
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

The BEAST for maximum-likelihood detection in non-coherent MIMO wireless systems

Hug, Florian; Rusek, Fredrik

Published in:
[Host publication title missing]

DOI:
10.1109/ICC.2010.5501872

2010

Link to publication

Citation for published version (APA):
Hug, F., & Rusek, F. (2010). The BEAST for maximum-likelihood detection in non-coherent MIMO wireless
systems. In [Host publication title missing] https://doi.org/10.1109/ICC.2010.5501872

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 04. Jul. 2025

https://doi.org/10.1109/ICC.2010.5501872
https://portal.research.lu.se/en/publications/7a65538e-da8a-48ad-9e17-c69deac0d751
https://doi.org/10.1109/ICC.2010.5501872

IEEE COPYRIGHT NOTICE

c©2010 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, including reprinting/republishing
this material for advertising or promotional purposes, creating new
collective works for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

This material is presented to ensure timely dissemination of scholarly and
technical work. Copyright and all rights therein are retained by authors or by
other copyright holders. All persons copying this information are expected
to adhere to the terms and constraints invoked by each authors copyright. In
most cases, these works may not be reposted without the explicit permission
of the copyright holder.

Last Update: February 21, 2010

The BEAST for Maximum-Likelihood Detection in
Non-Coherent MIMO Wireless Systems

Florian Hug and Fredrik Rusek

Dept. of Electrical and Information Technology, Lund University,
P. O. Box 118, SE-22100 Lund, Sweden, Email: {florian, fredrik}@eit.lth.se

Abstract—Next generation wireless systems have to be able
to efficiently deal with fast fading environments in order to
achieve high spectral efficiency. Using multiple-input multiple-
output (MIMO) systems and exploiting receive diversity, the
spectral efficiency can be greatly increased. Commonly, the
channel is estimated via training symbols, before data detection
is carried out based on the obtained channel estimate. While
this significantly simplifies the process of data detection, it leads
in general to suboptimal results. A better approach is to carry
out joint channel estimation and data detection; we turn our
attention to joint maximum-likelihood (ML) detection which is
the optimal strategy.

In this paper, the BEAST — Bidirectional Efficient Algorithm
for Searching code Trees — is proposed as an alternative
algorithm for joint ML channel estimation and data detection and
its complexity is compared with recently published algorithms in
the literature.

I. INTRODUCTION

Achieving high-speed reliable data-transmission over dy-
namic wireless channels receives a lot of research attention
from the information theory, signal processing and wireless
communication communities. Such channels impose great
challenges due to their time-variant behavior and fast fading
properties. Commonly, a channel estimate Ĥ for the time-
varying channel H is estimated by training sequences and
is subsequently used for data detection of the following data
packet of length T , assuming the channel meanwhile to be
constant. However, especially with fast fading channels, this
approach becomes infeasible since the fraction of symbols
spent on training may not be negligible, and one might resort
to joint channel-estimation and data detection to improve the
overall system performance [1]–[7].

Incorporating MIMO systems to increase spectral efficiency
and exploiting receive diversity without channel state informa-
tion at the receiver, additional challenges have to be solved [3],
[8]–[10]. Generally, obtaining an channel estimate by training
sequences before data detection indues a significant penalty in
power and bandwidth consumption. A way to overcome this
problem is however given by considering the problem of joint
ML channel estimation and data detection for MIMO systems.

Suboptimal iterative receiving structures for joint channel
estimation and data detection for multiple antenna systems
have been studied in [1], [11], [12]. For single-input multiple-
output (SIMO) systems its was shown that the problem of
joint ML channel estimation and data detection is an integer
least-squares problem under certain constant circumstances.

Recently the problem of joint ML channel estimation and
data detection was extended to MIMO systems [13], the corre-
sponding optimization problem was formulated, and a branch-
estimate-and-bound tree search algorithm for efficiently find-
ing the ML solution was proposed.

