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Abstract

Physical bounds on the directivity Q-factor quotient and optimal current dis-

tributions are determined for antennas of arbitrary shape and size using an

optimization formulation. A variational approach o�ers closed form solutions

for small antennas expressed in the polarizability of the antenna structure.

Finite sized antennas are solved using Lagrangian parameters in a method of

moments formulation. It is also shown that the considered stored electric en-

ergy can be negative for electrically large objects. This e�ect is mitigated by

a Helmholtz decomposition of the current density. Moreover, it is shown that

the optimal charge density for a small antenna can be generated by several

current densities. Numerical examples for small and large antennas are used

to illustrate the results.

1 Introduction

Chu used spherical waves to express the stored and radiated energies outside the
smallest circumscribing sphere of an antenna structure [4]. This approach has dom-
inated the research on small antennas and o�ers many results on the Q-factor, and
the directivity Q-factor quotient, D/Q, see [21] for an overview. The physical bounds
on D/Q were generalized to arbitrary shapes using the forward scattering sum rule
in [6, 8, 9]. Yaghjian and Stuart derived bounds on the Q-factor in the limit of small
antennas ka� 1, see [23]. In [20], Vandenbosch determines analogous bounds on Q
for non-magnetic antennas. The results in [6, 8, 9, 20, 23] are similar for the case of
small dipole antennas composed of non-magnetic materials.

In this paper, new bounds on D/Q are derived using the expression for the
stored energy given by Geyi [5] for small antennas and generalized to �nite size
by Vandenbosch [19]. Closed form solutions are presented in the limit of small
antennas, where it is shown that it is su�cient to consider surface currents and
the minimization problem separates for electric dipoles, magnetic dipoles and their
combinations. Moreover, the bounds for the electric dipole case are identical to the
bounds in [6, 8, 9], in this limit. The combined bound also resembles the combined
TE and TM bound by Thal [17] for spherical geometries.

Antennas are often considered as small if ka ≤ 1 or ka ≤ 1/2, which is a
range of many interesting antennas. It is, hence, important to analyze the antenna
performance for ka in this range. Here, a Lagrangian formulation is used to solve the
D/Q optimization problem for �nite ka. We show that this maximization problem
has large similarities with solving the classical integral equations in electromagnetics
using the method of moments (MoM). The maximizing currents are obtained by
solving a linear system. This makes the approach attractive as it determines the
optimal current distribution as well as the upper bounds on D/Q.

The expressions for the stored energies in [19] are very useful and produce similar
bounds as in [6, 8, 9]. However, it is illustrated that the stored electric energy can
be inde�nite and explicit results are presented for divergence free loop type currents
that have a negative stored electric energy for objects of the size ka ≈ 3/2. It is
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shown that this problem can be mitigated by a Helmholtz decomposition of the
current.

The theoretical results are illustrated by numerical examples. The spherical re-
gion is used to illustrate that there are several optimal current densities that have
identical charge densities. The considered current densities are similar to the current
densities on folded spherical dipoles, capped spherical dipoles [16], and folded spher-
ical helix [3] antennas. Planar structures are analyzed in detail and the obtained
bounds are similar to the bounds in [6, 8�10, 12]. It is shown that the self-resonant
strip dipole antenna has a current density that is close to the optimal current density
and also performs close to the bound. Moreover, numerical simulations show that
an array of capacitively loaded dipoles performs close to the bound.

This paper is organized as follows. The optimization formulation for D/Q in the
current density is introduced in Sec. 2. Closed form solutions in the limit of small
antennas are derived using a variational formulation in Sec. 3. In Sec. 4, the D/Q
bound is solved with a Lagrangian formulation for �nite size antennas. In Sec. 5,
explicit examples are given that illustrates that the considered stored electric energy
is negative for some divergence free loop type currents. Numerical examples for a
spherical region, strip dipole antennas and two dipole arrays are presented in Sec. 6.
Sec. 7 contains the conclusions.

2 Physical Bounds on the Directivity Q-factor

Quotient

We consider antennas that are con�ned to a bounded volume V , see Fig. 1. It is
assumed that the antenna structure is composed of non-magnetic materials. The
electromagnetic �elds are generated by the current densities, J , �owing on the
antenna.

To determine the directivity Q-factor quotient, D/Q, we express these quantities
in terms of the de�nitions [2]. The partial directivity, D(k̂, ê), characterizes the
radiation properties of the antenna. It is de�ned as

D(k̂, ê) = 4π
P (k̂, ê)

Prad

, (2.1)

where P (k̂, ê) denotes the radiation intensity in the direction k̂ with polarization ê
and Prad is the total radiated power. The quality factor, Q, is de�ned as

Q =
2ωW

Prad

=
2c0kW

Prad

, (2.2)

whereW = max{We,Wm} denotes the maximum of the stored electric and magnetic
energies, ω is the angular frequency, k the wavenumber, and c0 the speed of light in
free space. Combine (2.1) and (2.2) to express the directivity Q-factor quotient as

D(k̂, ê)

Q
=

2πP (k̂, ê)

c0kW
. (2.3)
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Figure 1: Illustration of the object geometry V , with boundary ∂V and with
outward normal unit vector n̂ and current density J(r). The radiated far �eld
is evaluated in the k̂-direction for the polarization ê in free space. The object is
circumscribed by a sphere with radius a.

