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Abstract

A dispersion relation for the combined effect of scattering and absorption

of electromagnetic waves is presented for a large class of linear and passive

material models. By invoking the optical theorem, the result states that the

extinction cross section integrated over all frequencies is equal to the static

limit of the extinction volume. The present paper focuses on an attempt

to experimentally verify this summation rule by measuring the monostatic

radar cross section of a fabricated sample of metamaterial. In particular, the

paper utilizes the idea that, for a specific class of targets, the scattered fields

in the forward and backward directions coincide. It is concluded that the

theoretical findings are in good agreement with the measurements performed

in the frequency range [3.2, 19.5] GHz.

1 Introduction

Since the contemporary discoveries of the Kramers-Kronig relations in 1926–27,
dispersion relation techniques have been applied successfully to disparate wave phe-
nomena to model the structural properties of wave interaction with matter [3, 8].
There are at least two main advantages of dispersion relations for the analysis of
electromagnetic waves: i) they provide a consistency check of calculated quantities
when the underlying mathematical model is known to satisfy causality, and ii) they
may be used to verify whether a given mathematical model or an experimental out-
come behaves causally or not. In addition, based on the field theoretical formalism
in Ref. 11, dispersion relations can also be used to establish far-reaching connections
between concepts of different physical meanings. A comprehensive review of disper-
sion relations in material modeling and scattering theory is presented in Ref. 17.

The optical theorem or forward scattering theorem relates the extinction cross
section, or the combined effective area of absorption and scattering, to the forward
scattering dyadic [10]. As a consequence, the magnitude and phase of the scattered
field in a single direction solely determines the total power extinguished from an
applied external field. In a series of papers in Refs. 15, 14 and 16, the use of a
forward dispersion relation for the combined effect of scattering and absorption is
exploited by invoking the optical theorem. In particular, it is established that the
extinction cross section integrated over all frequencies is related to the static or long
wavelength polarizability dyadics. This result is rather intriguing, and one of its
many consequences on antennas show great potential for future applications [4, 5].

Although, the theory of broadband extinction of acoustic and electromagnetic
waves by now is well established [14, 15], and numerical simulations show excellent
agreement with the theory, its experimental verification is of scientific importance.
Thus, the purpose of the present paper is to verify a certain aspect of these the-
oretical findings by measuring the monostatic radar cross section of a fabricated
sample of metamaterial. The choice of considering a metamaterial is due to the
fact that such materials by definition do not occur naturally, and if they can be
manufactured, they are often claimed to possess extraordinary properties promising
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for various engineering applications. In addition, experimental challenges associ-
ated with the extinction measurements are discussed in the paper. For example, to
circumvent the weak signal strength of the scattered field in comparison with the
incident field, the present paper utilizes the idea that, for a specific class of targets,
the scattered field in the forward and backward directions coincide.

The main theoretical results used in this paper are summarized in Sec. 2, and
the experimental results are developed and explained in Sec. 3. Finally, the paper
is closed by some conclusions.

2 A scattering and absorption identity

Consider the direct scattering problem of a plane electromagnetic wave eikk̂·x
ê (time

dependence e−iωt) of unit amplitude impinging in the k̂-direction on a target em-
bedded in free space. The material of the scatterer is modeled by a set of linear and
passive constitutive relations which are assumed to be independent of time. Let k̂

and ê be independent of the wave number k ∈ [0,∞), and introduce the differential
cross section [7, 12]

dσ

dΩ
(k; k̂ y x̂, ê) = |S(k; k̂ y x̂) · ê|2 (2.1)

as a measure of the disturbance of the applied field due to the presence of the target.
Here, the notation k̂ y x̂ refers to the scattering of a plane wave into an outgoing
spherical wave evaluated in the x̂-direction. The scattering dyadic S is independent
of ê, and it is defined in terms of the scattered electric field Es as [11]

S(k; k̂ y x̂) · ê = lim
x→∞

xe−ikx
Es(k; x),

where x = |x| denotes the magnitude of the position vector, and x̂ = x/x. In
particular, 4π times the differential cross section in the backward direction, x̂ = −k̂,
yields the monostatic radar cross section [7, 12]

σRCS(k; k̂, ê) = 4π|S(k; k̂ y −k̂) · ê|2.

