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Abstract

This paper provides a general framework for electromagnetic modeling, com-
putation and measurements regarding the wave propagation characteristics of
High-Voltage Direct Current (HVDC) power cables. The modeling is focused
on very long (10 km or more) HVDC power cables and the relevant frequency
range is therefore in the low-frequency regime of about 0-100 kHz. An exact
dispersion relation is formulated together with a discussion on practical as-
pects regarding the computation of the propagation constant and the related
characteristic impedance. Experimental time-domain measurement data from
an 80 km long HVDC power cable is used to validate the model. It is con-
cluded that a single-mode transmission line model is not adequate to account
for the mismatch between the power cable and the instrumentation. A mis-
match calibration procedure is therefore devised to account for the connection
between the measurement equipment and the cable. A dispersion model is
thus obtained that is accurate for early times of pulse arrival. To highlight the
potential of accurate electromagnetic modeling, an example of high-resolution
length-estimation is discussed and analyzed using statistical methods based
on the Cramér-Rao lower bound. The analysis reveals that the estimation
accuracy based on the present model (and its related model error) is in the
order of 100 m for an 80 km long power cable, and that the potential accuracy
using a �perfect� model based on the given measurement data is in the order
of centimeters.

1 Introduction

Power cables are usually designed for the single purpose of carrying power at 0Hz,
50Hz or 60Hz, with little or no regard to losses at higher frequencies. However,
there are numerous existing and potential high-frequency applications for signal
transmission on power cables, as e.g., with power line communication (PLC) tech-
niques [28], simulation and analysis of lightning and switching overvoltages [28],
transient based protection [2] and fault localization and Partial Discharge (PD)
monitoring [24, 29, 32]. The present study is motivated in particular by the poten-
tial of improving the fault localization and diagnosis techniques for High-Voltage
Direct Current (HVDC) submarine power cables based on detection and analysis of
transient (virgin) pulses caused by dielectric breakdown. A systematic study and
accurate modeling of the fundamental dispersion and attenuation behavior of lossy
coaxial cables is of great importance in these applications.

The theory and applications for traveling waves on transmission lines and power
cables is a classical and well established research area, see e.g., [5, 8, 16, 17, 22, 30]. In
particular, it has been of great interest recently to study measurements and modeling
regarding the semiconducting layers of a power cable and its e�ect on wave propaga-
tion characteristics [1, 3, 28]. It has been shown, e.g., that the semiconducting layer
contributes signi�cantly to the attenuation for frequencies above 5-10 MHz [28].

Many of the classical results such as in [1, 5] are based on approximations and re-
strictions rather than on accurate numerical solutions of the electromagnetic problem
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and the related dispersion relation. Hence, in [1, 5], low-frequency approximations
are incorporated where the longitudinal wave number is partly neglected and the
exact dispersion relation is avoided. These approximations may not be su�ciently
accurate if a precise evaluation is required with respect to the dispersion properties
of a multi-layered coaxial power cable.

It can be shown that the low-frequency asymptotics of the propagation constant
of a coaxial cable with one insulating layer is given by γ ∼ A

√
iω/c0 when the

frequency ω → 0 and where A is a real and positive constant [19]. It is also concluded
in [19] that if an accurate low-frequency solution is required in a particular HVDC
power cable application, the �rst order asymptotic expansion is not accurate enough
over a relevant bandwidth, and a numerical solution to the dispersion relation is
hence very useful.

The purpose of this paper is to provide a general framework for electromagnetic
modeling, computation and measurements regarding the wave propagation charac-
teristics of HVDC power cables. The computational framework is employed here
in connection with time-domain measurements, but can easily be adapted to fre-
quency domain measurements such as with Frequency Modulated Continuous Wave
(FMCW) modules, Vector Network Analyzers (VNA), etc. The modeling is focused
on very long (10 km or more) HVDC power cables and the relevant frequency range
is therefore in the low-frequency regime of about 0-100 kHz. The electromagnetic
model is validated by using experimental time-domain measurement data from an
80 km long HVDC power cable. It is found that a single-mode transmission line
model is not adequate to obtain a good �t between the measurements and the
model, and a mismatch calibration procedure is therefore devised to account for the
connection between the measurement equipment and the power cable. An example
of high-resolution length-estimation is �nally analyzed to highlight the potential of
accurate electromagnetic modeling.