Having a broader look at the field of coding theory one
might notice that ML decoding of block and convolutional
codes is often considered as finding a path of lowest weight
through a given trellis or tree. The BEAST [14]–[16] —
Bidirectional Efficient Algorithm for Search code Trees — is
one of the most efficient algorithm used for finding the spectral
components of block and convolutional codes as well as for
ML decoding of block codes and is realized as a bidirectional
tree search.

Following [13] we formulate an optimization problem suit-
able for joint ML channel estimation and data detection. By
slightly modifying the BEAST, an alternative, often more
efficient, algorithmic approach for obtaining the ML solu-
tion will be presented. Simulation results of the previously
introduced branch-estimate-and-bound algorithm as well as
an ordinary branch-and-bound algorithm compared with the
BEAST illustrate the reduced complexity.

II. PROBLEM DESCRIPTION

Hereinafter we will consider a wireless MIMO transmission
scheme with M transmit antennas and N receive antennas.
The MIMO channel matrix H ∈ CN×M is given by its
individual complex channel gains hij ∈ C with i = 1, 2, . . . , N
and j = 1, 2, . . . ,M . Denote the Tp pilot symbols by the
pilot matrix P ∈ ΩM×Tp and the information symbols by the
information matrix X ∈ ΩM×T , both taken from a certain
constellation Ω (e.g., BPSK, QPSK, etc.). We assume a block
fading channel model so that the MIMO channel matrix H
is constant during the transmission of a data packet of length
Tp + T . Then channel output matrix Y can be written as

Y = H [P X] +N (1)

where N ∈ CN×(Tp+T) is a noise matrix with its elements
being i.i.d. complex Gaussian random variables with zero
mean and standard deviation σ (CN (0, σ2)). Note, that the
location of the columns of the pilot matrix P is immaterial.
Furthermore, we assume the entries of X being i.i.d.symbols
and the channel matrix H to be considered as deterministically
unknown with no a priori information given [1], [4], [17].
Clearly, wireless channels may have different distributions,

like Rayleigh, Rican, Nakagami or any other kind of fading
statistics and that there are most likely correlations between
the N different receive antennas. In fact, these distributions are
needed for a joint ML channel estimation and data detection,
but are generally unknown at the receiver side. However, for
simplicity, we will use the unknown deterministic model at
the receiver side, while the actual channel follows an i.i.d.
Gaussian distribution with unit variance.

Under these assumptions, following [13], the problem of
joint ML channel estimation and data detection can be reduced
to solving

min
H,S∈ΩM×T

∥∥Y −H [P S]
∥∥2

(2)

where ΩM×T denotes the M × T -dimensional signal lattice
and S is any possible transmitted symbol matrix, since X
corresponds to the actual transmitted symbol matrix. Denote
the columns i to j, with i < j of the possible transmitted
symbol matrix S checked by the receiver and the correspond-
ing channel output matrix Y by S[i,j] and Y[i,j], respectively.
According to (1), a channel estimate Ĥi can be calculated
under the assumption of any partially transmitted symbol
matrix S[1,i] by

Ĥi = Y[1,Tp+i]

[
P S[1,i]

]†
(3)

where (·)† denotes the Moore-Penrose pseudoinverse of a
matrix. Replacing the unknown channel H in (2) by the
complete channel estimate ĤT (3), the problem of joint ML
channel estimation and data detection is given by solving

min
S∈ΩM×i

∥∥Y − Y [P S]
†

[P S]
∥∥2

. (4)

It is easy to verify that (4) can be evaluated in a tree structure,
the corresponding weight at depth i equals

min
S[1,i]∈ΩM×i

∥∥Y[1,Tp+i]−Y[1,Tp+i]

[
P S[1,i]

]† [
P S[1,i]

] ∥∥2
. (5)

Furthermore (5) is monotonically increasing with i due to
properties of the Frobenius norm,which implies that both
the BEAST and the branch-estimate-and-bound tree search
algorithm [13] can efficiently solve (2).

