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Abstract

Direct and inverse scattering from dispersive media are studied in the time
domain. The media are one-dimensional and homogeneous but can be im-
pedance mismatched to the surrounding media. A time domain method is
introduced where the reflection and transmission kernels are obtained from
Volterra equations of the second kind. Numerical examples are given based
upon both synthetic and measured data for the inverse problem.

1 Introduction

The dispersion relations for polar liquids have been extensively examined by time
domain spectroscopy. The inverse scattering method presented in this paper has
been developed with these applications in mind, eventhough it is a general method
for dispersive media. The dispersive effects of a polar liquid are due to the fre-
quency dependence of the complex permittivity. The majority of earlier results on
the determination of the complex permittivity are based upon reflection measure-
ments, cf. [3]– [5], but also transmission measurements have been used, cf. [6]. The
construction of the complex permittivity from the measured data are mostly done
in the frequency domain. The reflected or transmitted signal is then Fourier trans-
formed and by dividing by the Fourier transform of the incident signal the reflection
or transmission coefficient is formed. These coefficients are nonlinear functions of
the complex permittivity and the explicit expressions are well-known. These non-
linear equations are to be solved for the complex permittivity. The solution to the
equations are non-unique and a major problem in a frequency domain approach is
to pick the right solution. Different techniques have been used to get the correct
solution, cf. e.g., [4] and [5]. The time-domain methods that have been used are
only approximate, cf. [3].

In the present paper a time domain technique is presented for the inverse problem
of finding the dispersion relation from a time domain spectroscopy experiment. The
direct scattering problem is analyzed by the same technique. The major advantages
of this time domain method over frequency domain methods are that the inverse
problem is reduced to a uniquely solvable problem and that the solution is also
guaranteed to be causal. In the time domain the dispersive medium is characterized
by a susceptibility kernel. This kernel is the Fourier transform of the susceptibility
and acts as a memory function for the polarization. The inverse problem is to obtain
this susceptibility kernel from reflected or transmitted data. The corresponding
direct problem is to obtain the reflected or transmitted field given the susceptibility
kernel and the incident field.

In the present method the inverse method is solved in two steps. In the first step
the reflection or transmission kernels are obtained by deconvolution from measured
reflected or transmitted fields. The kernels are the impulse response of the medium.
It is seen that the impulse response is related to the susceptibility kernel by Volterra
equations of the second kind. These Volterra equations are well-posed and are
straightforward to solve numerically. Given the exact reflection or transmission
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kernels the susceptibility kernel can be obtained with any accuracy. There are
other time-domain methods for solving the inverse problem, cf. [1] and [10]. Those
methods are more general in that they can be generalized to inhomogeneous media.
However, for homogeneous media, they lead to much slower algorithms than the
ones obtained from the method presented in this paper.

In Section 2 the constitutive relation for a dispersive dielctric, the wave equation
and the boundary conditions are presented. In Section 3 reflection and transmis-
sion operators are introduced and relations between these operators are derived. In
Section 4 the scattering operators are represented by reflection and transmission
kernels and it is seen that the operator relations lead to Volterra equations of the
second kind. The relation between the susceptibility kernel and the transmission
and reflection kernels are derived in Section 5. The slab is impedance mismatched
to the surrounding media which implies that the scattering kernels will be discon-
tinuous. The values and locations of these discontinuities are given in Section 6.
The algorithms for the direct and inverse problem are presented in Section 7 and 8,
respectively. The theory have been successfully tested with measured data. In the
numerical section one such test is presented. There are also two examples where the
theory is tested with synthetic data.

2 Basic relations

A dispersive medium is characterized by the constitutive relations between the elec-
tric field E, the displacement field D, the magnetic induction B, and the magnetic
field H . In the simplest case of a non-magnetic medium the constitutive relations
in the time domain read, cf. [8] and [2]

D(r, t) = ε0εr(r)E(r, t) + ε0

∫ t

−∞ χ(r, t− t′)E(r, t′) dt′ (2.1)

B(r, t) = µ0H(r, t).

Here ε0 and µ0 are the permittivity and permeability of vacuum, respectively, εr is
the relative permittivity and χ(r, t) is the susceptibility kernel. The relative permit-
tivity reflects the instantaneous, or optical, respons of the medium. Instantaneous
then means that the time for the respons is much shorter than the typical time scale
for the variation of the electric field. It is common that media are modelled with
a relative permittivity greater than one for electric fields in the microwave regime.
The susceptibility kernel χ is a memory function which determines the dispersion of
the medium. There are certain restrictions the susceptibility kernel has to meet in
order for the medium to satisfy energy conservations. These restrictions are given
in [9]. In the numerical section some specific models for the susceptibility kernel will
be discussed.