The rest of the paper is organized as follows: Section 2 describes the measure-
ment set-up, the basic transmission line modeling and the mismatch calibration
procedure. Section 3 gives the electromagnetic model and the exact dispersion re-
lation together with a discussion on practical aspects regarding the computation
of the propagation constant and the related characteristic impedance. Section 4
contains the experimental and numerical examples and section 5 the summary and
future work. Appendix A describes the time-domain modeling by using the FFT
(Fast Fourier Transform) and frequency weighting to avoid the Gibbs phenomena
in the time-domain. Finally, Appendix B de�nes the cylindrical vector waves.

2 Measurements and modeling

2.1 Measurement set-up and basic transmission line model-

ing

Consider the time-domain measurement set-up as illustrated in Figure 1. The basic
measurement equipment is a standard sampling oscilloscope and a pulse generator.
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The pulse generator voltage is denoted Vs and the measured voltage at the oscillo-
scope V . The characteristic impedance of the HVDC power cable is denoted Z and
the propagation constant γ, see e.g., [10, 25]. The length d of the power cable is
typically in the order of hundreds of kilometers. The cable is terminated with an
impedance ZL. During the measurements, the pulse generator and the oscilloscope
were connected to the power cable using a standard coaxial cable with impedance
R0 = 50 Ω and length d0 ≈ 10m. Two specially designed shielded connections were
used to connect to either end of the extruded HVDC power cable for a minimum of
disturbances and noise, see Figure 2. The internal resistance of the pulse generator
was shunted to R = 25 Ω for better matching. During the measurements, the far-end
of the power cable was either left open with ZL =∞, or matched with ZL = R.

!

Vs

+

V
−

R0, γ0, d0 Z, γ, dR

V +
0

V −
0

ZL

z = 0 z = d0 z = d0 + d

Figure 1: Measurement set-up and transmission line model. The pulse generator
voltage is denoted Vs and the measured voltage V at the oscilloscope consists of a
transmitted and a re�ected wave amplitude V = V +

0 + V −0 .

Figure 2: Shielded connection to the extruded HVDC power cable. The armour of
the power cable has been opened and the standard coaxial cable is connected to the
inner conductor and the lead sheat of the power cable.

Let the time- and space-convention for a propagating wave in the z-direction of
the cable be given by eiωte−γz where t is the time, ω = 2πf the angular frequency,
f the frequency and γ the propagation constant. Assuming that the e�ect of the
standard coaxial cable can be neglected (d0 � d), the re�ection coe�cient as seen
by the forward traveling wave at the generator intersection at z = 0, is given by

Γ = S11 +
S21S12ΓLe−2γd

1 + S11ΓLe−2γd
, (2.1)
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where the basic re�ection and transmission parameters of the connection are S11 =
(Z−R)/(Z+R), S12 = 2R/(Z+R) and S21 = 2Z/(Z+R) and ΓL = (ZL−Z)/(ZL +
Z) is the re�ection coe�cient at the load, cf., [25]. The observed voltage V at the
oscilloscope can hence be expressed as

V = V +
0 + V −0 = V +

0 (1 + Γ) (2.2)

where V +
0 and V −0 are the wave amplitudes of the forward and backward traveling

waves de�ned at the generator side, respectively.
From a geometric series expansion in (2.1), the voltage V in (2.2) can also be

expressed as
V = V +

0

(
1 + S11 + S21S12ΓLe−2γd + · · ·

)
(2.3)

in a series of multiply re�ected and transmitted pulses1. In the re�ection measure-
ment described below, the far-end of the cable was left open and it is hence assumed
that ΓL = 1. By neglecting the e�ect of the coaxial cable (let d0 = 0), and only
considering the �rst two consecutively observed pulses V (1) and V (2) in (2.3), the
following model is obtained for the observed voltage at the oscilloscope

V = V (1) + V (2) (2.4)

where {
V (1) = V +

0 (1 + S11)

V (2) = V +
0 S21S12e−2γd

(2.5)

and where the parameters S11, S21, S12 and γ have been de�ned above.
Note that V +

0 and V −0 represent a wave splitting with respect to the internal
resistance R at the generator side where V = V +

0 + V −0 , RI = V +
0 − V −0 and

V = Vs −RI where I is the current. Hence

V +
0 = Vs/2 (2.6)

is the amplitude of the forward traveling wave which is incident at the intersection
at z = 0. In the present experimental set-up, the generator was set to generate a
rectangular pulse with amplitude Vs0 and pulse-width Tp. The pulse repetition time
was very long and can hence be neglected. The Fourier spectrum of the pulse is
then given by

Vs = Vs0Tpe−iωTp/2
sin(ωTp/2)

ωTp/2
. (2.7)

Provided that the characteristic parameters γ and Z of the power cable are
given, the frequency domain model (2.4)�(2.5) based on single-mode transmission
line theory is now complete. An Inverse Fast Fourier Transformation (IFFT) [21,
27] is used to obtain the time-domain voltage amplitude v(t) corresponding to the
modeled frequency domain response (2.4). The most important de�nitions and
properties regarding the IFFT and the rejection of the Gibbs phenomena in the
time-domain are summarized in the Appendix A.