A target’s overall scattering properties are commonly quantified by the scattering
cross section σs, defined as the total power scattered in all directions divided by the
incident power flux. It is obtained by integrating (2.1) over the unit sphere with
respect to the x̂-direction, i.e.,

σs(k; k̂, ê) =

∫

dσ

dΩ
(k; k̂ y x̂, ê) dΩ. (2.2)

Based on (2.2), the extinction cross section σext = σs + σa is defined as the sum of
the scattering and absorption cross sections, where the latter is a measure of the
absorbed power in the target [1]. The extinction cross section is also determined
from the knowledge of the scattering dyadic in the forward direction, x̂ = k̂, viz.,

σext(k; k̂, ê) =
4π

k
Im

{

ê
∗ · S(k; k̂ y k̂) · ê

}

, (2.3)



3

where an asterisk denotes the complex conjugate. Relation (2.3) is known as the
optical theorem, and it is applicable to many different wave phenomena such as
acoustic waves, electromagnetic waves, and elementary particles [10, 17].

From the integral representations in Ref. 18, or the discussion on p. 11 in Ref. 12,
it follows that, for a planar and infinitely thin target subject to an arbitrary field
incident at normal incidence, the forward and backward scattering dyadics are equal,
i.e.,

S(k; k̂ y k̂) · ê = S(k; k̂ y −k̂) · ê. (2.4)

For this specific class of targets, (2.4) enables extinction measurements to be carried
out by simply detecting the scattered field in the backward direction. Of course,
both the magnitude and phase of the scattered field have to be identified. In par-
ticular, (2.4) implies that the differential cross section in the forward and backward
directions are identical, i.e.,

dσ

dΩ
(k; k̂ y x̂, ê) =

dσ

dΩ
(k; k̂ y −x̂, ê).

Note that more general methods must be introduced to experimentally determine
the forward scattered field when any of the above-stated assumptions are violated,
see pp. 320–323 in Ref. 1.

A dispersion relation for the combined effect of scattering and absorption of
electromagnetic waves is derived in Ref. 15 from the holomorphic properties of the
forward scattering dyadic [6]. The result is a summation rule for the extinction cross
section valid for a large class of linear and passive targets, viz.,

∫

∞

0

σext(k; k̂, ê)

k2
dk = 2π2̺(0; k̂, ê), (2.5)

where the static limit on the right hand side of (2.5) is non-negative. Here, the
extinction volume ̺(k; k̂, ê) is defined by the complex-valued quantity

̺(k; k̂, ê) =
ê
∗ · S(k; k̂ y k̂) · ê

k2
. (2.6)

In particular, the extinction cross section is related to the imaginary part of the
extinction volume via the optical theorem (2.3), σext(k, k̂, ê) = 4πk Im ̺(k; k̂, ê).
The extinction volume satisfies the Hilbert transform or the improper integral [19]

̺(k; k̂, ê) =
1

iπ
P

∫

∞

−∞

̺(k′; k̂, ê)

k′ − k
dk′, (2.7)

where P denotes the Cauchy principal value. The fact that the extinction cross
section is non-negative implies that the left hand side of (2.5) can be estimated
from below by the corresponding integral over [k1, k2], viz.,

∫

k2

k1

σ(k; k̂, ê)

k2
dk ≤

∫

∞

0

σext(k; ê, k̂)

k2
dk = 2π2̺(0; k̂, ê), (2.8)

where σ denotes any of σext, σs and σa. The interpretation of (2.8) is that there is
only a limited amount of scattering and absorption available in [k1, k2], and that this
amount is bounded from above by the static limit of the extinction volume [15, 16].
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Figure 1: A section of the fabricated sample (left figure) and a close-up of the
square unit cell (right figure). The line width of the printed circuit board is 0.1 mm.

3 Experimental results

In this section, measurements of the extinction cross section are presented for a
fabricated sample of metamaterial. The sample design and experimental setup are
described, and the outcome of the measurements is compared with the theoretical
results in Sec. 2. Throughout this section, the quantities introduced in Sec. 2 are
denoted by the same dependent variables also when they are formulated in the
frequency f = c0k/2π (c0 is the speed of light in vacuum).