In the present paper only homogeneous media are considered, i.e. εr is a constant
and χ(t) is space independent. The dispersive medium occupies the region 0 < z <
L and outside this slab there is a non-dispersive dielectric medium with relative
permittivity εr1. A transient wave E(z, t) = E(z, t)x̂ impinges from the region
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z < 0 on the slab at time t = 0. The constitutive relation in Eq. (2.1) then simplify
to

D(z, t) = ε0εrE(z, t) + ε0[χ(·) ∗ E(z, ·)](t).
The short hand notation for the convolution

[f ∗ g](t) =

∫ t

0

f(t− t′)g(t′) dt′

will be used throughout the paper. The magnetic field will be directed in the
y−direction, H(z, t) = H(z, t)ŷ, and thus the Maxwell equations read

∂zE(z, t) = −µ0∂tH(z, t)

∂zH(z, t) = −ε0 (εr∂tE(z, t) + [χ(·) ∗ ∂tE(z, ·)](t)) . (2.2)

The corresponding wave equation for E(z, t) is

(∂z
2 − c−2∂t

2)E(z, t)− c−2
0 [χ(·) ∗ ∂t2E(z, ·)](t) = 0.

where c = (µ0ε0εr)
1/2 is the wave front speed in the slab and c0 = (µ0ε0)

1/2 is the
speed of light in vacuum. A wave splitting is now done with respect to the principal
part, ∂2

z − c−2∂2
t , of the wave equation. The following change of basis is introduced

E±(z, t) =
1

2
{E(z, t)± ZH(z, t)} =

1

2

{
E(z, t)∓ c

∫ t

0

∂zE(z, t′) dt′
}
,

where Z is the wave impedance

Z =

√
µ0

ε0εr
.

The wave impedance outside the slab is denoted Z1. In the non-dispersive regions
z < 0 and z > L the split fields E+ and E− are left (negative z−direction) and right
(positive z−direction) moving waves, respectively. It is convenient to introduce the
incident, reflected, and transmitted fields as:

Ei(z, t) = E+(z, t) = E+(0−, t + z/c1) = The incident field for z < 0.

Er(z, t) = E−(z, t) = E−(0−, t− z/c1) = The reflected field for z < 0.

Et(z, t) = E+(z, t) = E+(L+, t− (z − L)/c1) = The transmitted field for z > L.

where c1 = (µ0ε0εr1)
−1/2 is the wave front speed outside the slab.

The boundary conditions at z = 0 and z = L are that both the electric and
magnetic fields are continuous

Er(0−, t) = r0E
i(0−, t) + t1E

−(0+, t) (2.3)

E+(0+, t) = t0E
i(0−, t) + r1E

−(0+, t) (2.4)

E−(L−, t) = r1E
+(L−, t) (2.5)

Et(L+, t) = t1E
+(L−, t). (2.6)

The reflection and transmission coefficients are defined as

r0 = −r1 = Z−Z1

Z+Z1

t0 = 2Z
Z+Z1

t1 = 2Z1

Z+Z1
.
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3 Scattering operators

The strategy to solve the scattering problem is to split it into three parts. In the
first part the scattering operators for an impedance matched slab are determined.
The half-spaces z < 0 and z > L are then impedance matched to the slab, i.e., the
relative permittivity equals εr everywhere. The second part concerns the scattering
operators for a slab with an impedance mismatched backwall z = L, i.e. where
the half-space z > L has the permittivity εr1. These operators are related to the
operators for the impedance matched slab through the boundary conditions at z =
L. In the last part the scattering operators for the entire slab, i.e. a slab with
an impedance mismatched frontwall and backwall, are introduced. By utilizing the
boundary conditions at z = 0 these operators are related to the operators for the
slab with an impedance mismatched backwall. This technique of finding relations
between scattering operators has some similarities with the Redheffer star product
method, cf. [12].

The following scattering operators will be used in the analysis:

Er(0, t) = REi(0, t) (3.1)

Et(L, t) = T Ei(0, t) (3.2)

E−(0+, t) = G−b E+(0+, t) (3.3)

Et(L, t) = G+
b E

+(0+, t) (3.4)

E−(0+, t) = G−E+(0+, t) + F−E−(L−, t) (3.5)

E+(L−, t) = G+E+(0+, t) + F+E−(L−, t) (3.6)

The interpretation of these operators are:

R = The reflection operator for the entire slab.

T = The transmission operator for the entire slab.

G−b = The reflection operator for the slab with a matched frontwall z = 0

but a mismatched backwall z = L.

G+
b = The transmission operator for the slab with a matched frontwall

and mismatched backwall.