1Note that the terminology �pulses� is employed here for convenience, even though the repre-
sentation refers to the frequency domain.
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2.2 Mismatch calibration

The mismatch modeling described above is valid only if the wave propagation phe-
nomena on the two cables can be represented by single modes with impedances Z
and R, respectively. In practice, however, there will exist a multiple-mode excitation
at the connection between the measurement cable and the power cable. There are
several mode-matching techniques that could potentially be used to model the cor-
responding mismatch, see e.g., [7]. Here, a simple mismatch calibration procedure
is proposed as follows:

Let S11 and S21 and S12 denote the scattering parameters of the cable connection
(as seen from the measurement instrumentation) and which are related to the dom-
inating modes of the two connecting waveguides. It is assumed that the connections
at both ends of the power cable are identical. Two measurements are conducted
based on re�ection and transmission, respectively. In the re�ection measurement,
a wave amplitude V +

0r is transmitted at the near-end of the power cable with the
far-end left open, and it is hence assumed that ΓL = 1. The signal measured at the
near-end is time-gated to remove the �rst re�ection V +

0r (1 + S11), and the resulting
re�ection measurement can hence be modeled as

Vr = V +
0rS21S12e−2γd. (2.8)

If time-domain measurements are available, the time-gating can be performed di-
rectly on the observed data. If frequency domain measurements are available such
as with the VNA, an inverse Fourier transformation needs to be executed �rst.

In the transmission measurement, a wave amplitude V +
0t is transmitted at the

near-end of the power cable with the far-end matched with ZL = R. Since the two
connections are assumed to be identical, the signal measured at the far-end can be
modeled as

Vt = V +
0tS21S12e−γd. (2.9)

The two measurements (2.8) and (2.9) represent a nonlinear system of equations
with the unique solution 

Ŝ21S12 =
V 2

t V
+

0r

VrV
+2

0t

ê−γd =
VrV

+
0t

VtV
+

0r

(2.10)

provided that the denominators in (2.10) are nonzero.
Assuming that the calibration measurement outlined above can be performed

with high accuracy, the dispersion model based on mismatch calibration is �nally
given by

Vt = V +
0t Ŝ21S12e−γd (2.11)

where the propagation constant γ is given by an electromagnetic model.



6

3 Electromagnetic modeling and computation

3.1 The propagation constant and dispersion relation

Let µ0, ε0, η0 and c0 denote the permeability, the permittivity, the wave impedance
and the speed of light in free space, respectively, and where η0 =

√
µ0/ε0 and c0 =

1/
√
µ0ε0. The wave number of free space is given by k = ω/c0 where ω = 2πf is the

angular frequency and f the frequency. It follows that ωµ0 = kη0 and ωε0 = k/η0.
The cylindrical coordinates are denoted by (ρ, φ, z), the corresponding unit vectors
(ρ̂, φ̂, ẑ) and the transversal coordinate vector ρ = ρρ̂. The time-convention is
de�ned by the factor eiωt.

Let E and H denote the electric and magnetic �elds, respectively. The source-
free Maxwell's equations [10] are given in the frequency domain as{

∇×E = −iωµ0H

∇×H = iωε0εE,
(3.1)

where ε is the complex permittivity of the material given by

ε = εr − i
σ

k
η0, (3.2)

and where εr is the real, relative permittivity and σ the conductivity.
The present study is concerned with the eigenvalue (or modal) solutions to

Maxwell's equations (3.1) for a multi-layered circularly symmetrical cylindrical waveg-
uide. The wave propagation along the z-direction of the waveguide is given by the
exponential factor e−γz where γ is the propagation constant corresponding to a par-
ticular mode [10, 25]. With E = E(ρ, γ)e−γz and H = H(ρ, γ)e−γz, the eigenvalue
problem to be solved is given by{

∇2
t + k2ε+ γ2

}{ E(ρ, γ)
H(ρ, γ)

}
=

{
0
0

}
(3.3)

together with the appropriate boundary conditions, and where ∇2
t is the transversal

part of the Laplace operator and γ2 the eigenvalue [10, 25].
A practical approach to derive the appropriate boundary conditions is to employ

the cylindrical vector wave expansion as de�ned in Appendix B. Hence, to �nd the
eigenvalues, it is noted that the partial wave expressions under the integrals in (B.5)
and (B.6) satisfy (3.3), and it only remains to �nd non-trivial solutions satisfying the
appropriate boundary conditions. It should be noted, however, that the eigenvalue
problem (3.3) in general has a continuous spectrum if an exterior in�nite domain is
included. This complication is also manifested by the presence of branch-cuts in the
complex γ-plane related to the path integrals (B.5) and (B.6) de�ned in Appendix
B.

