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Abstract—We investigate the use of particle filter (PF) estima-
tion techniques on a hovercraft vehicle in an office environment.
Monte Carlo Localization (MCL) with particle filtering is a
popular method for localizing robots with laser range finders.
In maps featuring long, uniform corridors though, a PF can
produce low confidence estimates. When used as feedback to
control an unstable vehicle this can prove fatal. This is because,
unlike grounded wheeled vehicles, an airborne hovercraft re-
quires accurate localization not only for path planning, but for
stabilization as well. We solve the low confidence problem using
a secondary networked robot as a mobile map feature.
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I. PRIMARY HOVERCRAFT VEHICLE

Figure 1 shows our HoTDeC hovercraft vehicle (design de-
tails in [3]) which has a circular foam-mold body and a slightly
inflatable rubber skirt. Inside are embedded processors and
amps, batteries and a battery charging system. Four thrusters
are positioned as seen in Figure 3. By their arrangement they
can provide lateral forces as well as torque. A fifth thruster is
used for lift. Using a nonlinear map from force and torque to
thruster RPMs we are able to design on a simple nominal
viscous friction model shown in Fig. 4. We designed an
H∞ controller to stabilize the hovercraft on a given world
coordinate and minimize the effect of input noise. The same
controller is extended to traverse predefined trajectories. It is
not possible to use the output of a controller to estimate the
state because of gravity forces originating from unknown floor
incline. 6-DOF models using inertial sensors did not prove
effective. Feedback is therefore received from a PF which
uses a top-mounted laser scanner and a predefined map, so
the nominal model is augmented to account for PF processing

Fig. 1. Hovercraft with laser
scanner on top.

Fig. 2. Herdbot with parachute.

delays. Without accurate location and orientation estimates the
vehicle can become unstable due to the nonlinear nature of the
controller.

Fig. 3. Thrusters and torque/forces w.r.t vehicle frame (Ux, Uy , Uθ) and
world frame (Fx, Fy ,Uθ)

II. PARTICLE FILTERING FOR LOCALIZATION

The core of the PF technique is to approximate a target
distribution by a finite number of parameters by choosing a
set of random state samples (particles) drawn from the target
distribution [4]. When used in the localization problem, PFs
fit into an algorithm called Monte Carlo localization (MCL).
Each particle is sent through the state equations to generate
a new predicted pose sample. This predicted sample is then
sent through an observation equation (based on the sensors
and map) to generate a likelihood, or weight, for the predicted
pose. Our map is generated a priori and stored in the vehicle
memory. When we have our target distribution, to complete
the estimation, the correction is incorporated by resampling
the particle set proportional to the weight of the particles. A
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Fig. 4. Hovercraft Dynamics



likelihood-weighted particle average is used for feedback to
the controller. An overview of the algorithm is shown in Fig
5.

Note that in predicting the pose of the hovercraft for
resampling, we cannot rely heavily on the known thruster
commands, as some of the output is used to compensate
for relatively large ground incline disturbances. We force
the hovercraft to move slowly and use random perturbations
around the current position instead.

MCL Algorithm(χt−1, ut, zt,map):
χt = χt = 0
for m = 1 to M do

sample x[m]
t ∼ p(xt|ut, x[m]

t−1)

w
[m]
t = p(zt|x[m]

t ,map)

χt = χt+ < x
[m]
t , w

[m]
t >

endfor
for m = 1 to M do

draw i with probability ∝ w[i]
t

add x[i]
t to χt

end for
return χt

Fig. 5. The MCL Algorithm, hovercraft, herdbot and laser scan.

III. TETHERING

Due to the static nonlinearity in controller implementation
the confidence of the PF measurement on orientation needs
to be quite high. The same is necessary for velocity and
position estimation along our trajectory. Very good tracking
has been obtained in maps with distinguishable features like
in the beginning of the long hallway in Fig. 5.

As already stated, in certain uniform environments (such
the upper part of the long hallway in Fig 5) the particle
filter will generate multiple pose hypotheses that are equally
likely. When this happens, the system loses velocity control,
oscillates and cannot recover. If the hovercraft vehicle could
recognize a distinct feature in these otherwise “homogeneous”
environments, the state estimation could produce a single
hypothesis. We provide a mobile, controllable feature: the
robot referred to as the herdbot. The herdbot is shown in
Figure 2. It uses two wheel motors for differential drive and
a ball-bearing caster wheel. In order to better sense the small
robot using the laser scanner on the hovercraft, we attach a
cardboard parachute that the herdbot drags behind. Although
easily controllable, a mobile feature conflicts with the static
environment assumed by the particle filter. To overcome this
problem, the hovercraft and herdbot leapfrog their movements.
This leapfrog action is the crux of the multirobot tethering
system. Coordination is achieved through a Bluetooth wireless
channel.

IV. MULTIROBOT TETHERING ALGORITHM OVERVIEW

The hovercraft operates in two modes: Overseer and Worker,
depicted in Figure 6.

In the Overseer mode, the hovercraft is at rest at a known
location. From this stable state, it can track the changes in the

environment, as well as issue commands to the herdbot. It thus
commands the herdbot forward a specified distance. We use
the Split-and-Merge line detection algorithm from [2] to detect
the herdbot. Once the it reaches its destination, the hovercraft
commands it to stop moving, records the final destination
location, and modifies the map to reflect the change. In this
way, the localization assumption of static maps is not violated
because we change the map when localization does not occur.
At this point, the hovercraft is ready to switch into Worker
mode.

In Worker mode, the hovercraft performs all the calculations
to localize and move. This is the mobile autonomous phase
for the hovercraft. It lifts off, moves toward the herdbot,
settles into a stable location, and lands. It is during this mode
that the localization algorithms are exercised. In our MCL
algorithm, we bias our sensor model around the herdbot. If
we bias our sensor model around it, we are more likely
to get higher weights for the particles closest to the true
pose. We are doing a mixture of scan-based localization and
feature-based localization. Our leapfrog approach encourages
this hybridization. The resultant pose is fed into the H-infinity
controller, which does its job to keep the craft stable during
movement. Once the hovercraft is at rest at a known location,
it switches back to the Overseer mode, and the whole process
starts again. Details in[1].

Fig. 6. The hovercraft modes of operation
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