G− = The reflection operator for the slab with matched front- and backwall.

G+ = The transmission operator for the slab with matched front- and backwall.

F+ = The reflection operator for transmission from z = L to z = 0 for

the impedance matched slab.

F− = The transmission operator for transmission from z = L to z = 0 for

the impedance matched slab.

Since the slab is isotropic and thus reciprocal it follows that

F− = G+ (3.7)

F+ = G−. (3.8)
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It is also convenient to introduce W as the inverse operator of G+

WG+ = I = the identity operator. (3.9)

This means that

E+(0+, t) =W
(
E+(L−, t)− G−E−(L−, t)

)
. (3.10)

A number of useful relations between the scattering operators can be found by
utilizing the boundary conditions. The relations obtained in this section are in the
next section seen to result in Volterra equations for the scattering kernels. From
Eqs. (3.3), (3.5), and (3.7) it is seen that

G−b E+(0+, t) = G−E+(0+, t) + G+E−(L−, t). (3.11)

In this relation E+(0+, t) can be expressed in terms of E±(L−, t) from Eqs. (3.10),
(3.3), (3.5), and (3.7) and thus

G−b W (E+(L−, t)− G−E−(L−, t)) =

= G−W (E+(L−, t)− G−E−(L−, t)) + G+E−(L−, t). (3.12)

By using the boundary condition in Eq. (2.5) the following operator identity is
obtained from Eq. (3.12)

G−b (W − r1G−W) = G−(W − r1G−W) + r1G+.

By applying the operator G+ and using the identity in Eq. (3.9), the final relation
between G−b and G± follows

G−b − r1G−b G− = G− − r1(G−G− − G+G+). (3.13)

The relation between G+
b and G± is obtained in a similar fashion. From the operator

relation in Eqs. (3.4), (3.6) and the boundary condition Eq. (2.6) it is seen that

G+
b E

+(0+, t) = t1(G+E+(0+, t) + G−E−(L−, t)).

Utilizing Eq. (3.10) and the boundary condition Eq. (2.5) to eliminate E+(0+, t)
from this relation implies

G+
b (W − r1WG−) = t1G+W .

The operator W is eliminated by operating with G+, thus

G+
b − t1G+ − r1G+

b G− = 0. (3.14)

The final relations to be obtained are the ones between R, T , and G±b . By using
the relations in Eqs. (3.1) and (3.3), E±(0+, t) and Er(0, t) can be eliminated from
the boundary conditions (2.3) and (2.4). The resulting relation reads

R− r0I − G−b − r1G−b R = 0. (3.15)
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The transmission operator T can be expressed in terms of the operators G+
b and R

by combining Eqs. (3.2) and (3.4) and utilizing the boundary conditions, Eqs. (2.3)
and (2.4), giving

t1T − G+
b + r0G+

b R = 0. (3.16)

An alternative relation is found from Eqs. (2.4) and (3.3) which imply

E+(0+, t) = t0E
i(0, t) + r1G−b E+(0+, t).

By applying the operator product G+
b T to this relation and assuming that the op-

erators commute the relation is expressed solely in terms of the field Et(L, t). The
relation

T − t0G+
b − r1G−b T = 0 (3.17)

follows.

4 The scattering kernels

From arguments based upon invariance under time translation and causality it is
shown that the explicit expressions for the operators G− and G+ read, cf. [10],

G−E+(0+, t) = [R(·) ∗ E+(0+, ·)](t) (4.1)

G+E+(0+, t) = dE+(0+, t− τ

2
) +

∫ t−τ/2

0

T (t− t′ − τ/2)E+(0+, t′) dt′, (4.2)

where

τ =
2L

c

is the roundtrip travel time and

d = exp

(
−τχ(0)

4εr

)

is the attenuation of the wavefront for the transmitted field. The kernels R and T
are the reflection kernel and transmission kernel, respectively, for a dispersive slab
which is impedance matched to the half-spaces z < 0 and z > L. It is convenient to
introduce an operator for time translation defined as

u(t− t0) = S(t0)u(t), (4.3)

where obviously
S(t1)S(t2) = S(t1 + t2).