The present study is concerned with the Transversal Magnetic (TM) modes of
order m = 0 denoted TM0n, as the Transversal Electric (TE) modes of order m = 0,
TE0n, and all the higher order modes withm 6= 0 will essentially be cut-o� in the low-
frequency regime. In particular, the �rst TM01 mode of main interest is also called
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the quasi-TEM mode as it constitutes an approximation of the TEMmode of a single
layered coaxial cable with permittivity εd and propagation constant γ = ik

√
εd,

see also [25]. It should be noted that for a multi-layered circular waveguide, the
Transversal Electric (TE) and Transversal Magnetic (TM) �eld components are
generally coupled via the boundary conditions, but are always decoupled for the
axial symmetric TM0n and TE0n modes.

Consider a multi-layered circularly symmetrical cylindrical waveguide as depicted
in Figure 3. There are N + 1 material boundaries with radius ρi for i = 0, 1, . . . , N
de�ning an inner region for 0 ≤ ρ ≤ ρ0 with permittivity ε0, N intermediate layers
for ρi−1 ≤ ρ ≤ ρi with permittivity εi for i = 1, . . . , N and an outer region for
ρ ≥ ρN with permittivity εN+1.!

ρi
ρi−1

ρ0

εi+1εiεi−1ε0

Figure 3: The multi-layered circularly symmetrical cylindrical waveguide (coaxial
cable) with geometrical and material de�nitions.

The complex valued permittivity in each of the N + 2 regions are de�ned by

εi = εri − iσiη0/k, i = 0, 1, . . . , N + 1, (3.4)

where εri is the corresponding real, relative permittivity and σi the conductivity.
Let

κi =
√
k2εi + γ2, i = 0, 1, . . . , N + 1, (3.5)

be the corresponding radial wave number for material region i where the square
root2 is chosen such that Imκi ≤ 0, see also Appendix B.

The electric and magnetic �eld components are given by the expansion in cylin-
drical vector waves (B.2), (B.5) and (B.6) de�ned in Appendix B. For the TM0n

modes, the non-zero �eld components are given in each layer by

Ez =
1

2πi

κ

k

[
aψ

(1)
0 (κρ) + bψ

(2)
0 (κρ)

]
e−γz (3.6)

Eρ =
1

2πi

γ

k

[
aψ

(1)
1 (κρ) + bψ

(2)
1 (κρ)

]
e−γz (3.7)

Hφ =
1

2πη0

ε
[
aψ

(1)
1 (κρ) + bψ

(2)
1 (κρ)

]
e−γz (3.8)

2If the square root has positive real part, i.e., Re
√
· ≥ 0 such as with the MATLAB software,

then κ is chosen as κ = −i
√
−k2ε− γ2 to guarantee that Imκ ≤ 0.
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where a and b are complex valued expansion coe�cients and ψ
(j)
m (·) a Bessel function

or a Hankel function of the �rst kind (j = 1) and the second kind (j = 2) and order

m. Here, the relation ψ
(j)′
0 (·) = −ψ(j)

1 (·) [20] has also been used.
For the intersection between two materials with �nite conductivity3 the appro-

priate boundary conditions are given by the continuity of the tangential electric and
magnetic �elds [10]. For the TM0n modes these boundary conditions can now be
formulated using (3.6) and (3.8) as follows. Let a0, ai and bi for i = 1, . . . , N and
bN+1 denote the expansion coe�cients corresponding to the N + 2 regions de�ned
above. The boundary conditions related to the inner boundary at radius ρ0 are
given by {

a1κ1H
(1)
0 (κ1ρ0) + b1κ1H

(2)
0 (κ1ρ0)− a0κ0J0(κ0ρ0) = 0

a1ε1H
(1)
1 (κ1ρ0) + b1ε1H

(2)
1 (κ1ρ0)− a0ε0J1(κ0ρ0) = 0

(3.9)

where Jm(·) denotes the Bessel function of the �rst kind and H
(1)
m (·) and H

(2)
m (·) the

Hankel functions of the �rst and second kind, respectively, see also the Appendix B.
The boundary conditions related to the intermediate boundaries at radius ρi−1 are
similarly given by

aiκiH
(1)
0 (κiρi−1) + biκiH

(2)
0 (κiρi−1)