3.1 Sample design and experimental setup

The fabricated sample is designed as a single-layer planar array of capacitive res-
onators tuned to be resonant at 8.5 GHz. It consists of 29× 29 unit cells supported
by a square FR4 substrate of edge length a = 140 mm and thickness 0.3 mm, see
Fig. 1. The relative dielectric constant of the substrate varies between 4.2 and 4.4
in the frequency range f ∈ [3.2, 19.5] GHz, with an overall loss tangent less than
4.8 · 10−3. The sample design in Fig. 1 is commonly referred to in the literature as
a negative permittivity metamaterial [13].

Monostatic radar cross section measurements are performed in the anechoic
chamber at Saab Bofors Dynamics, Linköping, Sweden. The sample is mounted
on an expanded polystyrene sample holder and placed on a pylon. Dual polarized
ridged circular waveguide horns are positioned at a distance of 3.55 m from the sam-
ple, see Fig. 2, and an Agilent Performance Network Analyzer (PNA) is used for
transmitting a continuous wave without online hard or software gating. The po-
larizations of the transmitted and received fields are parallel to the capacitors in
the printed circuit, i.e., vertically positioned in Fig. 1. The original frequency range
[2, 20] GHz is reduced to [3.2, 19.5] GHz due to the range domain filtering of the data.
The latter frequency interval is sampled with 7246 equidistant points corresponding
to an unambiguous spatial range of 66.7 m which is sufficient to avoid influence of
any room reverberations.
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Figure 2: The experimental setup in the anechoic chamber (left figure) and the
fabricated sample with 29 × 29 unit cells supported by a square FR4 substrate of
edge length 140 mm (right figure).

Calibration including both amplitude and phase is performed using a metal plate
with the same outer dimensions as the sample in Fig. 2. A physical optics approxima-
tion for a perfectly electric conducting plate is adopted as the calibration reference,
see p. 523 in Ref. 12. In order to validate the calibration, a method of moments
calculation is also performed. It is concluded that the method of moments solution
does not deviate significantly from the physical optics approximation. In addition to
being a calibration reference, the metal plate is also used to align the experimental
setup using the specular reflection of the plate.

The data from the measurements are processed by a coherent subtraction of the
background followed by a calibration using the physical optics approximation. The
frequency domain data is then transformed to the range domain, where the response
from the sample is selected from the range profile using a 1.1 m spatial gate. Finally,
the selected data is transformed back to the frequency domain.

3.2 Measurement results and comparison with theory

The monostatic radar cross section of the sample is depicted by the solid line on
the left hand side in Fig. 3. In the figure, the first resonance at f0 ≈ 8.5 GHz is
observed as well as an increase in the monostatic radar cross section with frequency,
consistent with the specular reflection of the sample. As the sample is sufficiently
thin, the forward scattering dyadic is approximated by the scattering dyadic in
the backward direction. In particular, this approximation is used to calculate the
extinction cross section via the optical theorem (2.3). The result is depicted on
the right hand side in Fig. 3. From the figure it is seen that the extinction cross
section is non-negative confirming the validity of (2.4) since phase deviations in the
scattering dyadic introduce significant errors in the extinction cross section.

The forward scattering dyadic is also used to determine the extinction volume,
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Figure 3: The monostatic radar cross section (left figure) and the extinction cross
section (right figure) in units of the forward projected area a2. The solid lines
correspond to measured data whereas the dashed lines are given by (3.2).

and the result is depicted on the left hand side in Fig. 4. From the figure it is
observed that the real-valued part of the extinction volume vanishes at the reso-
nance frequency f0 ≈ 8.5 GHz, whereas at the same frequency, the corresponding
imaginary part attains its maximum value. This observation can be understood
by approximating the resonance on the left hand side in Fig. 4 with the Lorentz
resonance model, see pp. 228–232 in Ref. 1, i.e.,

̺(f ; k̂, ê) ∝
f 2

0 + ifν0

f 2
0 + 2iff0/Q0 − f 2

, (3.1)

where Q0 denotes the Q-factor of the resonance. Also, note in Fig. 4 that the
frequency scaling in (2.6) amplifies the noise in the measurements for low frequencies.