Thus Eq. (4.2) reads

G+E+(0+, t) = S(τ/2)
(
dE+(0+, t) + [T (·) ∗ E+(0+, ·)](t)

)
(4.4)

The representations of the operators in Eqs. (3.3)–(3.6) now follows from Eqs. (4.1)
and (4.2) and the operator relations in the previous section.
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When the representations in Eqs. (4.1) and (4.2) are inserted into Eq. (3.13) it
is seen that the operator G−b has the representation

G−b E+(0+, t) = r1d
2S(τ)E+(0+, t) + [Rb(·) ∗ E+(0+, ·)](t), (4.5)

and that the kernel Rb satisfies the Volterra equation of the second kind

Rb(t)−R(t) + r1 ([R ∗R](t)− [Rb ∗R](t))−
−S(τ) (r2

1d
2R(t) + 2r1dT (t) + r1[T ∗ T ](t)) = 0. (4.6)

The representation of the operator G+
b is found by combining Eqs. (4.1) and (4.2)

with the relation in Eq. (3.14). It turns out that

G+
b E

+(0+, t) = S(τ/2)
(
t1dE

+(0+, t) + [Tb(·) ∗ E+(0+, ·)](t)
)
, (4.7)

where the kernel Tb satisfies the Volterra equation

Tb(t) = t1T (t) + t1r1dR(t) + r1[Tb ∗R](t). (4.8)

It remains to find the representation of the scattering operators for the entire
slab, i.e. R and T . The representation of the reflection operator R is a consequence
of the operator relation in Eq. (3.15) and the representation of G−b given by Eq.
(4.5):

REi(0, t) =
∞∑
j=0

ajS(jτ)Ei(0, t) + [Rf (·) ∗ Ei(0, ·)](t), (4.9)

where

a0 = r0

a1 = t0t1r1d
2

aj = −r0r1d
2aj−1, j = 2, 3, 4, ...

Equivalently the representation of R can be written

REi(0, t) = r0E
i(0, t) + t0t1r1d

2S(τ)(1 + r0r1d
2S(τ))−1Ei(0, t) +

+[Rf (·) ∗ Ei(0, ·)](t) (4.10)

It is seen that the reflection kernel Rf is a piecewise continuous function of time
which is related to the kernel Rb by the Volterra equation

Rf −Rb + r0[Rf ∗Rb] + r0r1d
2S(τ)Rf + r0

∞∑
j=0

ajS(jτ)Rb = 0. (4.11)

The representation of the transmission operator T is found from Eq. (4.7) and Eq.
(3.16) or Eq. (3.17)

T Ei(0, t) = S(τ/2)

( ∞∑
j=0

bjS(jτ)Ei(0, t) + [Tf (·) ∗ Ei(0, ·)](t)
)
. (4.12)
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The coefficients bj are

b0 = t0t1d

bj = −r0r1d
2bj−1, j = 1, 2, 3...

In a closed form the representation reads

T Ei(0, t) = S(τ/2)
(
t0t1d(1 + r0r1d

2S(τ))−1Ei(0, t) + [Tf (·) ∗ Ei(0, ·)](t)
)
. (4.13)

The transmission kernel Tf is a piecewise continuous function of time that satis-
fies the Volterra equation

Tf − t0Tb + r0[Tf ∗Rb] + r0r1d
2S(τ)Tf (t) + r0

∞∑
j=0

bjS(jτ)Rb(t) = 0, (4.14)

as seen from the relation in Eq. (3.17). An alternative representation of Tf is derived
from Eq. (3.16)

Tf = t1
−1Tb + r1dRf + r1t1

−1[Tb ∗Rf ] + r1t1
−1

∞∑
j=0

ajS(jτ)Tb. (4.15)

In this last explicit expression it is necessary to know Rf as well as Rb and Tb in
order to calculate Tf , whereas in the Volterra equation (4.14) only Rb and Tb were
needed.

5 The kernels R and T

As mentioned in the previous section the kernels R and T are the reflection and
transmission kernels for a dispersive slab with permittivity εr imbedded in a non-
dispersive medium with the same permittivity. In this section equations in the time
domain are derived from which these kernels can be calculated numerically. The
basis for the derivations are the Laplace or Fourier transforms of R and T , which
are the reflection and transmission coefficients for a finite slab. These quantities are
well-known and can be found in elementary books on electrodynamics. The explicit
expressions for the Laplace transforms R̂(s) and T̂ (s) read

R̂(s) = r̂(s) 1−d2 exp(−sτ) exp(−β̂(s))

1−(r̂(s))2d2 exp(−sτ) exp(−β̂(s))
(5.1)

T̂ (s) = d exp(−β̂(s)/2)
(
1− r̂(s)R̂(s)

)
− d, (5.2)

where s is the transformed time variable. The function r̂(s) is the reflection coeffi-
cient for a semi-infinite slab, i.e.,

r̂(s) =
1− (1 + χ̂(s)/εr)

1
2

1 + (1 + χ̂(s)/εr)
1
2

. (5.3)
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The function β̂(s) contains the phase information

β̂(s) = sτ
(
((1 + χ̂(s)/εr)

1
2 − 1

)
− χ(0)τ

2εr
. (5.4)

