Distributed Performance Analysis of Heterogeneous Systems

Rantzer, Anders

2010

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Distributed Performance Analysis of Heterogeneous Systems

Anders Rantzer

Abstract—In the study of distributed systems, it is of fundamental interest to understand how specifications on local components and interconnections influence global properties of the system. In this paper, we consider linear continuous time systems described by sparse matrices. Properties of interest are stability and quadratic performance specifications such as passivity and input-output gain. In particular, for systems with sparsity structure corresponding to a chordal graph, we show that sparse performance conditions can be expressed without conservatism.

I. INTRODUCTION

Analysis of large-scale control systems has received considerable attention in the control literature. Early contributions based on dissipative theory given in [9], [5], [8] were later generalized using integral quadratic constraints [4]. In these contributions, stability and performance for a large-scale interconnected system is analyzed based on constraints on its local components. However, the criteria are conservative. In particular, failure to satisfy the stability conditions for some interconnection does not necessarily imply that the system is unstable.

The aim of this paper is to introduce a new approach for componentwise analysis of large-scale systems. For interconnected systems with “chordal” graph structure, the method is non-conservative, so the interconnection is stable if and only if the component-wise conditions can be satisfied. The exact definition of chordal graphs will be given later, but includes tree structured graphs as a special case.

Example 1 Consider a water distribution system consisting of n series-connected reservoirs illustrated in Figure 1 with the state space model below.

\[
\begin{align*}
 x_1(t+1) &= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} x_1(t) + \begin{bmatrix} w_1(t) \\ w_2(t) \\ w_3(t) \end{bmatrix} \\
 x_2(t+1) &= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} x_2(t) \\
 x_3(t+1) &= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} x_3(t) \\
 x_4(t+1) &= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} x_4(t)
\end{align*}
\]

The system matrix is lower triangular, reflecting the fact that the water only flows in one direction. Hence disturbances down-stream will have no effect up-stream. However, suppose that the water level in each reservoir is controlled based on measurements in the neighboring reservoirs. Then information can flow also up-stream and the triangular structure is destroyed. However, the matrix is still banded.

In the next section, the main idea is explained for systems defined by banded matrices. Stability of systems with chordal graph structure is treated in section IV, while the final section extends the method beyond stability to verify properties like passivity and input-output gain.

II. POSITIVITY AND STABILITY OF BANDED MATRICES

The main idea behind the results of the paper dates back at least to the 1960s. It is illustrated in Figure 4 and stated rigorously in the following proposition:

Proposition 1: Suppose that the matrix $M \in \mathbb{R}^{n \times n}$, with coefficients M_{ij}, is symmetric and banded, i.e. there exists $d < (n - 1)/2$ such that $M_{ij} = 0$ for $|i - j| > d$. If M is positive semi-definite, then there exist positive semi-definite matrices $M^k = (M^k_{ij})$, $k = 1 + d, \ldots , n - d$ such that $M = M^{1+d} + \cdots + M^{n-d}$ and $M_0 = 0$ for $|i - k|, |j - k| > d$.

Proposition 1 is an immediate consequence of the following lemma [3]. See Figure 2.

Lemma 1: Suppose that $M = (M_{ij}) \in \mathbb{R}^{n \times n}$ is symmetric and banded, i.e. there exists $d < n - 1$ such that $M_{ij} = 0$ for $|i - j| > d$. Then there exists a lower triangular matrix $L = (L_{ij})$ such that $LL^T = M$ and $L_{ij} = 0$ for $|i - j| > d$.

Given the positivity test of Proposition 1, the step to stability verification is not long:
Proposition 2: Assume $A \in \mathbb{R}^{n \times n}$ is banded, i.e. there exists $d_1 \leq 0 \leq d_2$ such that $A_{ij} = 0$ for $i-j < d_1$ and for $i-j > d_2$. Then A is Hurwitz if and only if there exist rational matrix functions $M^k(\cdot, \cdot) = (M^k_{ij})$ with

$$(sI - A)^r(sI - A) = M^1(\vec{s}, s) + \cdots + M^{n-r}(\vec{s}, s)$$

where $M^k(\vec{s}, s)$ is positive definite for $Re\, s \geq 0$, while $M^k_{ij} = 0$ for $\min\{ |i - k|, |j - k|\} > d_2 - d_1$.