We now express D/Q in terms of the electric current density J in the antenna
volume V . Note that there are no magnetic currents due to the assumption of
non-magnetic materials. The radiation intensity from the current density J in the
direction k̂ and polarization ê is

P (k̂, ê) =
ζ0k

2

32π2

∣∣∣∣∫
V

ê∗ · J(r)ejkk̂·r dV

∣∣∣∣2 , (2.4)

where k̂ · ê = 0 is used, ζ0 denotes the free space impedance, the superscript, ∗,
denotes the complex conjugate, and the time convention ejωt is used.

The aim of this paper is to determine an upper bound on D/Q. It is not clear
how to decompose the energy in its radiated and stored parts, see e.g., [4, 5, 19, 24].
Similarly to the discussion in [20] we only use the vacuum terms of the stored
energies, see also [22]. Here, we use the results by Vandenbosch [19], and write the

free-space part of the stored electric energy as W̃
(e)
vac = µ0

16πk2
w(e), where

w(e) =

∫
V

∫
V

∇1 · J(r1)∇2 · J∗(r2)
cos(k|r1 − r2|)
|r1 − r2|

− k

2

(
k2J(r1) · J∗(r2)−∇1 · J(r1)∇2 · J∗(r2)

)
sin(k|r1 − r2|) dV1 dV2, (2.5)

and µ0 is the permeability of free space. The corresponding magnetic energy is
W̃

(m)
vac = µ0

16πk2
w(m), where

w(m) =

∫
V

∫
V

k2J(r1) · J∗(r2)
cos(k|r1 − r2|)
|r1 − r2|

− k

2

(
k2J(r1) · J∗(r2)−∇1 · J(r1)∇2 · J∗(r2)

)
sin(k|r1 − r2|) dV1 dV2. (2.6)
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We now have an explicit expression for D/Q in the current density J , i.e.,

D(k̂, ê)

Q
= k3

∣∣∣∫V ê∗ · J(r)ejkk̂·r dV
∣∣∣2

max{w(e)(J), w(m)(J)}
, (2.7)

where w(e)(J) and w(m)(J) are de�ned in (2.5) and (2.6). The D/Q quotient is
maximized to produce physical bounds, i.e.,

D(k̂, ê)

Q
≤ max

J
k3

∣∣∣∫V ê∗ · J(r)ejkk̂·r dV
∣∣∣2

max{w(e)(J), w(m)(J)}
, (2.8)

where J are all the admissible current densities in V . The continuity of the normal
component requires that n̂ · J(r) = 0 for r ∈ ∂V , where n̂ is the outward unit
normal of the antenna volume V , see Fig. 1.

Note that (2.8) is invariant for amplitude scalings J → αJ , and if J0 is a solution

to the maximization problem, then J1 = J0/
∫
ê∗ · J0ejkk̂·r dV is another solution

to it. This property is used repeatedly in the upcoming sections to reformulate the
optimization problem and to determine the maximizing current density.

We �rst analyze electrically small antennas to �nd closed form solutions of the
D/Q-bound in Sec. 3, i.e., the current expressions are analyzed in the limit ka→ 0,
where a denotes the radius of the smallest sphere that circumscribes the antenna
volume V . The general case with �nite ka is considered in Sec. 4.

3 Electrically Small Antennas

The radiation intensity (2.4) and stored electric (2.5) and magnetic (2.6) energies
simplify in the low-frequency limit, k → 0 for �xed a. We use the expansions
ejkk̂·r = 1 + jkk̂ ·r+O(k2) and J = J (0) + kJ (1) + o(k) as k → 0, where ∇·J (0) = 0
and ∇·J (1) = −jρ follow from the continuity equation. Note that the charge density
in SI-units is given by ρSI = ρ/c0. The radiation intensity (2.4) is expanded as∫

V

J(r)ejkk̂·r dV =

∫
V

J (0)(r) + kJ (1)(r) + jkk̂ · rJ (0)(r) +O(k2) dV

= −k
∫
V

r∇ · J (1)(r) +
j

2
k̂ × (r × J (0)(r)) dV +O(k2), (3.1)

as k → 0, see [18]. We observe that the �rst term corresponds to an electric dipole
and the second term to a magnetic dipole. The electric (2.5) and magnetic (2.6)
energies have the low-frequency expansions [5, 19, 20]

w(e) = k2

∫
V

∫
V

ρ(r1)ρ∗(r2)

|r1 − r2|
dV1 dV2 (3.2)

and

w(m) = k2

∫
V

∫
V

J (0)(r1) · J (0)∗(r2)

|r1 − r2|
dV1 dV2, (3.3)
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respectively. Insert the last three expressions into (2.8) to get the bound

D

Q
≤ max

ρ,J(0)

k3
∣∣∣∫V ê∗ · rρ(r) + 1

2
ĥ
∗
× r · J (0)(r) dV

∣∣∣2
max

{∫∫
V
ρ(r1)ρ∗(r2)
|r1−r2| dV1 dV2,

∫
V

∫
V

J(0)(r1)·J(0)∗(r2)
|r1−r2| dV1 dV2

} , (3.4)

where we have used the magnetic polarization ĥ = k̂ × ê. We observe that the op-
timization decouples in ρ and J (0), see App. A. The case with J (0) = 0 corresponds
to an antenna radiating as an electric dipole and it is analyzed in Sec. 3.1. The
case with ρ = 0 corresponds to an antenna radiating as a magnetic dipole and it is
analyzed in Sec. 3.2. In general, both quantities can be non-zero and this case is
discussed in Sec. 3.3.