−ai−1κi−1H
(1)
0 (κi−1ρi−1)− bi−1κi−1H

(2)
0 (κi−1ρi−1) = 0

aiεiH
(1)
1 (κiρi−1) + biεiH

(2)
1 (κiρi−1)

−ai−1εi−1H
(1)
1 (κi−1ρi−1)− bi−1εi−1H

(2)
1 (κi−1ρi−1) = 0

(3.10)

where i = 2, . . . , N . The boundary conditions related to the outer boundary at
radius ρN are �nally given by{

bN+1κN+1H
(2)
0 (κN+1ρN)− aNκNH

(1)
0 (κNρN)− bNκNH

(2)
0 (κNρN) = 0

bN+1εN+1H
(2)
1 (κN+1ρN)− aNεNH

(1)
1 (κNρN)− bNεNH

(2)
1 (κNρN) = 0.

(3.11)

Note that the inner region is represented solely by the Bessel function Jm(κ0ρ)
(regular wave) in (3.9) and the outer region is represented solely by the Hankel

function H
(2)
m (κN+1ρ) of the second kind (outgoing wave) in (3.11), see also Appendix

B.
The boundary conditions in (3.9) through (3.11) for all the intersections under

consideration are assembled into a square (2N + 2) × (2N + 2) matrix A(γ), and
the corresponding dispersion relation is given by

detA(γ) = 0, (3.12)

which is the condition for the existence of a propagating mode [10, 25].

3It is assumed that at least one of the layers have non-zero conductivity so that there are no
surface currents.



9

If there exists an initial guess of a particular propagation constant γ1, the exact
value can be computed by the normalized residue

γ1 =

∮
C

γ

detA(γ)
dγ∮

C

1

detA(γ)
dγ
, (3.13)

provided that the closed loop C is circumscribing the true value γ1, and that there
are no other zeros of detA(γ) inside the loop. A numerical algorithm to compute the
eigenvalue γ1(k) at di�erent wave numbers (frequencies) k can now be formulated
by the following basic steps:

1. Determine an initial guess γ̂1(k0) at the initial wave number k0.

2. Given the initial guess γ̂1(k) at wave number k, determine a contour C that is
large enough to circumscribe the zero γ1(k) of interest, and small enough to
avoid other zeros and branch-cuts.

3. Calculate the zero γ1(k) of interest by using a numerical integration based on
(3.13).

4. Given the propagation constant γ1(k) at wave number k, determine an ap-
proximate initial guess γ̂1(k + ∆k) at the next wave number k + ∆k. Return
to 2 above, or stop if required.

3.2 The characteristic impedance

To determine the characteristic impedance Z of the power cable, the following quasi-
static voltage and current waves are used

V +(z) =

∫ ρL

ρ0

Eρ dρ (3.14)

I+(z) =

∫ 2π

0

∫ ρ1

0

σEzρ dρ dφ (3.15)

where ρ0 is the radius of the inner conductor, ρL the radius of the lead shield and
ρ1 the radius of the inner semi-conducting layer. By using the expression (3.7), the
voltage wave can be computed as

V +(z) =
L∑
i=1

∫ ρi

ρi−1

−γe−γz

2πik

(
aiH

(1)′
0 (κiρ) + biH

(2)′
0 (κiρ)

)
dρ

=
−γe−γz

2πik

L∑
i=1

{
ai
κi

(
H

(1)
0 (κiρi)− H

(1)
0 (κiρi−1)

)
+
bi
κi

(
H

(2)
0 (κiρi)− H

(2)
0 (κiρi−1)

)}
(3.16)
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where the relation ψ
(j)′
0 (·) = −ψ(j)

1 (·) has been used (j = 1, 2).
By using the expression (3.6), the current wave can be computed as

I+(z) =
σ0

ik
e−γz

∫ ρ0

0

a0J0(κ0ρ)κ0ρ dρ

+
σ1

ik
e−γz

∫ ρ1

ρ0

(
a1H

(1)
0 (κ1ρ) + b1H

(2)
0 (κ1ρ)

)
κ1ρ dρ

= −iσ0
a0

k
ρ0J1(κ0ρ0)e−γz − iσ1

a1

k

(
ρ1H

(1)
1 (κ1ρ1)− ρ0H

(1)
1 (κ1ρ0)

)
e−γz

− iσ1
b1

k

(
ρ1H

(2)
1 (κ1ρ1)− ρ0H

(2)
1 (κ1ρ0)

)
e−γz (3.17)

where the integral
∫
ψ

(j)
0 (x)x dx = xψ

(j)
1 (x) has been used which is valid for any

Bessel or Hankel function ψ
(j)
m (x) (j = 1, 2), see [20].