III. ALGORITHMS FOR SEARCHING A TREE

The final solution of (4) is given by a transmitted symbol
matrix S ∈ CM×T , which can be represented by tree of depth
T stemming from the root (at depth 0), with a path of smallest
metric weight through the tree corresponding to the solution
of (4).

Denote a single node in a tree by ξ and let ξP be its parent
node and ξC its children nodes. Every node is characterized
by two parameters: depth `(ξ) and metric weight ω(ξ). |Ω|M
branches are connecting every node ξ to its children nodes,
being labeled by a M × 1 column-vector. This column-vector
corresponds to the assumed M symbols in the ith column
of the possible transmitted symbol matrix S, where i is the
current depth of the tree. Clearly, the M symbols are chosen

out of the |Ω|M possible combinations, where |Ω| denotes the
number of symbols in Ω.

The depth `(ξ) is equal to the length (in branches) and the
metric weight ω(ξ) is calculated according to (4) by

ω(ξ) =
∥∥∥Y[1,Tp+`(ξ)] − Y[1,Tp+`(ξ)]

×
[
P S[1,`(ξ)]

]† [
P S[1,`(ξ)]

] ∥∥∥2

where S[1,`(ξ)] corresponds to the first `(ξ) columns of the
transmitted symbol matrix S, which are the M × 1 column-
vectors on the `(ξ) branches of the path arriving from the root
ξroot at the node ξ.

Among all nodes ξ at depth `(ξ) = T , the one with smallest
metric weight ω(ξ) corresponds to the solution of the joint ML
channel estimation and data detection optimization problem
(2). Note, that the memory introduced in the decoder is due
to the channel estimation Ĥ , which is based on the previously
M · i symbols S[1,i].

Besides an exhaustive tree search, several different algo-
rithms will be presented and discussed in what follows. In
[13] a so-called branch-estimate-and-bound algorithm was
proposed for joint ML channel estimation and data detection.
However, it is sufficient, and often less complex, to use
an ordinary branch-and-bound algorithm to obtain the same
result. Additionally we will propose the BEAST as an efficient
alternative for joint ML channel estimation and data detection.
Due to the fact that the BEAST was originally designed as an
efficient tree searching algorithm for obtaining the spectrum
of both block and convolutional codes and ML decoding of
block codes, it needs to be slightly modified.

We will compare the complexity and efficiency of these
algorithms with each other in terms of the average number of
memory elements per decoded bit. In order to obtain a fair and
realistic comparison, the maximum number of visited nodes
is limited in all algorithms by mnodes.

A. Branch-and-Bound Algorithm

In the branch-and-bound (BnB) algorithm, the currently best
node ξ in terms of smallest metric weight ω(ξ) is extended
during each iteration, until it has reached depth `(ξ) = T and
the corresponding path ξroot → ξ is returned.

Initializing a list with the root node ξroot of both, depth
`(ξ) and metric weight ω(ξ) zero, the algorithm removes the
best node ξbest in terms of smallest metric weight from the
list during each iterations. The depth and metric weight of
its |Ω|M children nodes are calculated and appended to this
list, before continuing with the next iteration. As soon as the
depth of the best node `(ξbest) is equal to T , the optimization
problem (2) is solved and the algorithm terminates.

Additionally, if the number of visited nodes (i.e., the number
of nodes for which the depth and metric weight were previ-
ously calculated) exceeds the threshold mnodes, the algorithm is
terminated as well. In this case the path ξroot → ξlargest, where
ξlargest has largest depth among all previous visited nodes, is
used to obtain a channel estimate Ĥ according to (3). Using

this channel estimate Ĥ , the remaining symbols for a path of
length T are decoded independently symbols-wise, using (2).
Note, that this might lead to non-ML results.