The function ζ(k; k̂, ê) = 4π Im ̺(k; k̂, ê)/k, corresponding to the integrand
in (2.5), is depicted on the right hand side in Fig. 4. Compared with the figure
on the left hand side, additional noise amplification for low frequencies is observed.
The shaded area on the right hand side is estimated by numerical integration to
7.1 cm3 and indicated by the dot in the left figure. Since ζ is non-negative, the value
7.1 cm3 provides, according to (2.8), a lower bound on the static limit of the extinc-
tion volume. Obviously, this static limit is underestimated by the integral since it
is unlikely that ζ vanishes identically outside the frequency range [3.2, 19.5] GHz.

The extinction volume is also used to verify that the experimental outcome
behaves causally in the sense that the extinction volume satisfies (2.7). In Fig. 5, it
is observed that the Hilbert transform resembles the overall frequency dependence
of the real and imaginary parts of the extinction volume. However, it is clear from
the figure that the finite frequency interval of the measured data limits its usefulness
as a method of reconstructing an unknown component of a holomorphic function.

A feasible technique to approximate the extinction volume is to use meromorphic
functions with roots and zeroes in the lower half of the complex f -plane. Numerical
tests using the algorithm in Ref. 9 indicate that it is sufficient to consider rational
functions with numerator and denominator of second and fourth degree, respectively.
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Figure 4: The extinction volume (left figure) and ζ(k; k̂, ê) = 4π Im ̺(k; k̂, ê)/k
(right figure). The solid lines correspond to measured data whereas the dashed lines
are given by (3.2). The shaded area on the right hand side is marked with a dot in
the left figure.

Such functions can be represented by the sum of two Lorentz resonance models via

̺appr(f ; k̂, ê) =
2

∑

n=1

̺n

f 2
n

+ ifνn

f 2
n

+ 2iffn/Qn − f 2
. (3.2)

The approximation (3.2) is depicted by the dotted lines in Fig. 4. Here, f1 =
9.3 GHz, Q1 = 7.8, ̺1 = 1.3 cm3, and ν1 = −27 GHz for the first term, and f2 =
20 GHz, Q2 = 1.6, ̺2 = 10 cm3, and ν2 = 3.6 GHz for the second term. In particular,
the static limit of (3.2) is given by ̺1 + ̺2 ≈ 11 cm3. The associated meromorphic
approximations of the monostatic radar cross section and the extinction cross section
follow from (3.2) and the definitions in Sec. 2. These approximations are represented
by the dotted lines in Figs. 3 and 4, and it is concluded that the approximations are
in good agreement with the experimental results.

The approximation in (3.2) is also used to establish a sharper bound on the static
limit of the extinction volume. In fact, the shaded area 7.1 cm3 on the right hand
side of Fig. 4 should be compared with the corresponding area 9.8 cm3 obtained by
integrating the dotted line over the frequency range [0, 22] GHz. The lower bound
9.8 cm3 is quite close to the static limit 11 cm3, which would be the true value
of ̺(0; k̂, ê) if the extinction volume on the left hand side of Fig. 4 is completely
determined by the dotted line. The fact that the dotted line on the right hand side
of Fig. 4 is non-zero in the static limit is also supported by the analysis of the lossy
transmission problem on pp. 191–192 in Ref. 2.

4 Conclusions

This present paper reports on measurements of the extinction cross section and
the extinction volume for a fabricated sample of a negative permittivity metamate-
rial. It is experimentally verified that the extinction cross section integrated over
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Figure 5: The real and imaginary parts of the extinction volume (solid lines) and
the corresponding reconstructed quantities using the Hilbert transform H (dashed
lines).

the frequency interval [3.2, 19.5] GHz yields a lower bound on the static limit of
the extinction volume. Also, by using the Hilbert transform and the meromorphic
approximation in (3.2), it is made plausible that the extinction volume indeed is
a holomorphic function in the upper half part of the complex k-plane and there
satisfies the asymptotic behavior discussed in Ref. 15. Among other things, the
experimental results in this paper are important for the support of the far-reaching
conclusion made in Ref. 16: there is no fundamental difference between metamate-
rials and naturally formed substances with respect to the absorption and scattering
over a frequency interval.

Similar measurements on split ring resonators will be presented in a forthcoming
paper. Forward scattering measurements on extended targets introduce further
experimental challenges that also will be addressed in the future.
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