Assume that the propagation constant γ1 of the quasi-TEM TM01 mode is given
(i.e., has been obtained numerically) for a particular wave number k. The coe�cients
a0 and ai and bi for i = 1, . . . , L de�ning the corresponding voltage and current
waves in (3.16) and (3.17) above can then be obtained (as a non-trivial solution)
from the nullspace of the matrix A(γ1) de�ned in (3.9) through (3.11) above. It is
a very sensitive numerical operation to obtain an eigenvector of the matrix A(γ1)
corresponding to its zero eigenvalue, in particular when the wave number k is getting
large. A preconditioning of the numerical problem is therefore highly recommended,
and one possibility is to proceed as follows:

Let a0 = 1, and move the corresponding terms to the right-hand side of (3.9)
yielding {

a1κ1H
(1)
0 (κ1ρ0) + b1κ1H

(2)
0 (κ1ρ0) = κ0J0(κ0ρ0)

a1ε1H
(1)
1 (κ1ρ0) + b1ε1H

(2)
1 (κ1ρ0) = ε0J1(κ0ρ0).

(3.18)

The equation (3.18) together with (3.10) and (3.11) represent an (2N+2)×(2N+1)
overdetermined linear system of equations

Bx = b (3.19)

where x is a vector containing the unknowns ai and bi for i = 1, . . . , N and bN+1. The
system (3.19) can be solved in a least squares sense using a pseudo-inverse [9, 14].
However, this is not su�cient when the problem is severely ill-conditioned. A Jacobi
preconditioning [9, 14] is incorporated by instead solving the problem

BD−1/2y = b (3.20)

where y = D1/2x and where D is a diagonal matrix with the same diagonal elements
as the matrix BHB. The inversion of (3.20) is well-conditioned since the matrix
(BD−1/2)HBD−1/2 has unit diagonal.

The characteristic impedance is then �nally obtained as

Z =
V +(z)

I+(z)
. (3.21)
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4 Experimental and numerical examples

4.1 Measurements and modeling for the HVDC power cable

A measurement campaign was pursued in June 2011 regarding time-domain mea-
surements and modeling of an 80 km long 200 kV HVDC sea cable that was rolled
up on shore, see Figure 4. The purpose was to evaluate the electromagnetic model
that has been described in this paper.

Figure 4: An 80 km long 200 kV HVDC sea cable rolled up on shore.

The measurement set-up has been described in section 2 including an illustration
of the connection between the extruded HVDC power cable and the measurement
cable, see Figure 2. The measurement data was acquired using a 500MHz sam-
pling oscilloscope. The geometrical and electrical properties of the cable have been
estimated based on data sheets and drawings as illustrated in Figure 5.
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Figure 5: Cross-section of the extruded HVDC sea cable.

Layer radius [mm] permittivity conductivity
Inner conductor ρ0 = 24.3 εr0 = 1 σ0 = σCu

Conductor screen ρ1 = 26.0 εr1 = εd σ1 = σs

Insulation ρ2 = 42.0 εr2 = εd σ2 = 0
Insulation screen ρ3 = 43.9 εr3 = εd σ3 = σs

Lead sheat ρ4 = 46.9 εr4 = 1 σ4 = σPb

Inner sheat ρ5 = 49.5 εr5 = εd σ5 = 0
Armour ρ6 = 53.5 εr6 = 1 σ6 = σFe

Outer serving ρ7 = 58.5 εr7 = εd σ7 = 0
Exterior region ρ8 =∞ εr8 = (1, 80) σ8 = (0, 1)

Table 1: Modeling parameters.
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Due to the di�culty to determine the exact electrical properties of all layers, a
simpli�ed model has been used where we have incorporated the properties that we
believe are the most signi�cant, see Table 1. The permittivity of the insulation, the
semi-conducting XLPE screens, the inner sheat and the outer serving are modeled
with εd = 2.3. The conductivity of the semi-conducting XLPE screens are modeled
with σs = 1 S/m. The conductivity of the inner conductor, the lead sheat and
the armour are modeled with σCu = 5.8 · 107 S/m, σPb = 4.6 · 106 S/m and σFe =
1.1 · 106 S/m, respectively. The permittivity of the exterior region is modeled either
with εr8 = 1 (air) or εr8 = 80 (water), and the corresponding conductivity is either
σ8 = 0 (air) or σ8 = 1 S/m (sea-water).