A detailed proof of Proposition 2 will be given in section IV.

Remark 1. At first sight, it may look like the equality condition (1) makes Proposition 2 very sensitive to perturbations in the system coefficients A_{ij}. However, the equality can be recovered by just updating the local M^k-matrix. This works as long as the matrix remains positive definite for s in the right half plane.

Proposition 2 may be used for distributed system verification as follows: Suppose that a system has been designed to behave according to the dynamics described by the matrix A and matrix functions M^k have been computed to satisfy the conditions of Proposition 2. Suppose that each node has access to local model data A_{ij} and M^k for the neighboring nodes. Then the ith row of condition (1) can be verified in node i before the system is put into operation. If a component changes and the local dynamics is updated, a local update of M^i could be sufficient to maintain equality in the ith row. However, if the positivity of M^i is lost, it could be necessary to recompute all the performance certificates M^i, or conclude that stability has been lost.

III. Graph Notation and Preliminaries

Consider an undirected graph $G = (\mathbb{V}, \mathbb{E})$ with nodes $\mathbb{V} = \{1, 2, \ldots, J\}$ and edges \mathbb{E}. A cycle in the graph is a sequence of pairwise distinct nodes (n_1, \ldots, n_s) such that $(n_1, n_2), (n_2, n_3), \ldots, (n_{s-1}, n_s), (n_s, n_1) \in \mathbb{E}$.

A chord of the cycle graph (n_1, \ldots, n_s) is an edge $(n_i, n_j) \in \mathbb{E}$, where $1 \leq i < j \leq s$, $(i, j) \neq (1, s)$ and $|i-j| \geq 2$. The number s is referred to as the length of the cycle. The graph is called chordal if every cycle of length ≥ 4 has a chord. See the upper part of Figure 3.

A clique of the graph (\mathbb{V}, \mathbb{E}) is a subset \mathbb{C} of \mathbb{V} having the property that $(i, j) \in \mathbb{E}$ for all $i, j \in \mathbb{C}$. An ordering of the graph is a bijection $\alpha : \mathbb{V} \to \{1, 2, \ldots, J\}$. The ordering α is a perfect elimination ordering if for every $i \in \mathbb{V}$, the set

$$\{j \mid (i, j) \in \mathbb{E}, \alpha(i) < \alpha(j)\}$$

is a clique. The following result is cited from [7]:

Proposition 3: A graph has a perfect elimination ordering if and only if it is chordal.

IV. Main Result

We are now ready to give generalizations of the results in section II beyond banded matrices. The following generalization of Lemma 1, known since the 1970s [6], [1], indicates that this should be possible.

Lemma 2: Given a chordal graph $G = (\mathbb{V}, \mathbb{E})$, suppose that $M = (M_{ij}) \in \mathbb{R}^{n \times n}$ is symmetric and $M_{ij} = 0$ for $(i, j) \notin \mathbb{E}$. Then there exists a lower triangular matrix $L = (L_{ij})$ such that $LL^T = M$ and $L_{ij} = 0$ for $(i, j) \notin \mathbb{E}$.

In order to verify that $M^i(\cdot, \cdot)$ in Proposition 2 and its generalizations can be chosen as rational functions, we
state the following main result, with an independent proof.

Theorem 1: Given a chordal graph $G = (V,E)$, let $M(\cdot,\cdot)$ be a rational matrix with blocks $M_{ij}(s)$ that are non-zero only for $(i,j) \in E$. Suppose that $M(\bar{s},s)$ is Hermitean positive definite for $\Re s \geq 0$. Then there exist rational matrix functions $M^1(\cdot,\cdot),\ldots,M^J(\cdot,\cdot)$ such that for each i and $\Re s \geq 0$ the matrix $M^i(\bar{s},s)$ is identically zero outside the submatrix $E_i^TM^i(\bar{s},s)E_i$ which is positive definite, and

$$M(\bar{s},s) = \sum_{i=1}^J M^i(\bar{s},s) \quad (2)$$

For illustration of (2), see the lower part of Figure 1.

Remark 2. Notice that (2) holds if and only if

$$E_i^TM(i,\bar{s},s)E_i \equiv \sum_{j \in [i]} E_i^TM^j(\bar{s},s)E_i$$

for all i. Hence the condition has the desired sparsity and can be verified node by node.