3.1 Electric Dipole

A small antenna that radiates as an electric dipole, i.e., J (0) = 0 in (3.4), gives the
maximization problem:

De

Qe

≤ max
ρ

k3

4π

∣∣∫ ê∗ · rρ(r) dV
∣∣2∫

V

∫
V
ρ(r1)ρ∗(r2)
4π|r1−r2| dV1 dV2

. (3.5)

The term 4π is included to simplify the identi�cation with the free-space Green's
function.

Consider the optimization problem:

max
ρ

∣∣∫ ê∗ · rρ(r) dV
∣∣2∫

V

∫
V
ρ(r1)ρ∗(r2)
4π|r1−r2| dV1 dV2

, (3.6)

subject to the constraint
∫
V
ρ dV = −j

∫
∂V
n̂ · J (1) dS = 0 that follows from the

continuity of the normal component of the current density, i.e., n̂ · J (1) = 0 at the
boundary. We note that this maximization problem is homogeneous for scalings
ρ → αρ and, if ρa is a solution to (3.6), then ρb = ρa/

∫
ê∗ · rρa dV is another

solution to it. Thus, (3.6) can be rewritten as

min
ρ

∫
V

∫
V

ρ(r1)ρ∗(r2)

4π|r1 − r2|
dV1 dV2, (3.7)

subject to the scaling invariant constraints
∫
ê∗ · rρ(r) dV = E0γ and the charge

conservation constraint
∫
ρ(r) dV = 0, where E0 ∈ C and γ ∈ R are constants.

This is a standard minimization problem that is easily solved by introducing basis
functions for ρ and using Lagrange multipliers [15]. We can also write the solution
as an integral equation using a variational formulation. The minimum of (3.7) is
stationary with respect to variations ρ → ρ + δρ′ as δ → 0. To the �rst order in δ,
we get ∫

V

ρ′(r2)

∫
V

ρ∗(r1)

4π|r1 − r2|
dV1 dV2 = 0, (3.8)
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together with ∫
V

ê∗ · rρ′(r) dV = 0 and

∫
V

ρ′(r) dV = 0, (3.9)

for all ρ′(r). This shows that ρ satis�es the volume integral equation∫
V

ρ(r1)

4π|r1 − r2|
dV1 = E0ê · r2 + C for r2 ∈ V, (3.10)

where E0 is the constant introduced above and the constant C is determined from
the condition

∫
ρ(r) dV = 0. This is an integral equation for the region V with

constant potential and zero total charge in a homogeneous exterior electric �eld
E0ê. Applying ∇2 to (3.10) shows that ρ(r2) = 0 for r2 ∈ V \ ∂V . The solution is
hence given by the surface charge density ρs, determined from the boundary integral
equation ∫

∂V

ρs(r1)

4π|r1 − r2|
dS1 = E0ê · r2 + C for r2 ∈ ∂V. (3.11)

This is the integral equation for the charge density used in the computation of
the high-contrast polarizability dyadics [13]. Rewriting (3.5) by making use of the
previous results, we get

De

Qe

≤ k3

4π

|E0|2γ2∫
∂V

∫
∂V

ρs(r1)ρ∗s (r2)
4π|r1−r2| dS1 dS2

=
k3

4π
γ. (3.12)

Using the high-contrast polarizability dyadic of the region V ,

γ = ê∗ · γ∞ · ê =
1

E0

∫
∂V

ê∗ · rρs(r) dS, (3.13)

we obtain the �nal bound

De(k̂, ê)

Qe

≤ k3

4π
ê∗ · γ∞ · ê. (3.14)

The bound (3.12) is identical to the bound in [8, 9] for the generalized absorption
e�ciency η = 1/2. This veri�es that η = 1/2 for small dipole antennas as shown
in [6]. It is also observed that η ≈ 1/2 for many narrow band, Q � 1, minimum
scattering antennas , i.e., it is not required that ka → 0 for the bound in [8, 9] to
hold.

The bound (3.14) is illustrated in Fig. 2 for a spheroid with height `z, width `x,
and polarization ê = x̂, see App. B for details1. It is observed that De/Qe ≤ k3a3

for a sphere `x = `z. This can also be written Qe ≥ 3/(2k3a3) as D = 3/2 for small
dipole antennas. This is identical to the bound by Thal [17]. The bound approaches
De/Qe ≤ 4k3a3/(3π) and Qe ≥ 9π/(8k3a3) in the limit of a circular disc `z = 0, see
also [8�10, 23].

1see also http://www.mathworks.com/matlabcentral/�leexchange/26806-antennaq



7

0.01 0.1 1 10
0.01

0.1

1

D/Q/(ka)3

combined

electric

magnetics

s

s

`

`z

x

` /`z x

Figure 2: Bounds on D/(Qk3a3) for a spheroid with height `z, width `x, electric
polarization ê = x̂, and a = max{`x, `z}/2.