By introducing the function ê(s) as

ê(s) = d exp(−β̂(s)/2)− d, (5.5)

the relation between R̂(s) and T̂ (s) can be written

T̂ (s) = ê(s)− (d + ê(s))r̂(s)R̂(s). (5.6)

The reflection coefficient in Eq. (5.1) may be expanded in a power series as

R̂(s) = r̂(s) +
(
(r̂(s))2 − 1

) ∞∑
i=1

d2i (r̂(s))2i−1 exp(−i(β(s) + sτ)). (5.7)

Now introduce the functions of time

r(t) = L−1 {r̂(s)}
e(t) = L−1 {ê(s)}

v(t) = L−1
{
d2r̂(s) exp(−β̂(s))

}
,

where L−1 denotes the inverse Laplace transform. A transformation of Eqs. (5.6)
and (5.7) to the time domain gives the following expressions for reflection kernel
R(t) and the transmission kernel T (t):

R(t) = r(t) +
∑∞

i=0 S((i + 1)τ) [(r ∗ r ∗ v − v)(∗r ∗ v)i] (t) (5.8)

T (t) = e(t)− d [r ∗R] (t)− [e ∗ r ∗R] (t). (5.9)

Furthermore v(t) is related to e(t) by the equation

v(t) = [r ∗ e ∗ e] (t) + 2d [r ∗ e] (t) + d2r(t). (5.10)

Thus R(t) and T (t) are known if the two functions r(t) and e(t) are known.
It will now be seen that the functions r(t) and e(t) satisfy Volterra equations

of the second kind. The equation for r(t) is obtained from Eq. (5.3) which can be
rewritten as

4εrr̂(s) + Ĝ(s)
(
(r̂(s))2 + 2r̂(s) + 1

)
= 0.

The inverse Laplace transform of this equation is

4εrr(t) + χ(t) + [χ ∗ (2r + r ∗ r)] (t) = 0, t > 0. (5.11)

The Volterra equation for e(t) is obtained by differentiation of Eq. (5.5) with respect
to the transformed time s, giving

2∂sê(s) = −(∂sβ̂(s))d exp(−β̂(s)/2).
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The inverse Laplace transform of this equation is the Volterra equation

2e(t) +
1

t
[f ∗ e] (t) + b(t) = 0, (5.12)

where

b(t) = L−1
{
β̂(s)

}
= τ

2εr
([χ′ ∗ r](t) + χ(0)r(t) + χ′(t)) (5.13)

f(t) = tb(t).

Since the equations for r(t) and e(t) both are Volterra equations of the second
kind they are well posed and straightforward to solve numerically. At this stage all
equations needed for the solution of the direct and inverse scattering problems have
been derived. Before turning to the numerical solution of the scattering problems it
is worthwhile to comment upon the discontinuities of the scattering kernels.

6 Discontinuities and initial values

The initial values and discontinuities of the scattering kernels are straightforward
to obtain from the equations in the previous sections. The initial condition of the
reflection kernels r, R, Rb and Rf are obtained from Eqs. (5.11), (4.6), and (4.11),
respectively. The values are

r(0) = R(0) = Rb(0) = −χ(0)

4εr
(6.1)

Rf (0) =
χ(0)

4εr
(r2

0 − 1). (6.2)

The initial value for T follows from Eqs. (5.9), (5.12), and (5.13) and the initial
values for Tb and Tf follow from Eqs. (4.8) and (4.15), respectively

T (0) = e(0) =
τ

4εr

(
χ(0)2

4εr
− χ′(0)

)
(6.3)

Tb(0) = t1T (0) + r1t1dR(0) (6.4)

Tf (0) = t0Tb(0)− dt0t1r0Rb(0). (6.5)

It is seen that both r(t) and T (t) are continuous functions for positive times whereas
the other kernels have discontinuities. The discontinuities only appear at multiples
of roundtrips. The following expression for a discontinuity at the time t = jτ is
used in the rest of the paper:

[F (jτ)] = F (jτ+)− F (jτ−).

From Eq. (5.8) it is seen that the reflection kernel R(t) only has one discontinuity
occuring at one round trip.

[R(τ)] = −d2r(0) = d2χ(0)

4εr
.
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The reflection kernel for the slab with an impedance mismatched backwall, Rb,
is discontinuous at the first and the second round trip. The discontinuities follow
from Eq. (4.6)

[Rb(τ)] = [R(τ)] + r2
1d

2R(0) + 2r1dT (0)

[Rb(2τ)] = r2
1d

2 [R(τ)] .