Proof. Theorem 1 will be proved by induction over J. The statement is trivial for $J = 1$. Suppose that the statement holds for $J = n$ and we want to prove it for $J = n + 1$. Consider a chordal graph with $n+1$ nodes. After a permutation of the nodes, by Proposition 3, we may assume without restriction that the set

$$\langle i \rangle := \{ j \mid (i,j) \in E, i < j \}$$

is a clique for every i. In particular, the graph G_1, obtained by removing the first node from G, is also chordal. Partition the matrix $M(\bar{s},s)$ as

$$M(\bar{s},s) = \begin{bmatrix} M_{11,1} & N_{12} \\ N_{21} & N_{22} \end{bmatrix}$$

$$= \begin{bmatrix} M_{11,1} & M_{1,n+1} \\ M_{2,1} & M_{2,2} & \cdots & M_{2,n+1} \\ \vdots & \vdots & \ddots & \vdots \\ M_{n+1,1} & M_{n+1,2} & \cdots & M_{n+1,n+1} \end{bmatrix}$$

Then $M(\bar{s},s) = M^1(\bar{s},s) + M^2(\bar{s},s)$ where

$$M^1(\bar{s},s) = \begin{bmatrix} M_{1,1} & N_{12} \\ N_{21} & N_{22} - M_{1,1}^{-1}N_{12} \end{bmatrix} + \epsilon (E_{[i]}E_{[i]}^T - E_1E_1^T)$$

$$M^2(\bar{s},s) = \begin{bmatrix} 0 & 0 \\ 0 & N_{22} - N_{21}M_{1,1}^{-1}N_{12} \end{bmatrix} - \epsilon (E_{[i]}E_{[i]}^T - E_1E_1^T)$$

The matrix $M^1(\bar{s},s)$ vanishes outside the submatrix $E_i^TM^1(\bar{s},s)E_i$, which is positive definite for $\epsilon > 0$. For sufficiently small ϵ, also the lower right corner of $M^2(\bar{s},s)$ is positive definite. The fact that $\langle 1 \rangle$ is a clique implies that the lower right corner of $M^2(\bar{s},s)$ has the same sparsity structure as N_{22}, namely the structure corresponding to the chordal graph G_1. Hence, the desired decomposition follows from the induction assumption.

A proof of Proposition 2 follows immediately:

Proof of Proposition 2. The (if)-statement is the simple direction is trivial. The (only if)-statement follows from Theorem 1 with $M(\bar{s},s) = (sI-A)^*(sI-A)$. □

V. BEYOND STABILITY

Theorem 1 is not only useful for verification of stability, but also for other types of performance measures. To illustrate this, consider the following condition criteria for gain and passivity.
Proposition 4: The following statements about input-to-state gain are equivalent:

(i) The matrix A is Hurwitz stable and

$$\int_0^\infty |x(t)|^2 dt \leq \gamma^2 \int_0^\infty |u(t)|^2 dt$$

for solutions to $\dot{x}(t) = Ax(t) + Bu(t)$, $x(0) = 0$.

(ii) $\begin{bmatrix} (sI - A)^*(sI - A) & B \\ B^T & \gamma^2 I \end{bmatrix}$

is positive semi-definite for $\text{Re } s \geq 0$.

In addition, the following statements are equivalent characterizations of passivity:

(iii) The matrix A is Hurwitz stable and

$$\int_0^\infty y(t)^T u(t) dt + \frac{1}{2\gamma^2} \int_0^\infty |w(t)|^2 dt \geq 0$$

when $\dot{x}(t) = Ax(t) + Bu(t) + w(t)$, $y = Cx$, $x(0) = 0$.

(iv) $\begin{bmatrix} (sI - A)^*(sI - A) & \gamma^2 C^T - (sI - A)^*B \\ \gamma^2 C - B^T(sI - A) & B^TB \end{bmatrix}$

is positive semi-definite for $\text{Re } s \geq 0$.

Hence, Theorem 1 gives distributed non-conservative tests for gain and passivity respectively in interconnected systems such that the matrices in (ii) and (iv) have sparsity structure corresponding to a chordal graph.

VI. ACKNOWLEDGMENT

The author is grateful to Pablo Parrilo for introducing the literature described in [1]. The work was supported by the European Union under the 7th Framework Programme for research on Information and Communication Technologies and by the Swedish Research Council through the Linnaeus Center LCCC.

REFERENCES