3.2 Magnetic Dipole

The corresponding magnetic dipole radiator is obtained when ρ = 0 in (3.4) and its
D/Q performance is bounded by

Dm

Qm

≤ k3

4π
max
J(0)

∣∣∣∫V 1
2
ĥ
∗
× r · J (0)(r) dV

∣∣∣2∫
V

∫
V

J(0)(r1)·J(0)∗(r2)
4π|r1−r2| dV1 dV2

, (3.15)

where ĥ = k̂× ê. We use the amplitude scaling invariance to rewrite the minimiza-
tion problem as

min
J(0)

∫
V

∫
V

J (0)(r1) · J (0)∗(r2)

4π|r1 − r2|
dV1 dV2, (3.16)

subject to the constraints ∇ · J (0) = 0 and 1
2

∫
V
ĥ
∗
× r · J (0)(r) dV = H0ν, where

H0 ∈ C and ν ∈ R are constants. The perturbation J (0) → J (0) + δJ (0)′ shows that∫
V

J (0)′(r2) ·
∫
V

J (0)∗(r1)

4π|r1 − r2|
dV1 dV2 = 0, (3.17)

∫
V

ĥ
∗
× r · J (0)′(r) dV = 0, (3.18)

and ∇·J (0)′ = 0. Thus, the solution satis�es the following volume integral equation:∫
V

J (0)(r1)

4π|r1 − r2|
dV1 =

H0

2
ĥ× r2 +∇ψ(r2) for r2 ∈ V, (3.19)

where ψ(r2) is an arbitrary function to account for the constraint ∇ · J (0) = 0,
assuming su�cient constraint on the regularity of the domain (e.g., Lipschitz) and
functions that Green's formula hold see e.g., [14]. Taking the divergence of the
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above equation and using n̂(r) · J (0)(r) = 0 for r ∈ ∂V , shows that ∇2ψ(r2) = 0
for r2 ∈ V . Applying ∇×∇×· to (3.19) implies that J (0)(r2) = 0 for r2 ∈ V \ ∂V .
This gives the boundary integral equation for the surface current density J (0)

s (r1)
as:

n̂×
∫
∂V

J (0)
s (r1)

4π|r1 − r2|
dS1 =

H0

2
n̂× (ĥ× r2) + n̂×∇ψ(r2) for r2 ∈ ∂V. (3.20)

Note that the restrictions to the tangential components follow from the vanishing
normal component of the current density at the boundary, i.e., n̂ · J (0)′(r2) = 0 for
r2 ∈ ∂V in (3.17).

The bound for the optimizing J s (3.15) becomes

Dm

Qm

≤ k3

4π

|H0|2ν2∫
∂V

∫
∂V

J
(0)
s (r1)·J(0)∗

s (r2)
4π|r1−r2| dS1 dS2

=
k3

4π
ν. (3.21)

where we identify ν as the ĥ-component of the magnetic moment.
The bound for a spheroid with ĥ = ẑ and surface currents J = Jφφ̂ is depicted

in Fig. 2. It is observed that Dm/Qm = De/(2Qe) for this case, see also App. B. In
particular this gives Dm/Qm ≤ k3a3/2 and Dm/Qm ≤ k3a38/3 for spheres and discs,
respectively.

3.3 Combined Electric and Magnetic Dipoles

Maximization of (3.4) is given by the combination of the electric and magnetic dipole
cases. It is �rst observed that

max
a,b

|αa+ βb|2

max{|a|2, |b|2}
= (α + β)2, (3.22)

for α ≥ 0 and β ≥ 0, see App. A. Replace α and β with the electric (3.12) and
magnetic (3.15) cases, i.e., α =

√
De/Qe and β =

√
Dm/Qm to obtain the bound

for combined electric and magnetic dipole radiators:

D

Q
≤

(√
De

Qe

+

√
Dm

Qm

)2

. (3.23)

The combined bound (3.23) is depicted in Fig. 2 for a sphere with polarization
ê = x̂. It is seen that D/Q ≤ (1 +

√
1/2)2k3a3 ≈ 2.9k3a3 for this case. For an

electrically small, spherical radiator, the bound reads D/Q ≤ 2.9k3
0a

3. Note that
the bound in [8, 9] is sharper than (3.23) for linearly polarized antennas; see also [7]
for the circular polarization case.

The upper bound (3.23) requires that the electric and magnetic dipoles contribute
equally and have the polarization ê. This gives the partial directivity D = 3 and
implies that Q ≥ 3/2.9(ka)−3 for a spherical region. This is similar to the combined
TE and TM bound in [17].
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4 Non Electrically Small Antennas

The general expression (2.8) o�ers the possibility to analyze D/Q in terms of the
current, J , that �ows on the antenna. It also o�ers the possibility to optimize an
antenna with respect to its D/Q performance. In order to increase the D/Q ratio,
we make the assumption that either the stored electric or magnetic energy is greater
than the other.