Based on these modeling parameters, the electromagnetic model described in
section 3 has been evaluated as described below. Unless otherwise stated, the cable
is modeled with exterior parameters εr8 = 1 and σ8 = 0 (air). For the FFT calcu-
lations has been used N = 16384, and hence the propagation constant γ and the
characteristic impedance Z have been calculated for N/2 = 8192 frequency points,
as described in section 2 and 3, and in Appendix A. A time period T = 0.08 s
was chosen corresponding to a frequency sampling interval ∆f = 1/T = 12.5 Hz, a
sampling rate fs = N∆f = 204.8 kHz and a sampling interval Ts = 1/fs = 4.88µs.
Figure 6 illustrates the frequency domain windowing and the time domain resolu-
tion and dynamics corresponding to a modeling bandwidth of 102.4 kHz. A Kaiser
window [11, 12, 21, 27] with parameter β = 8 has been used together with the IFFT
operation in order to suppress the Gibbs phenomena in the time-domain, see also
Appendix A.

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60
0

20

40

60

80

100

120

a) Frequency domain window W (f)

f [ kHz]
b) Time-domain pulse form p(t) [ dB]

t [µs]

Figure 6: Illustration of frequency domain windowing and time-domain resolution
and dynamics. The upper plot a) shows the Kaiser window with parameter β = 8 for
a modeling bandwidth of 100 kHz. The lower plot b) shows a comparison between
the convolving pulse form p(t) (plotted here as 20 log |p(t)| in dB) obtained from
the Kaiser window (solid line) and a rectangular window (dashed line).

The zero �nding algorithm is based partly on a visual inspection of a two-
dimensional plot of the dispersion function detA(γ), as illustrated in Figures 7
and 8. The Figures 7 and 8 show the zeros corresponding to the quasi-TEM mode
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Figure 7: Illustration of a) amplitude and b) argument of the dispersion function
detA(γ) for f = 50 Hz and the quasi-TEM mode TM01. The contour C is obtained
(estimated) from the previous frequency (37.5 Hz) and is used to calculate the zero
at the present frequency (50 Hz). The points γ = ik and γ = ik

√
εd are indicated

with small circles.
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Figure 8: Illustration of a) amplitude and b) argument of the dispersion function
detA(γ) for f = 50 Hz and the second mode TM02. The contour C is obtained
(estimated) from the previous frequency (37.5 Hz) and is used to calculate the zero
at the present frequency (50 Hz).

TM01 and the second mode TM02, respectively. To this end, it is very useful to ob-
serve the TEM wave number ik

√
εd which approximates the dominating quasi-TEM

mode TM01 and where εd is the permittivity of the insulating dielectric layer. It is
also very useful to observe the point γ = ik

√
εN+1 = ik, where there is a branch-

cut originating from the Hankel function representing the exterior domain. Given
an estimate γ̂1(k) of the propagation constant at wave number k, the contour C in
(3.13) is de�ned here as an ellipse centered at γ̂1(k) with x-radius r2 Re γ̂1(k) and
y-radius r(Im γ̂1(k)−k√εd), which are assumed to be positive quantities. When the
proportionality parameter r of the ellipse is less than 1 (here r = 0.7) this procedure
guarantees that the branch-cut is avoided at γ = ik. To determine an initial guess
γ̂1(k + ∆k) at the new frequency point at k + ∆k, it is assumed that Im γ1(k) is
approximately linear in k, yielding the formula γ̂1(k + ∆k) = γ1(k) + i Im γ1(k)∆k

k
.

Figure 9 illustrates a comparison between the time-domain measurement data
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and the modeled response based on the quasi-TEM mode TM01. The amplitude
and the pulse-width of the transmitted rectangular pulse (2.7) was Vs0 = 53 V and
Tp = 98.6µs, respectively. The short spikes that are visible in the measurement
data are due to the 50Ω measurement coaxial cable with length d0 ≈ 10m. As the
power cable is placed on shore during the measurement, the cable is modeled with
exterior parameters εr8 = 1 and σ8 = 0. Based on the electromagnetic model, the
length of the HDVC power cable was estimated to d = 82 km.

0 200 400 600 800 1000 1200 1400 1600
−10

−5

0
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10

15

20
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30

35

40
Re�ection measurement and modeling [V]

t [µs]

Figure 9: Comparison between measurement data (solid line) and modeled re-
sponse (dashed line) based on the quasi-TEM mode TM01. A rectangular pulse
with duration 100µs was transmitted at t = 0 and the re�ected pulse was received
at about 930µs.