B. Branch-Estimate-and-Bound Algorithm

The branch-estimate-and-bound (BEnB) algorithm, as pro-
posed by [13], starts by obtaining an initial threshold Ttr

(cf. Section III-D). Afterwards a depth-first search is per-
formed, as long as the metric weight ω(ξ) is smaller than
or equal to the threshold Ttr. Thereby a path of length T
stemming from the root ξroot and weight smaller than or equal
to the initial threshold Ttr is obtained quickly. Finally the
corresponding path ξroot → ξ of length T is stored and the
threshold Ttr is updated by the metric weight ω(ξ), before
other possible paths are considered.

Starting from the last visited node ξ with depth `(ξ) = T
and going back towards the root node ξroot, all other possible,
not previously checked, paths are considered as long as their
metric weight is smaller than or equal to the current threshold
Ttr. Having found a node ξ with depth `(ξ) = T and metric
weight smaller than Ttr, the threshold is updated accordingly
and the path ξroot → ξ is stored as the current best result.

The algorithm terminates if there are no more possible nodes
to visit with metric weight smaller than the current threshold
Ttr, and returns the last stored path of length T . For more
detailed implementation aspects, we refer to [13].

Compared to the the initial proposal in [13], we modified
the algorithm slightly by extending always in the direction
of the children nodes with smallest metric weight. While this
does not influence the obtained results and its performance in
general, it is necessary to be able to terminate the algorithm
and obtain a reasonable results by just returning the last stored
path of length T , after having reached the threshold mnodes.
As for the branch-and-bound algorithm, the complexity limit
leads to, in general, non-ML results.

C. The BEAST

The BEAST [14]–[16] was initially designed as an efficient
algorithm for finding the spectral components of block and
convolutional codes and later modified for ML decoding of
block codes. However, as this algorithms performs an efficient
bi-directional tree search it is not far fetched to adapt it to the
concept to joint ML channel estimation and data detection.

While the previous algorithms perform only a search within
a one-sided tree, the BEAST starts searching from both sides
at the same time. In order to distinguish between the forward
and backward tree, we denote the depth and the metric weight
of a certain node ξ in the forward tree by `F(ξ) and ωF(ξ),
respectively. As the forward tree resembles the previous search
algorithms, its parameters correspond to the definition as
mentioned in Section III, that is, `F corresponds to the distance
(in branches) from the root node ξroot and

ωF(ξ) =
∥∥∥Y[1,Tp+`F(ξ)] − Y[1,Tp+`F(ξ)]

×
[
P S[1,`F(ξ)]

]† [
P S[1,`F(ξ)]

] ∥∥∥2

.

Similarity, for the backward tree, a search is started from
the toor1 node ξtoor of both, depth `B(ξtoor) and metric weight
ωB(ξtoor) zero. While the definition of the depth `B corresponds
to the distance (in branches) to the toor node ξtoor, the metric
weight is given by

ωB(ξ) =
∥∥∥Y[Tp−`B(ξ),Tp] − Y[Tp−`B(ξ),Tp]

×
[
P S[Tp−`B(ξ),Tp]

]† [
P S[Tp−`B(ξ),Tp]

] ∥∥∥2

.

Assume that the goal is to find a path through the tree of
length T , that is, ξroot → ξtoor, with metric weight smaller than
or equal to Ttr. For such a path, there exists an intermediate
node ξ, such that

ωF(ξ) ≥ Ttr

2
, ωB(ξ) ≤ Ttr

2
, `F(ξ) + `B(ξ) = T .

Hence, a search for all paths ξroot → ξtoor of metric weight
smaller than or equal to Ttr can be split into a forward search
for all paths ξroot → ξ of weight greater than or equal to
Ttr/2, and a backward search for all paths ξ → ξtoor of metric
weight smaller than or equal to Ttr/2. Based on these criteria,
the BEAST finds all paths of metric weight smaller than or
equal to Ttr as follows:

(1) Forward search: Starting at the root node ξroot, grow a
forward tree and obtain the set of nodes

F =

{
ξ
∣∣∣ ωF(ξ) ≥ Ttr

2
, ωF(ξP) <

Ttr

2
, `F(ξ) ≤ T

}
.

