroelasticity. The use of Large Eddy
Simulation is motivated by the transient nature of, for instance, propeller
induced vibrations and noise. The implementation relies on open source
toolkits only, with OpenFOAM as flow solver and OOFEM as the struc-
tural solver. The numerical accuracy, convergence, and efficiency, of the
FSI methodology, are benchmarked while predicting the deformations of
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a flexible cantilever beam in a cross-flow. Furthermore, a validation pro-
cedure is performed, comparing predictions with the experimental data
of a deforming hydrofoil. The whole methodology is found to be robust
and stable.

The author carried out the numerical simulations and was one of the
two main responsible writers of the paper. Further, the author contributed
in developing a structural solver required for the FSI simulations of a
deformable cantilever.

PAPER II

A. Cesur, A. Feymark, J. Revstedt. “A Large Eddy Simulation
Based Fluid-Structure Interaction Study of a Stiff and a Flexible Can-
tilever Beam”. Submitted to Journal of Physics of Fluids, 2013.

The force loading on a cantilever beam is characterized by periodi-
cally occurring low and high force fluctuations, here denoted moderate
and intensive states, respectively. In this work detailed qualitative stud-
ies of the wake flow for each of these responses are performed, both stiff
and flexible (i.e. elastically deforming) cantilevers. The flow is simulated
using an implicit large eddy simulation (ILES) approach in OpenFOAM
and the structural deformation of the beam is found from a non-linear
finite element approach using OOFEM. The motion of the fluid mesh
due to the structural deformation is handled by an ALE method. The
results reveal an intricate interaction between the vortices causing these
two distinctly different states and that the deformation of the cantilever
further ads to the complexity of the wake structures.

The author carried out the transient part of the numerical simula-
tions, participated in the post-processing of the results and wrote a major
part of the paper.
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PAPER III

A. Cesur, C. Carlsson, A. Feymark, L. Fuchs, J. Revstedt. “Anal-
ysis of the Wake Dynamics of Stiff and Flexible Cantilever Beams using
POD and DMD”. Submitted to Journal of Computers & Fluids, 2013.

The wake flow behind a cantilever beam of quadratic cross-section
at a Reynolds number of 50000 is investigated using detailed simula-
tion. Two cases are considered, the first one using a stiff beam and the
second one with a beam allowing for flexible deformation of the beam
due to the hydrodynamic forces. The flow is simulated using an implicit
large eddy simulation (ILES) approach in OpenFOAM and the struc-
tural deformation of the beam is found from a non-linear finite element
approach using OOFEM. The motion of the fluid mesh due to the struc-
tural deformation is handled by an ALE method. The wake structures
are investigated using proper orthogonal decomposition (POD) and dy-
namic mode decomposition (DMD) of the flow field. The results show
that apart from the wake structures originating from the vortex shedding
there is also a low frequency mode, which is an oscillatory motion in the
stream-wise direction present.

The author carried out the transient part of the numerical simula-
tions, participated in the post-processing of the results and wrote a major
part of the paper.

PAPER IV

A. Cesur, C. Carlsson, L. Fuchs, J. Revstedt. “Modal Analysis for
Oscillating Cylinder Arrays at Low Reynolds number”. Submitted to
Journal of Fluids and Structures, 2013.

A numerical study of three-dimensional flow around an elastically
mounted single cylinder have been investigated using implicit Large Eddy
Simulations (ILES). The simulations are conducted for laminar flow at
the Reynolds number of 400, based on the bulk velocity and the cylinder
diameter. The core of the investigation was focused to outline the corre-
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lation between cylinder response dynamics and its associated wake struc-
tures when exposed to VIV using Fast Fourier Transform (FFT) analysis
together with the flow decomposition technique called, Dynamic Mode
Decomposition (DMD). This was done for three different reduced veloc-
ities, V?=2.5, 6.0 and 12.0, corresponding to specific flow and cylinder
dynamics just before the initial branch, at the lower branch lock-in and
posterior part of the lower branch, respectively. The findings for a single
cylinder was carried over to a group of four circular cylinders, also elasti-
cally mounted, in a quadratic and staggered arrangements. The strength
of Dynamic Mode Decomposition, by reducing the large number of de-
grees of freedom to only a limited set of modes, is seen as advantageous
for extracting dynamics with specific frequencies when compared to e.g.
Proper Orthogonal Decomposition (POD).
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[111] C.W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D.S. Hen-
ningson. Spectral analysis of nonlinear flows. Journal of Fluid
Mechanics, 641:115–127, 2009.

[112] A. Ruhe. Rational krylov sequence methods for eigenvalue compu-
tation. Linear Algebra and its Applications, 58:269–295, 1984.

106