4.1 Optimization Formulation for D/Q

We illustrate the maximization of (2.8) assuming that the stored electric energy
is greater than the stored magnetic energy. Thus, using the amplitude scaling in-
variance in (2.8), the maximization problem can be reformulated as the following
minimization problem:

min
J

∫
V

∫
V

∇1 · J(r1)∇2 · J∗(r2)
cos(k|r1 − r2|)
|r1 − r2|

− k

2

(
k2J1 · J∗2 −∇1 · J(r1)∇2 · J∗(r2)

)
sin(k|r1 − r2|) dV1 dV2, (4.1)

subject to the constraint ∣∣∣∣∫
V

ê∗ · J(r)ejkk̂·r dV

∣∣∣∣ = 1. (4.2)

To account for the appropriate class of admissible current densities we also impose
the condition ∫

V

∇ · J(r) dV = 0. (4.3)

The �rst constraint can be reduced to∫
V

ê∗ · J(r)ejkk̂·r dV = 1, (4.4)

using the amplitude scale invariance in (2.8), see Sec. 2.
An alternative technique to the variational method of Sec. 3 for obtaining the

optimal currents is described in the following. We represent the current densities in
appropriate basis functions ψm,

J(r) =
M∑
m=1

Jmψm(r), (4.5)

and denote J = (J1, J2, . . . , JM)T. Introduce the matrix C with elements

Cmn =

∫
V

∫
V

∇1 ·ψm(r1)∇2 ·ψn(r2)
cos(k|r1 − r2|)
|r1 − r2|

− k

2

(
k2ψm(r1) ·ψn(r2)−∇1 ·ψm(r1)∇2 ·ψn(r2)

)
sin(k|r1 − r2|) dV1 dV2 (4.6)
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for m,n = 1, 2, ...,M . The equivalent minimization problem in this basis represen-
tation takes the form

min
Jm

M∑
m=1

M∑
n=1

J∗mCmnJn = min
J

JHCJ, (4.7)

subject to the constraints

M∑
m=1

Jm

∫
ê∗ ·ψm(r)ejkk̂·r dV =

M∑
m=1

A∗m,1Jm = 1 (4.8)

and
M∑
m=1

Jm

∫
∇ ·ψm(r) dV =

M∑
m=1

A∗m,2Jm = 0. (4.9)

In matrix notation AHJ = f , where: A∗m,1 =
∫
ê∗ · ψm(r)ejkk̂·r dV, A∗m,2 =

∫
∇ ·

ψm(r) dV, and f = (1, 0)T.
The optimization problem (4.7) to (4.9) is solvable using Lagrange multipliers

ν, [15], resulting in the linear system(
C A
AH 0

)(
J
ν

)
=

(
0
f

)
. (4.10)

Note that the constraint (4.9) can be included in the basis functions ψm. Return-
ing to the matrix C with elements given in (4.6), note that we can represent the
�rst kernel with cosines as Re(G) where G is the Green's function corresponding
to the scalar Helmholtz equation. Thus, with minor modi�cations on e.g., a stan-
dard method of moments solver, we can implement the above outlined optimization
problem. Below we illustrate the solutions of the optimization for planar rectangular
structures.

4.2 Planar Rectangular Structures

Consider a planar rectangle in the xz-plane and broad side radiation k̂ = ŷ with
linear polarization ê = x̂. A Helmholtz decomposition [14] of the current J =
∇J (g) +∇×J (c) simpli�es the corresponding electric energy (2.5) (and equivalently
the matrix C in (4.6)). It is seen that the radiation in the ŷ-direction is independent
of J (c). This reduces the optimization problem (4.10) to the irrotational part of the
current density, i.e., we use J (c) = 0.

Optimization of theD/Q-ratio (2.8) using (4.10) yields the result shown in Fig. 3.
The bound is depicted for k`x = {0, 0.1, 1, 2, 3} and normalized with the electrical
size k3a3 to decrease the dependence on ka, where a = (`2

x + `2
z)1/2. It is observed

that it is not possible to distinguish the k`x = {0, 0.1, 1} cases in the �gure and that
the bound increases slightly for the k`x = {2, 3} cases. The results for k`x = {2, 3}
are only shown when their corresponding Q-factors are su�ciently large, see the
corresponding Q-values in Fig. 3. This means that there are no severe bounds on Q
for these rather large structures. Note that ka ≈ 10 for k`x = 2 and `z/`x = 20. The
�gures also contain the asymptotic expressions based on (C.5) where it is assumed
that the current is of the form J = Jx(x)x̂ and k`z � 1.
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Figure 3: (left) Bound on D/Q for a planar rectangle with sides `x and `z for
k`x = {0, 0.1, 1, 2, 3} and k̂ = ŷ normal to the rectangle and ê = x̂. The solid
curves show the bounds determined for irrotational currents,∇×J = 0, using (4.10).
The dashed curves shows the corresponding asymptotic results using (C.5). (right)
Resulting Q factors.

5 Negative Electric Energy

In the previous section, Sec. 4.2, we removed the loop-currents J (c) through the
observation that they do not contribute to the radiation in the normal direction. If
the numerical optimization is done with these currents, it is observed that they may
cause a negative stored electric energy (2.5). This behavior of the stored electric
energy is illustrated here using simple examples.

Consider �rst the following divergence free i.e., ∇·J = 0, current density J(r) =
I0δ(%− a)δ(z)φ̂, where δ denotes the Dirac delta distribution, I0 is a constant that
depends on the source of current, and the cylindrical coordinates (%, φ, z) are used.
In this case, the stored electric energy (2.5) reduces to

w(e) = −πk3a2I2
0

∫ 2π

0

cosφ sin

(
2ka sin

φ

2

)
dφ. (5.1)

Numerical integration shows that w(e) is positive for ka < 1.5, see Fig. 4. When
the electric size of the structure increases, the electric energy becomes negative for
some objects. It is noted that the corresponding stored magnetic energy is in�nite
for the considered current.