(2) Backward search: Starting at the toor node ξtoor, grow a
backward tree and obtain the set of nodes

B =

{
ξ
∣∣∣ ωF(ξ) ≤ Ttr

2
, `B(ξ) ≤ T

}
.

(3) Matching: Find all pair of nodes (ξ, ξ′) ∈ F × B such
that `F(ξ) + `B(ξ′) = T . Each such match uniquely
describes a path ξroot → ξtoor with its overall metric ω
being determined by (4). Discard all paths that do not
fulfill ω < Ttr (otherwise we might obtain a non-ML
result). Among the remaining paths, choose the one of
lowest metric weight and stop the algorithm. If no path
is left, increase the threshold Ttr and go to step (1).

Note, that the forward and backward search can be carried
out independently, allowing parallel implementations. During
each iteration, the previously obtained sets can be reused,
instead of restarting the search from the root and/or the toor
node. Moreover, the efficiency of the BEAST can be improved
by extending only the smaller one of the two sets (trees) during
each iteration.

As in the previous algorithms, this algorithm is terminated
if the threshold mnodes is reached. In this case the longest path
from the forward tree ξroot → ξF is combined with a suitable
path from the backward tree ξB → ξtoor. If some symbols in
the middle are not yet determined, a channel estimate Ĥ is
obtained using the two parts and the remaining symbols are

1Corresponding to the root node in the forward tree, the toor node denotes
the starting node in the backward tree (toor = root backwards)

20.017.815.613.311.18.96.74.42.20.0

1/σ2 [dB]

0.0

0.2

0.4

0.6

0.8

1.0

ε

Fig. 1. Optimal Thresholds Ttr (i.e., ε) for BEnB using different noise
standard deviations σ

decoded independently symbols-wise, using (2). Note, that this
might lead to non-ML results as well.

D. Determining the Threshold

Following [13], the threshold Ttr can be determined proba-
bilistically. As ‖N‖2 is chi-square distributed with |Ω|(Tp+T)
degrees of freedom, the threshold Ttr is naturally specified as

T 2
tr = min

{
x
∣∣∣ P (‖N‖2 > x

)
≤ 1− ε

}
with ε > 0.

IV. SIMULATION RESULTS

In the following simulations, we assume a 2 × 2 MIMO
system with packet length T and QPSK signaling (i.e., 2
bits/symbol and 4T bits in total). Additionally, the maximum
number of nodes to be visited is limited to mnodes = 4T × 27

(corresponds to the ML decoding complexity of a trellis with
27 states).

In a first step a near-optimum threshold Ttr will be deter-
mined, which will be used later on to compare the complexity
of the three different algorithm approaches.

A. Optimizing the Threshold

The efficiency of the BEnB algorithm and the BEAST
depends largely on the chosen threshold Ttr, that is, the
parameter ε.

For all combinations of the noise standard deviation σ =
10−1, . . . , 100 in 19 equal logarithmic steps and the parameter
ε = 0.05, 0.10, . . . , 0.95, a joint ML channel estimation and
data detection using the BEnB algorithm and the BEAST is
performed.

The parameter ε leading to the smallest number of visited
nodes in each possible combination is illustrated as a function
of σ in Figure 1 and Figure 2 for the BEnB algorithm and the
BEAST, respectively. To compensate for slight deviations, the
area ±1% of the absolute minimum is marked additionally by
the two dashed lines.