The reflection kernel for the entire slab, Rf , is discontinuous at every roundtrip, due
to the impedance mismatched front and back walls. From the Volterra equation for
Rf , Eq. (4.11), it is seen that the values of these discontinuities are

[Rf (τ)] = (1− r2
0) [Rb(τ)]− r0r1d

2Rf (0)− r0a1Rb(0)

[Rf (2τ)] = (1− r2
0) [Rb(2τ)]− r0r1d

2 [Rf (τ)]−
−r0a1 [Rb(τ)]− r0a2Rb(0)

[Rf (jτ)] = r2
0d

2 [Rf ((j − 1)τ)]− r0aj−2 [Rb(2τ)]−
−r0aj−1 [Rb(τ)]− r0ajRb(0), j = 3, 4, ...

As seen from Eq. (4.8) the transmission kernel for the slab with an impedance
matched backwall has only a discontinuity at one roundtrip where

[Tb(τ)] = r1t1d [R(τ)] = r1t1d
3χ(0)

4εr
.

The transmission kernel for the entire slab, Tf , is discontinuous at each roundtrip.
The values of these discontinuities are obtained from Eq. (4.15) and read

[Tf (τ)] = r1d [Rf (τ)] + t0 [Tb(τ)] + r1t
−1
1 a1Tb(0)

[Tf (jτ)] = r1d [Rf (jτ)] + r1t
−1
1 (aj−1 [Tb(τ)] + ajTb(0)), j = 2, 3, ...

7 The direct scattering problem

The direct scattering problem is to determine the scattering kernels Rf and Tf given
the susceptibilty kernel χ(t), the permittivities εr and εr1 and the length L of the
slab. The numerical tools needed to solve the direct problem boil down to a routine
for convolution and a numerical solver of Volterra equations of the second kind.
Both of these routines are very simple and they only require a few lines of code.
The algorithm to obtain the reflection and transmission kernels Rf and Tf is

1. Solve Eq. (5.11) for r(t).

2. Solve Eqs. (5.13), (5.12), and (5.10) for b(t), e(t), and v(t).

3. Construct R(t) and T (t) from Eqs. (5.8) and (5.9).

4. Solve Eqs. (4.6) and (4.8) for Rb(t) and Tb(t).

5. Solve Eqs. (4.11) and (4.14) for Rf (t) and Tf (t).

In the last step Eq. (4.15) can be used instead of Eq. (4.14) to obtain Tf .
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8 The inverse problem

In the inverse problem the kernels Rf and Tf are assumed to be known from experi-
ments and the task is to construct the susceptibility kernel from one of these kernels.
The permittivity of the slab, εr, and of the surrounding media are also assumed to
be known from experiments. In a reflection experiment the permittivity of the slab
is obtained from the reflection coefficient r0 which in turn is determined from the
directly reflected pulse r0E

i(0, t) in Eq. (4.9). In a transmission experiment the
permittivity of the slab is determined from the travel time L/c = L(µ0ε0εr)

1/2 of
the wavefront. Furthermore the initial value of the susceptibility kernel, χ(0), is
obtained from the attenuation of the directly transmitted pulse, d, in a transmission
experiment.

If the reflection kernel, Rf , is known up to a certain time, the susceptibility
kernel will be obtained up to the same time from the following scheme:

1. The first roundtrip, i.e. t < τ .

(a) Solve for Rb(t) = R(t) = r(t) from Eq. (4.11).

(b) Solve for χ(t) from Eq. (5.11).

2. The second roundtrip, τ < t < 2τ .

(a) Solve for T (t) for t < τ from Eq. (5.9).

(b) Solve for Rb(t) for τ < t < 2τ from Eq. (4.11).

(c) Solve for R(t) for τ < t < 2τ from Eq. (4.6).

(d) Solve for r(t) for τ < t < 2τ from Eq. (5.8)

(e) Solve for χ(t) for τ < t < 2τ from Eq. (5.11).

To obtain χ for more than one roundtrip the steps 2(a)-(e) are performed for every
new roundtrip.

The inversion of transmission data is not as straightforward as the one for re-
flection data. The scheme for the inversion is based upon the observation that in
the discretized form of the equations that relate the kernel Tf to the susceptibility
kernel χ there is a linear mapping from χ′(t) to Tf (t). Thus if time is discretized
with stepsize ∆t, the relation between Tf and the time derivative of the susceptibilty
kernel, χ′ at time j∆t, where j is an integer, can be written as

Tf (j∆t) = Aj + Bχ′(j∆t). (8.1)

The coefficient B is independent of the index j and the coefficient Aj is indepen-
dent of χ′(j∆t) but is dependent of χ at earlier timesteps. The linear mapping is a
consequence of the fact that the only operations that are involved in the equations
are convolutions and additions. The initial value χ′(0) is determined by the initial
values in Eqs. (6.1)-(6.5) since χ(0) is considered to be known. The coefficients
Aj and B can be obtained from the discretized version of the equations that deter-
mines the reflection kernel Tf . The expressions are however quite lengthy and it is
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preferable to obtain the coefficients in the following manner. First A1 and B are
determined. Choose two different dummy values χ′0 and χ′1 of χ′(∆t) and solve the
direct problem for the corresponding values of the transmission kernel. If these val-
ues of the transmission kernels are denoted Tf0 and Tf1, the following two equations
are obtained from Eq. (8.1):

Tf0 = A1 + Bχ′0
Tf1 = A1 + Bχ′1.