For a rectangular surface of dimensions `x, `y we use the current density J =
I0δ(z)

(
(δ(y+`y/2)−δ(y−`y/2))x̂+(δ(x−`x/2)−δ(x+`x/2))ŷ

)
. The corresponding

electrical energy is shown in Fig. 4.
For a thin circular annulus of radius a and width ∆ we consider a current density

of the form J = −I0δ(z)φ̂/∆ for a − ∆ ≤ % ≤ a and zero otherwise, using cylin-
drical coordinates. The integrals are evaluated using the singularity cancellation
methods, see Fig. 4. It is seen here that for small values of k, the stored energy
is predominantly magnetic. When k increases, the two stored energies appear to
equalize.
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rents. (right) Stored electric and magnetic energies for circular currents with width
∆ = 0.005a.

6 Numerical examples

We illustrate the theoretical results with numerical examples of the current distri-
butions on spherical regions, current distributions and bounds on strip dipoles, and
planar rectangular array antennas.

6.1 Spherical Region

It is observed that the currents that generate the optimal D/Q-ratios are not unique.
We illustrate this for a simple electric case, in the limit of small ka so that we can
use the variational formulation in (3.5). Consider a spherical volume with radius
a and electric polarization ê = ẑ. The optimal charge distribution determined
from (3.11) is of the form ρ(θ, φ) = ρ0 cos θ. The corresponding current density
satis�es ∇ · J = −jkρ (recall ρSI = ρ/c0) on the surface of the sphere. This gives

∂

∂θ

(
sin θJθ

)
+
∂Jφ
∂φ

=
−jkaρ0 sin(2θ)

2
(6.1)

This equation has many solutions, e.g., all the functions of the form

J = Jθ0θ̂
(

sin θ − β

sin θ

)
+

1

sin θ

∂A

∂φ
θ̂ − ∂A

∂θ
φ̂ (6.2)

where Jθ0 = −jkaρ0, β is a constant, and A = A(θ, φ).
The simplest solution to (6.1) is a rotationally symmetric current density in

the θ̂-direction that vanishes as θ = 0 and θ = π, i.e., J = θ̂Jθ0 sin θ. This is
a current density that generates a single spherical TM mode. It is noted that the
current density on a folded spherical dipole has this form, see Fig. 5a. An alternative
solution is obtained by the requirement that the current density vanishes at θ = π/2.
This gives the solution J = Jθ0θ̂(sin θ−1/ sin θ), see Fig. 5b. This current density is
in�nite at θ = 0 and θ = π and resembles the current density on a capped spherical
dipole [16]. A third solution is o�ered by β = 0 and A = A(θ). In particular,
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ρ0 cos θ. a) folded spherical dipole with J ≈ Jθ0θ̂ sin θ. b) capped spherical dipole
with J ≈ Jθ0θ̂(sin θ − 1/ sin θ). c) folded spherical helix with J ≈ Jθ0

(
0.15θ̂ sin θ −

φ̂ sign(cos θ) sin2 θ
)
.

we consider the current density J = Jθ0
(
0.15θ̂ sin θ − φ̂ sign(cos θ) sin2 θ

)
, as this

solution is similar to the current density on a spherical folded helix, see Fig. 5c.

6.2 Strip Dipole Antennas

The optimal current distributions are determined for rectangles with side lengths
`y = ξ`x with ξ = {0.1, 0.01, 0.001} using (4.10) for ka ≤ 2. The current in the center
J(x, 0) = Jx(x)x̂ is depicted in Fig. 6 for the half-wave antenna, i.e., ka ≈ 1.5, where
a = (`2

x + `2
y)1/2/2. It is observed that the currents resemble the commonly assumed

cos(πx/`x) shape.
The corresponding bound onD/Q normalized with (ka)3 is shown in Fig. 7. Here

it is seen that the performance improves with the width of the rectangle. Moreover,
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Figure 6: Optimal current distribution (4.10) for planar rectangles with side lengths
`y = ξ`x with ξ = {0.1, 0.01, 0.001} and ka = 1.5 (solid curves). Simulated currents
on a strip dipole for the inductively loaded and the self-resonant and case respec-
tively with `y = 0.01`x for ka ≈ {0.28, 1.49} (dashed curves). Theoretical current
distribution, cos(πx/`x)(dotted curve)

D/(Qk3a3) is nearly independent of the electrical size of the structure for ka ≤ 1.5.
The resulting Q-factor is computed from the current distribution using the ra-

diated power in [19], see Fig. 8. It is observed that Q decreases with the increase of
the width of the strip. The directivity D is depicted in Fig. 8. Here, it is seen that
the directivity increases with the electrical size of the object.

The bounds are compared with numerical results for a center fed strip dipole
with `y = 0.01`x. The dipole is self-resonant for ka ≈ 1.49 with the directivity
D ≈ 1.63. The Q-factor is estimated to Q ≈ 6 using the di�erentiation of the
impedance [11, 24]. These results are indicated with stars at ka ≈ 1.49 in Figs 7
to 8. The corresponding current density is also depicted in Fig. 6. It is observed
that the self-resonant dipole has a current distribution that resembles the optimal
current distribution. The estimated values of D/Q, D, and Q are also close the
corresponding optimal values.