Clearly, the range of optimal ε grows with increasing σ as
both algorithms reach the complexity threshold mnodes already
during their first iterations. Additionally we note that the actual

20.017.815.613.311.18.96.74.42.20.0

1/σ2 [dB]

0.0

0.2

0.4

0.6

0.8

1.0

ε

Fig. 2. Optimal Thresholds Ttr (i.e., ε) for the BEAST using different noise
standard deviations σ

20.017.815.613.311.18.96.74.42.20.0

1/σ2 [dB]

10−5

10−4

10−3

10−2

10−1

100

B
it

E
rr

o
r

R
a
te

BnB

BEnB

The BEAST

Fig. 3. Obtained bit error rate for a given noise standard deviation σ for all
three algorithm approaches using packet length of T = 50

minimum does not depend on the chosen σ, which leads to
the choice of ε = 0.05 and ε = 0.3 for the BEnB algorithm
and the BEAST, respectively, leading to a reasonable near-
optimum threshold Ttr.

B. Complexity Comparison

Using the previously determined values for ε, the com-
plexity of the three algorithms (BnB, BEnB, and BEAST)
are compared. As the Moore-Penrose pseudoinverse has to be
evaluated in all three algorithms for the same maximum matrix
length Tp+T , we will consider the number of evaluations, that
is the number of visited nodes as our complexity measurement.

However, instead of using the absolute number of visited
nodes mvisited nodes, we will relate them to the number of
transmitted bits, leading to the average number of memory
elements per decoded bit, according to

log2

(
mvisited nodes

T |Ω|

)
.

To include different channels, we vary the noise standard
deviation σ = 10−1, . . . , 100 in 19 equal logarithmic steps.
Using the resulting channel output matrix Y , a joint ML
channel estimation and data detection is performed by each
of the three algorithms.

10−5 10−4 10−3 10−2 10−1 100

Bit Error Rate

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5
A

v
er

a
g
e

M
em

o
ry

p
er

B
it

BnB

BEnB

The BEAST

Fig. 4. Complexity in memory per bit over achieved bit error rate for packet
length T = 50

In Figure 3 the obtained bit error rate for all three algorithms
is illustrated over noise standard deviation σ for a packet
length of T = 50.

The complexity is illustrated in Figure 4 and Figure 5 over
the achieved bit error rate for a packet length of T = 50
and T = 100, respectively. Clearly, by using the BEAST,
the average number of memory elements per decoded bit is
reduced and decreases furthermore with an increasing packet
length T compared to the BnB and BEnB algorithm.

Note that for larger bit error rates (i.e., ≥ 10−1), all
algorithms have to visit a major fraction of the tree and reach
the complexity limit mnodes already during their first iterations,
leading to the same “flat” complexity performance as given in
the illustrations. This behavior, however, can be overcome by
increasing mnodes.

V. CONCLUSIONS

The BEAST was introduced as an alternative algorithm for
joint ML channel estimation and data detection. Its perfor-
mance and complexity were considered and compared with
those of the previously suggested Branch-Estimate-and-Bound
and Branch-and-Bound algorithm. While the Branch-and-
Bound algorithm obtains the best bit error rate for a fixed noise
density, the BEAST achieves the lowest average complexity, in
terms of the average number of memory elements per decoded
bit for a given bit error rate. With increasing packet lengths,
the complexity-gain of the BEAST increases even further
compared to the other proposed algorithms.

ACKNOWLEDGEMENTS

This research was supported in part by the Swedish Re-
search Council under Grant 621-2007-6281 and in part by the
Swedish Foundation for Strategic Research through its Center
for High Speed Wireless Communication at Lund University
and in part by VINNOVA through the WILATI+ project.

REFERENCES

[1] P. Stoica and G. Ganesan, “Space-time block codes: Trained, blind and
semi-blind detection,” Digital Signal Processing, vol. 13, pp. 93–105,
2003.

10−5 10−4 10−3 10−2 10−1 100

Bit Error Rate

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

A
v
er

a
g
e

M
em

o
ry

p
er

B
it

BnB

BEnB

The BEAST

Fig. 5. Complexity in memory per bit over achieved bit error rate for packet
length T = 100

[2] H. Vikalo, B. Hassibi, and P. Stoica, “Efficient joint maximum-likelihood
channel estimation and signal detection,” IEEE Trans. Wireless Com-
mun., vol. 5, no. 7, pp. 1838–1845, Jun. 2006.

