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Abstract

This paper reviews an efficient inversion technique for complex media utilizing
transient electromagnetic scattering data. The approach to solve the scatter-
ing problems (direct and inverse) relies on a wave splitting technique and
an invariant imbedding technique. The analysis is illustrated by a numerical
example.

1 Introduction

In this paper a review of some results on propagation of transient electromagnetic
waves in spatially inhomogeneous, lossy slabs of finite length is presented. The
sources of the problem are assumed to be located outside the slab, and they gen-
erate a transient, transversely polarized wave that impinges normally on the slab.
Furthermore, the permittivity and the conductivity profiles are assumed to vary
with depth only, and the scattering problem is thus one-dimensional. The slab ex-
tends from [0, L], and outside the slab the medium is lossless and homogeneous,
see Figure 1. A more extensive treatment of this scattering problem is found in
Refs 5,6,9. Several related problems are found in Ref. 2. Reconstructions of profiles
from experimental data are found in Ref. 3.

The direct and inverse scattering problems for the continuous permittivity pro-
files are reviewed (the corresponding scattering problems for discontinuous permit-
tivity profiles are given in Refs 7-9). The direct scattering problem is to calculate
the scattering kernels from known permittivity and conductivity profiles. In the
inverse problem, these profiles are calculated from finite time traces of scattering
data. The input data set consists of finite time traces of reflection and transmission
data.

2 Basic time domain equations

The medium, which is inhomogeneous wrt the depth z, is assumed to be non-
magnetic and non-dispersive. Extensions to dispersive media are found in Refs 1,4.
The losses of the medium are modeled by a DC conductivity function o(z). The
appropriate constitutive relations are therefore

D(r,t) = ege(2)E(r

J(r,t) =0o(z)E(r,t)
B(r,t) = poH(r,t)

f)

where €(z) is the relative permittivity of the slab, and ¢, and pg are the permit-
tivity and the permeability of vacuum, respectively. The medium is assumed to be
homogeneous and lossless outside a slab of thickness L, see Figure 1.

The electric field are assumed to vary with z and ¢ only, and, furthermore, it has
only a transverse component F(z,t). The Maxwell equations and the constitutive



Figure 1: Geometry of the lossy slab. The media outside the slab are assumed to
be homogeneous, permittivity €; and ey, respectively, and lossless, i.e. ¢ = 0.

relations imply that the electric field E(z,t) satisfy the wave equation
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where the wave front speed ¢(z) is

c(z) = co/V/e(2)

and ¢ is the speed of light in vacuum. Note that there are two varying coefficients in
this wave equation, viz, the wave front speed ¢(z) (or equivalently, the permittivity
€(z)) and the conductivity o(z).

The direct scattering problem is to compute the reflected and the transmitted
fields if the material parameters, ¢(z)) and o(z), are known. The inverse problem
is the reverse; to infer information about the material parameters, ¢(z)) and o(z),
from the reflected and the transmitted fields.

3 Wave splitting

The electric field that satisfies the wave equation, (2.1), can be written as a system
of first order equations in the variable z.
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where subscript on the field, e.g., E,(z,t), denotes differentiation wrt z.

The dependent variables in this system of equations, F(z,t) and E,(z,t), are
now transformed, by the wave splitting transform, into two new dependent variables
E*(z,t).

t
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Ez(z,t’)dt’}

This transformation transforms the equation into the following system of PDEs:
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Figure 2: The imbedding geometry of the slab.

where the coefficients «(z), 3(z), v(z) and d(z) are

ale) = (5 - o) 1) == (5 -~ o)

c(2)

8) =3 (S5 + o) =5 (S5 + oo

In a homogeneous, lossless region these functions are identically zero, and the system
of PDEs decouple into right- and left-moving waves, i.e. ¢(z) = ¢ = constant and

o =0 and
E*(z,t) = f(z — ct)
E7(z,t) = g(z + ct)

These new dependent variables, E~(z,t), are therefore the natural dependent vari-
ables to work with in the solution of the scattering problem, since they generalize
the concept of reflected and transmitted fields inside the inhomogeneous medium.

4 Scattering operator formulation

This section presents the scattering operator formulation of the scattering problem
in an invariant imbedding geometry.

Consider a subsection [z, L] of the physical region [0, L], see Figure 2. Mathe-
matically, the original problem, [0, L], is imbedded in a family of problems where
the left edge of the slab, z, is the parameter that is varied. The value z = 0 cor-
responds to the full slab problem, and the other limit value, z = L, corresponds to
the absence of the slab.

The fields Et(z,t) and E~(z,t), defined at the position z, are related to each
other by the reflection operator. In the same way the fields E*(z,t) and E*(L,t) are
related to each other by the transmission operator. These operators are represented



as integral operators, where the scattering kernels R*(z,t) and T'(z,t) are defined.

E~(z,t) = /t Rt (z,t —t"ET(2,t)dt
—o (4.1)
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T(z,t—t)E"(z, t’)dt’}

In these expressions the wave front factor I'(z) and the time delay 7(z) are used.
Their definitions are
L L
[(z) = Cc<(z)> exp {—%/Z a(2)e(2) dz'}

L dz'
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The kernels R (z,t) and T'(z,t) are identically zero for negative time due to causal-
ity, i.e. R™(z,t) = T(z,t) =0 for t < 0.