It is also illustrative to consider an inductively loaded strip dipole with the same
dimensions. The loading decreases the resonance wavenumber to ka ≈ 0.28 and the
parameters are estimated to D ≈ 1.5, Q ≈ 1250, and D/(Qk3a3) ≈ 0.054, see the
stars at ka ≈ 0.28 in Figs 7 to 8. It is observed that the performance of the loaded
dipole is farther away from the optimum than the performance of the unloaded
dipole. This is also seen from the shape of the current distribution in Fig. 6.

6.3 Array Antennas

The performances of linear arrays are illustrated with numerical results using the
method of moments (MoM) for dipole and capacitively loaded dipole elements. The
one-dimensional dipole array consists of n elements with the length `x and the width
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with ξ = 0.01 and ka ≈ {0.28, 1.49} are indicated by the stars.

∆ = `x/50 and inter-element spacing `x. This gives approximately arrays with half
a wavelength, λ0/2, spacing. The array is modeled as perfectly conducting with a
gap feed model. The passive array is analyzed, where identical lumped resistances,
R0, are placed in the feed gaps. The resistance R0 is determined by maximizing the
e�ective antenna aperture at the �rst resonance frequency, see [12] for details.

The dipole array is compared with the physical bounds for antennas con�ned
to rectangular regions, see Fig. 3. The electric polarization of the arrays is aligned
with the `x-direction. The arrays with n elements are circumscribed by rectangles
with height `x and width `z = (n− 1)`x + `x/50 for n = 1, ..., 10. The corresponding
results are shown in Fig. 9, where the e�ective antenna aperture is normalized with
the physical area, A. The physical bound is drawn for k`x = 0 and the asymptotic
result in App. C for k`x = {1, 2}. It is observed that the performances of the
capacitively loaded dipoles are close to the physical bound. The dipole array is a
factor of 1/15 below the physical bound. Using the polarization interpretation on
the array of [12] we see that this is due to the reduction of polarizability of the
dipole as compared with the rectangle.

7 Conclusions

Upper bounds on the directivity antenna Q quotient, D/Q, are derived based on
a quadratic optimization problem. The D/Q quotient is formulated in the current
density on the antenna structure as given from the radiation intensity and the ex-
pressions of the stored energies in [5, 19, 20]. The expression is not bases on a small
antenna limit assumption opening the possibility to analyze electrically large struc-
tures. The optimization problem is solved analytically in the limit of small antennas
and numerically using Lagrange parameters for arbitrary size antennas. The upper
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bounds are useful as they show how the shape and size of the antenna geometry
a�ect the antenna performance [6, 8, 9]. They can also be used as a priori estimates
of what can be expected from an antenna in a given geometry.

The closed form solution for small antennas expresses the bounds in the polar-
izability of the antenna structure. The bound on non-magnetic antenna structures
is identical to the bound in [6, 8, 9] and agrees with the results in [23] for the di-
rectivity D = 3/2. In [20], Vandenbosch considered the corresponding bound on
Q for small antennas using a line search optimization algorithm. In contrast, the
results presented here are for D/Q where the bound can be solved analytically. This
formulation distinguishes between the polarizations (linear, in di�erent directions as
well as circular). It is also shown that it is su�cient to consider surface currents in
this small ka-limit. Moreover, the case with combined electric and magnetic dipoles
is analyzed, where it is noted that the results resemble the mixed TE and TM bound
in [17] for spherical regions.

We also illustrate that there are several current densities for a given charge
density. The explicit solutions for a spherical region include current distributions
that resemble the current on folded spherical dipoles, capped spherical dipoles, and
folded spherical helices.

Lagrange multipliers are used to solve the D/Q optimization problem for �nite
size antennas. This reformulates the problem of obtaining the optimal current densi-
ties as a linear system that has many similarities with standard method of moments
solvers. It is shown that the bound performs well for fairly large antennas with high
directivity. It is illustrated that the stored electric energy in [19] can be negative for
certain kinds of loop type currents on planar structures. Although this stored energy
corresponds to a case that can cause numerical problems this can be mitigated with
a Helmholtz decomposition of the current density.
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Appendix A Small Antenna Decoupling

The maximization problem (3.4) decouples into two separate problems, one for ρ 6=
0,J = 0 and one for J 6= 0, ρ = 0 corresponding to antennas radiating as an electric
dipole and as a magnetic dipole, respectively. The key to this decoupling is the
independent maximization of ρ and J in (3.4). A contradiction argument shows that
the two energy terms of the denominator have to be equal for the maximizing ρ,J .
This reduces the problem to a constrained quadratic maximization problem. The
constraints on charge and current densities are included with the method of Lagrange
parameters. The resulting Euler-Lagrange equations reduce the equations (3.10)
and (3.19), e.g., to the solutions of the two separate optimization problems. A
similar problem for vectors or scalars is stated in (3.22), and the above outlined
method yields the desired result.

Appendix B Integral Equations for BoR

Consider a body of revolution (BoR) with ẑ as the axis of revolution [1], see Fig. 10.
The object is parameterized by the curve {%(`), z(`)} for ` ∈ [`a, `b], where % =√
x2 + y2. The electric high contrast polarizability dyadic can be written as γ∞ =
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γh(x̂x̂+ŷŷ)+γvẑẑ, where γh and γv are the polarizabilities for horizontal (ê·ẑ = 0)
and vertical (ê = ẑ) polarizations, respectively. Here, we restrict the analysis to
horizontal polarization for simplicity, see also [10].