[3] P. Stoica, H. Vikalo, and B. Hassibi, “Joint maximum-likelihood channel
estimation and signal detection for SIMO channels,” in Proc. 2003 Int.
Conf. on Acoust., Speech, Signal Process., vol. 4, 2003, pp. 13–16.

[4] W.-K. Ma, B.-N. Vo, T. Davidson, and P. Ching, “Blind ML detection of
orthogonal space-time block codes: High-performance, efficient imple-
mentations,” IEEE Trans. Signal Process., vol. 54, no. 2, pp. 738–751,
Feb. 2006.

[5] A. L. Swindlehurst and G. Leus, “Blind and semi-blind equalization
for generalized space-time block codes,” IEEE Trans. Signal Process.,
vol. 50, no. 10, pp. 2589–2498, 2002.

[6] S. Shahbazpanahi, A. Gershman, and J. Manton, “Closed-form blind
MIMO channel estimation for orthogonal space-time block codes,” IEEE
Trans. Signal Process., vol. 53, no. 12, pp. 4506–4517, Jun. 2005.

[7] N. Jindal, A. Lozano, and T. L. Marzetta, “What is the value of joint
processing of pilots and data in block-fading channels?” in Proc. Int.
Sym. Inf. Theory (ISIT’09), Seoul, South-Korea, Jun. 2009.

[8] B. Hochwald and T. Marzetta, “Unitary space-time modulation for
multiple-antenna communication in Rayleigh flat fading,” IEEE Trans.
Inf. Theory, vol. 46, pp. 543–464, Mar. 2000.

[9] T. Marzetta, “Blast training: Estimating channel characteristics for
high-capacity space-time wirless,” in Proc. 37th Annual Allerton Conf.
Commun., Control, and Computing, Sep. 1999.

[10] L. Zheng and D. Tse, “Communicating on the Grassmann manifold:
A geometric approach to the non-coherent multiple antenna channel,”
IEEE Trans. Inf. Theory, vol. 48(2), pp. 359–383, Feb. 2002.

[11] C. Cozzo and B. Hughes, “Joint channel estimation and data detection
in space-time communications,” IEEE Trans. Commun., vol. 51, no. 8,
pp. 1266–1270, Aug. 2003.

[12] E. Larsson, P. Stoica, and J.Li, “Orthogonal space-time block codes:
Maximum-likelihood detection for unknown channels and unstructured
interferences,” IEEE Trans. Signal Process., vol. 51, no. 2, pp. 362–372,
2003.

[13] W. Xu, M. Stojnic, and B. Hassibi, “On exact maximum-likelihood
detection for non-coherent MIMO wireless systems: a branch-estimate-
bound optimization framework,” Proceedings of the IEEE International
Symposium on Information Transaction, pp. 2017–2021, Jun. 2008.

[14] I. Bocharova, M. Handlery, R. Johannesson, and B. Kudryashov, “A
BEAST for prowling in trees,” in Proc. 39th Annual Allerton Conf.
Commun., Control, and Computing, Monticello, Illinois, USA, Oct.
2001.

[15] ——, “A BEAST for prowling in trees,” IEEE Trans. Inf. Theory, vol. 50,
no. 6, pp. 1295–1302, Jun. 2004.

[16] I. Bocharova, R. Johannesson, B. Kudryashov, and M. Lončar, “BEAST
decoding for block codes,” European Trans. on Telecommunications,
vol. 15, no. 4, pp. 297–305, Jul. 2004.

[17] E. Larsson, P. Stoica, and J.Li, “On maximum-likelihood detection and
decoding for space-time coding systems,” IEEE Trans. Signal Process.,
vol. 50, no. 4, pp. 937–944, 2002.