As the parameter z varies from z = 0 to z = L, the corresponding kernels
R*(z,t) and T'(z,t) vary from their physical values at z = 0, R7(0,¢) and T'(0,1),
to zero values at z = L, since the subsection [z, L] then vanishes.

From (4.1) and (3.1) it is possible to derive an imbedding equation for the re-
flection kernel R(z,t), for details see Ref. 5. The result is (¢ > 0)

Ri(zi)—%ﬁ?(z,ﬂ — ()00 (2) R (2, 1)

(4.2)
1 C/(Z) + + / /
— t)dt
+2(c(z) 2) oo (2 >/R t"YRT(z,t)
The reflection kernel, R*(z,t) has the initial value [5]
1
R*(z,0%) = 1 (d(2) = (2)poo(2)) (4.3)

5 The resolvent kernel of T'(z,t)

The crucial quantity for the solution of the inverse problem is the resolvent of the
transmission kernel 7(z,t). This kernel is denoted by W (z,t) and satisfies the
resolvent equation.

T(z,t)+ W(z,t)+ (T(z,)«* W(z,-) (t) =0

The kernel W (z,t) satisfies an imbedding equation similar to (4.2). This imbed-
ding equation is (¢ > 0), see Ref. 5

W,(2,1) = —% (CC((;) +c(z),uoa(z)> {R+ 2,1) / W(zt— )R (2, t)dt}
(5.1)
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Figure 3: Reconstruction of the permittivity profile.

Notice the explicit presence of the reflection kernel R (z,¢) in the right hand side
of the equation.

The kernel W (z,t) has compact support in [0,27(2)], for a proof, see Ref. 5.
The length of time interval [0, 27(z)] is the time it takes for the wave front to travel
through the slab, reflect at the right edge at z = L, and travel back to z again. This
time interval is usually referred to as one round trip through the subsection [z, L].
The compact support of the kernel W (z,¢) and the resolvent equation can be used
to extend transmission data from one round trip to arbitrary time intervals [5].

In Section 4 the reflection kernel for reflection from the left, R*(z,t), was in-
troduced. Reflection from the right is represented by a similar reflection kernel,
R~ (z,t). This kernel has a finite jump discontinuity after one round trip, 27(z), in
the imbedding medium [z, L]. The finite jump discontinuity is related to the W (z,t)
kernel and the material parameters at z, see Ref. 5. The explicit result is

2T(Z)I/V(z, 27(2) —t"YR™(0,¢")dt' + R(0,27(2)7)
0 (5.2)

= 1 () +EEoo(2)) exp {—uo / * (o) dz’}

Notice that (4.3) contains information about ¢/(z) — ¢?(2)ueo(z), but (5.2) contains
information about ¢(z) +c*(z)ueo(z). By clever use of these two quantities, the two
parameters, wave front speed ¢(z) (or equivalently the permittivity €(z)), and the
conductivity o(z), can be constructed from scattering data. This reconstruction is
presented in the next section.
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Figure 4: Reconstruction of the conductivity profile.

6 Inversion algorithm

In this section the inversion algorithm of this paper is presented. The input data set
needed for the algorithm is given in Table 1. Three scattering kernels are required
and three constants. The scattering kernels are measure during a finite time inter-
val, [0,27(0)], which is one round trip through the entire slab. The first constant
exp {—,uo fOL o(2")c(2")dz' ¢ can be obtained from transmission data, cf. I'(0); the

other two are obtained from the medium outside the unknown slab.

Data set for inversion
R*(0,t), 0<t<27(0)
T(0,t), 0<t<271(0)
exp {—Mo fOL o(2)e(2) dz’}
¢(0) and ¢(L)

Table 1: Data requirements for inversion of the profiles €(z) and o(z2).

The inversion algorithm using the invariant imbedding equations then proceeds
as follows starting at zy = 0:

1) Use (5.1) to explicitly step W(z,t) from the current grid line z; to the next
grid line z; = 2y + h for 0 < t < 27(z).

2) Use (4.2) to implicitly step a portion of R (z,t) forward in the z-direction to
the grid point (z1,0).

3) To estimate ¢(z1) and o(z1), set z = 2z; in (4.3) and (5.2). These coefficients
are found by solving a set of non-linear equations. This is straightforwardly
done by a Newton iteration scheme.
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Figure 5: The reflection and transmission data set used in the reconstruction of
the example given in Figures 3 and 4.

4) Use (4.2) to implicitly step the remaining R*(zg,s) data forward in the z-
direction to the set of grid points at z; for 0 <t < 27(z).

5) Repeat steps 1-4 to move one grid line deeper into the medium.

The accuracy of this algorithm can be considerably improved through the use of
iteration. All that needs to be done is to add the following steps after step 4:

4a) Use (5.1) to implicitly step W(z,t) from the current grid line 2y to the next
grid line z; for 0 < ¢ < 27(z;). This can be done since ¢(z), o(z) and R*(z,t)
are known (to some degree of accuracy) on the grid lines zg and z;.

4b) Go to step 2.

7 Numerical example

In this section a numerical example is given that illustrates the performance of the
algorithm. The original permittivity and the conductivity profiles as well as the
reconstructed profiles are found in Figures 3 and 4. The input scattering data to
these reconstructions are given in Figure 5. 257 data points are used to represent the
data in the inversion algorithm, and two iterations have been used to improve the
reconstruction. As clearly is seen from Figures 3 and 4, the reconstructions are very
good and stable. Several additional examples, which illustrates the performance
with noise-corrupted data, are presented in Ref. 9.
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