For the electric dipole in Sec. 3.1, a Fourier series ansatz gives the surface charge
density ρs(r) = ρs`(`) cosφ and the right-hand side of (3.11) becomes E0% cosφ,
where ê = x̂ is used. This simpli�es the integral equation (3.11) to∫ `b

`a

ρs`(`1)g1(`1, `2)%(`1)

∣∣∣∣∂r1

∂`1

∣∣∣∣ d`1 = 2πE0%(`2), (B.1)

where g1 =
∫ π

0
cosφ
R

dφ is the modal Green's function, R = (%2
1+%2

2−2%1%2 cosφ+(z1−
z2)2)1/2, and |∂r1/∂`1| is the Jacobian. Solve for ρs` and determine the polarizability

γ =
1

E0

∫
∂V

ê · rρs`(r) dS =
π

E0

∫
%2ρs`(`)

∣∣∣∣∂r∂`
∣∣∣∣ d`. (B.2)

For the magnetic dipole case in Sec. 3.2 we consider ĥ = ẑ and currents J =
Jφ(`)φ̂. The integral equation simpli�es to∫ `b

`a

∫ 2π

0

φ̂2 · φ̂1Jφ(`1)

4π|r1 − r2|
%(`1)

∣∣∣∣∂r1

∂`1

∣∣∣∣ dφ1 d`1 =
H0

2
φ̂2 · ĥ× r2 (B.3)

for r2 ∈ ∂V . This can be written as∫ `b

`a

Jφ(`1)g1(`1, `2)%(`1)

∣∣∣∣∂r1

∂`1

∣∣∣∣ d`1 = πH0%(`2) (B.4)

for ĥ = ẑ. Solve for Jφ and compute

ν =
1

2H0

∫
∂V

ẑ × r · Jφφ̂ dS =
π

H0

∫ `b

`a

Jφ%
2

∣∣∣∣∂r∂`
∣∣∣∣ d`. (B.5)
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We note that the integral equations for the charge density and the azimuthal
current density are formally identical except for a factor of 2 in the right hand side
of (B.1) as compared with the (B.4). The expressions for γ and ν are also identical.
This implies that ν = γ/2, i.e., the bound for the magnetic dipole radiation is 1/2
of the corresponding electric case for BoR objects with horizontal polarization.

Appendix C Elongated Objects

The bound in [8, 9] shows that D/Q is bounded by the projection of the polariza-
tion on the polarizability dyadic. It is observed that the polarizability is large for
directions parallel with the longest dimension of e.g., spheroids, cylinders, and rect-
angles [8, 9]. The polarizability is often much lower for directions perpendicular to
the longest dimension.

Consider an elongated object V = Ω× [−`/2, `/2] with k`� 1, and the longest
dimension contained in the xz-plane, see Fig. 11. The optimization formulation (4.1)
can be used for arbitrary directions k̂ and polarizations ê. Here, we analyze the case
with broadside radiation, i.e., k̂ · ẑ = 0 and polarization ê · ẑ = 0. It is assumed
that the current is independent of the z-coordinate. This gives the stored electric
energy W̃

(e)
vac = µ0`

16πk2
w̃(e), with

w̃(e)(J) =

∫
Ω

∫
Ω

∇1 · J(%1)∇2 · J∗(%2)G1(k|%1 − %2|, k`)

− k`

2

(
k2J(%1) · J∗(%2)−∇1 · J(%1)∇2 · J∗(%2)

)
G2(k|%1 − %2|, k`) dS1dS2. (C.1)

Here we use the notation %n, n = 1, 2 to account for vectors in the xy-plane, and
% = |%|. The two integral kernels G1, G2 have their z-dependence integrated out
asymptotically for large k`:

G1(k%, k`) =
1

`

∫ `
2

−`
2

∫ `
2

−`
2

cos
(
k
√
%2 + (z1 − z2)2

)
√
%2 + (z1 − z2)2

dz1dz2

= −πN0(k%) + 2
sin(k%)

k`
− 2

√
1 + %2/`2

k2`2
cos
(
k
√
`2 + %2

)
+O((k`)−3), (C.2)
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and

G2(k%, k`) =
1

`2

∫ `
2

−`
2

∫ `
2

−`
2

sin
(
k
√
%2 + (z1 − z2)2

)
dz1dz2

= −π%
`

N1(k%)− 2
%2/`2 + 1

k2`2
sin(k`

√
1 + %2/`2)

− 2%

k`2
cos(k%) +

2

k2`2
sin(k%) +O((k`)−3), (C.3)

where Nn is the Neumann function of order n. The corresponding radiated power
in a direction orthogonal to the z-axis, k̂ · ẑ = 0, with polarization ê · ẑ = 0 is

P (k̂, ê) =
ζ0`

2k2

32π2

∣∣∣∣∫
Ω

ê · J(%)ejkk̂·% dS

∣∣∣∣2 . (C.4)

This gives the bound

D

Q
≤ max

J

k3`
∣∣∣∫Ω

ê · J(%)ejkk̂·% dS
∣∣∣2

w̃(e)(J)
, (C.5)

for currents J = J(%).
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