From this system of equations the coefficients A1 and B are solved. The value of
χ′(∆t) is then obtained from Eq. (8.1). Next the coefficients Aj and the values of
χ′(j∆t) are determined for j > 1. Assume that χ′(t) has been determined for all
discretized times up to (j−1)∆t and is to be determined for j∆t. Choose a dummy
value χ′j of χ′(j∆t) and solve the direct problem for the the corresponding value,
Tfj, of the transmission kernel. If this value is denoted Tfj it is seen that

Aj = Tfj −Bχ′j.

The value of χ′(j∆t) is then obtained from Eq. (8.1), i.e.,

χ′(j∆t) = (Tf (j∆t)− Aj)/B

It turns out that the values of Aj are very insencitive of the choosen values χ′j, as
expected. Since the initial value, χ(0), is known the susceptibilty kernel is obtained
by numerically integrating χ′(t) in time.

9 Numerical examples

Three different numerical examples are presented in this section. The first two
examples concern the determination of the scattering kernels Rf and Tf and the
reconstruction of the susceptibility kernel using these kernels as scattering data. In
the third example measured transmitted data is used to obtain the susceptibilty
kernel. The trapezoidal rule was used for the discretization of the equations which
implies quadratic convergence of the numerical calculations. The direct and inverse
algorithms and codes have been checked by comparisons with two other methods,
the invariant imbedding method, cf. [1] and the Green functions approach, cf. [10].
In both cases the agreement was excellent.

The two most common models for dispersion are the Lorentz model and the
Debye model. The susceptibility kernel in the Lorentz model reads, cf. [8] and [2],

χ(t) = ω2
p

sin ν0t

ν0

e−νt/2, (9.1)

where ωp is the plasma frequency, ν is the collision frequency for the electrons and
ν2

0 = ω2
0−ν2/4 where ω0 is the resonant frequency for the electron bound to the atom.

The model is relevant in the optical regime for solids. In the microwave regime solid
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Figure 1: The reflection (dotted line) and transmission kernel (solid line) for a
Lorentz medium of length 1 m and with ωp = 109 rad/s, ω0 = 109 rad/s and ν = 108

Hz, cf. Eq. (9.1). The susceptibility kernel is given in Figure 2.
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Figure 2: The Lorentz susceptibilty kernel with ωp = 109 rad/s, ω0 = 109 rad/s
and ν = 108 Hz (solid line). The susceptibility kernels reconstructed from the
transmission kernel in Figure 1 using 64 points per roundtrip (dashed line) and 128
points/roundtrip (dotted line).



15

800

600

400

200

0

-200

-400

-600

χ(
t)

x1
06    

[s
-1

]

2520151050
x10-9  [s]

Figure 3: The Lorentz susceptibilty kernel with ωp = 109 rad/s, ω0 = 109 rad/s
and ν = 108 Hz (solid line). The susceptibility kernels reconstructed from the
reflection kernel in Figure 1 using 32 points per roundtrip (dashed line) and 64
points/roundtrip (dotted line).
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Figure 4: The reflection (dotted line) and transmission kernel (solid line) for a
Debye medium of length 1 m and with α = 1010 s−1 and τ = 10−9 s, cf. Eq. (9.2).
The susceptibility kernel is given in Figure 5.
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Figure 5: The Debye susceptibilty kernel with α = 1010 s−1 and τ = 10−9 s (solid
line). The susceptibility kernels reconstructed from the reflection kernel of a slab of
length 1 m using 64 points per roundtrip (dotted line).
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Figure 6: The incident pulse for the open wave-guide experiment.
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Figure 7: The transmitted pulse for the open wave-guide experiment.
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Figure 8: The susceptibility kernel for butanol obtained from the transmission
kernel deconvolved from the transmitted field in Figure 6.

materials are approximated by non-dispersive dielectrics and the Lorentz model
is superflous. There are however media where dispersive models of Lorentz type
are relevant in the microwave regime, eg. gyrotropic media. The Debye model is
characterized by the susceptibility kernel, cf. [2],

χ(t) = αe−t/τ . (9.2)

The Debye model is appropriate for polar liquids. If an electric field is applied to
a polar liquid the liquid will be polarized due to the permanent dipole moments
of the molecules. When the electric field is shut off the polarization will decrease
exponentially due to the motion and collisions of the molecules. Values of the
relaxation time τ for polar liquids at room temperature ranges from ten picoseconds
up to one nanosecond , cf. e.g., [7]. Thus microwaves are suitable for the examination
of these media.

In the first example a Lorentz model is used. The values of the parameters in
the model are ωp = ω0 = 109 rad/s and ν = 108 Hz. The relative permittivity of the
medium is εr = 2 and outside the slab there is vacuum, i.e., εr = 1. These values
are chosen to give a reasonable test of the algorithms rather than to be physically
relevant. The length of the medium is one meter and the time trace corresponds to
three roundtrips in the slab. The reflection and transmission kernels are shown in
Figure 1. Notice the discontinuities of the kernels at one and two roundtrips. The
reconstruction of the susceptibility kernel from the transmission kernel is depicted
in Figure 2 and from the reflection kernel in Figure 3.

In the second example the slab is one meter long and consists of a Debye medium
with α = 1010s−1, τ = 10−9 s and relative permittivity εr = 2. The reflection and
transmission kernels are depicted in Figure 4 and the reconstructed susceptibility
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kernel from the reflection kernel using 64 points per roundtrip is shown in Figure 5.
The time trace is three roundtrips. With 128 points per roundtrip the reconstruction
is indistinguishable from the true kernel.

In the last example measured data is used. The medium is 1-buthanol which is a
typical Debye medium. Buthanol has a relatively long relaxation time (five nanosec-
onds) which makes it suitable as a reference medium. The complex susceptibility,
i.e., the Fourier transform of the susceptibility kernel, can be found in the literature
from frequency domain methods for frequencies up to 10 GHz, cf. [6], [3] and [4].
The measurement was made for a 20 cm long sample of buthanol. The incident pulse
was a 50 ps short pulse cf. Figure 6. The transmitted pulse was recorded for 4,8
ns which corresponds to two roundtrips, cf. Figure 7. A first order approximation
of the transmission kernel was obtained by simply dividing the transmitted pulse
by the area of the incident pulse. Of course the transmission kernel then is wrong
for the first 50 ps. However, even with this poor deconvolution method the sus-
ceptibility kernel comes out surprisingly good and the reconstructed susceptibility
kernel agrees well with data found in the literature. There is a high frequency ripple
which is the result of the poor quality of the transmission kernel for the first 50 ps.
In order to get a smoother curve for the susceptibility kernel the first 50 ps of the
transmission kernel was obtained by extrapolation from the rest of the curve. The
corresponding reconstruction of the susceptibility kernel is given in Figure 8. The
curve fits very well to a Debye model with α = 4 · 1010 s−1 and τ = 0, 5 ns. The
relative permittivity was obtained from the time delay of the transmitted wavefront.
The value was εr = 3, 3. The value of χ(0) can be obtained by measuring the atten-
uation of the directly transmitted pulse. The attenuation in a 20 cm long sample is
too large for the directly transmitted pulse to be seen. If a shorter sample holder is
used a rough estimate of χ(0) can be made. It turns out that it is not crucial for
the reconstruction to know the exact value. Even if a value of χ(0) that is way off
is put into the algorithm the reconstructed curve will already after 30-50 ps connect
to the true curve. The reconstruction is also insensitive to errors of several percent
in the value of εr.

10 Conclusions

In the present paper a time domain method for direct and inverse scattering from
dispersive media is presented. It is seen that the analysis leads to algorithms for the
direct and inverse problems. Numerically these algorithms are very robust and this is
expected since all of the equations involved in the solution are Volterra equations of
the second kind. The ill-posedness that is present in these kind of inverse problems
is localized to the deconvolution of the transmission or reflection kernel from the
transmitted or reflected field.

An encouraging result is the reconstruction of a susceptibility kernel from mea-
sured data. The result presented in this paper was the very first experiment that
was performed in a recently started project on the determination of susceptibilty
kernels for dispersive media. By combining the results obtained from reflection and
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transmission experiments and also by using different lengths of sample holders it is
expected that very good reconstructions of the susceptibility kernels can be obtained.
The results can also be further improved by using better deconvolution methods. If
pulse generators that can produce pulses of widths less than 10 ps will be available,
one would be able to determine the susceptibility kernels for all polar liquids. With
the present pulse generators the susceptibility kernels can only be determined with
good accuracy for polar liquids with reasonably large relaxation times.
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