The electromagnetic model can be used to investigate the low-frequency disper-
sion characteristics of the power cable and its dependence of various material and
geometrical parameters. A few examples are given below. Figure 10 shows the nor-
malized wave velocity and the attenuation due to the quasi-TEM mode TM01 over
the frequency range 0�100 kHz. Figure 11 shows the normalized wave velocity and
the attenuation for both the TM01 and the TM02 modes over the frequency range
0�1 kHz. Figure 12 shows the characteristic impedance for the TM01 and the TM02

modes over the frequency range 0�1 kHz. As can be seen in these �gures, the TM02

mode is propagating, but is highly damped at higher frequencies. Hence, it is ob-
served that the higher order modes may have an impact on the modeled response
depending on their level of excitation.

As an illustration of a simple parameter study regarding the dominating quasi-
TEM mode TM01, the following three di�erent cases are studied where the exterior
domain is characterized by (εr8, σ8) = (1, 0) (air), (εr8, σ8) = (80, 0) (water) and
(εr8, σ8) = (80, 1) (sea-water). The corresponding wave propagation characteristics
over the frequency range 0�1 kHz are shown in Figures 13 and 14. This example sug-
gests that the presence of the sea-water conductivity is noticeable only at the lower
frequencies below 300-400Hz, where there is a slight decrease in the attenuation and
the imaginary part of the characteristic impedance changes signi�cantly.
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Figure 10: Low-frequency dispersion characteristics of the power cable over the
frequency range 0�100 kHz based on the quasi-TEM mode TM01: a) Normalized
wave velocity c/c0 = k/ Im γ(k). b) Attenuation 2 · 106 log e Re γ in dB/100km.

As was seen in Figure 9 above, there is a slight discrepancy between the mea-
surement data and the modeled response based on the quasi-TEM mode TM01. In
particular, it seems that the electromagnetic model under-estimates the attenuation
of the re�ected pulse at early times and over-estimates the attenuation of the pulse
at later times. Observe, however, that the agreement between the measurements and
the model is best at very early times of pulse arrival at about 930�950µs, indicating
a di�culty to model correctly the propagation at lower frequencies.

4.2 Modeling based on mismatch calibration

To investigate the possibility to improve the model due to the excitation of higher
order modes, a mismatch calibration has been performed as described in section 2.2.
The resulting model (2.11) is then used in an example of high-resolution length-
estimation as described below. The propagation constant γ corresponding to the
TM01 mode is given by the electromagnetic model described in section 3.1. The
cable is modeled here with the exterior parameters εr8 = 1 and σ8 = 0.

Two measurements based on re�ection and transmission were conducted as il-
lustrated in Figure 15. The excitation pulse amplitude Vs0 was 53V and 25V,
respectively, and the pulse time was about Tp = 100µs in both cases. The measure-
ment data was low-pass �ltered and resampled to the sampling rate corresponding to
the FFT computations as described in section 4.1 above (fs = 204.8 kHz). The data
was also extrapolated to the full N -point FFT-grid by using the following model for
the pulse tail

C√
(t− t0)3

(4.1)

where t0 is the initial time of the pulse and C a constant. This model is motivated
by the Laplace transform pair s 1√

s
e−A

√
s ↔ ∂

∂t
1√
πt

e−A
2/4t as a coarse model for the
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Figure 11: Low-frequency dispersion characteristics of the power cable over the
frequency range 0�1 kHz: a) Normalized wave velocity c/c0 = k/ Im γ(k). b) Atten-
uation 2 · 106 log e Re γ in dB/100km. The solid lines show the TM01 mode and the
dashed lines the TM02 mode.

transmission factor S21S12e−γd at late times. The re�ection measurement data was
�nally time-gated.

After performing the FFT operation on the pre-processed measurement data

shown in Figure 15, the estimated transmission coe�cient Ŝ21S12 was computed
as given by (2.10). Figure 16 shows a comparison between the magnitude of the
transmission coe�cient |S21S12| obtained from the single-mode transmission line
model as described in section 2.1, and the calibrated parameters as described in
section 2.2. It is noted that the loss in transmission according to the calibrated
parameters is expected due to the scattering of higher order modes.

Figure 17 shows a comparison between the transmission measurement data, the
modeled response based on single-mode transmission line theory and the modeled
response based on mismatch calibration (2.11). It is observed that the agreement
between the measurements and the model is best at early times of pulse arrival.
Based on an optimization over the raising edge of the measured pulse in the interval
460− 560µs (as indicated in Figure 17), the length of the power cable is estimated
to d = 81.8 km. The corresponding mis�t functional is de�ned by

E(d) =
1

t1 − t0

∫ t1

t0

|vM
t (t)− vt(t)|2 dt (4.2)

where [t0, t1] de�nes the optimization interval and vM
t (t) and vt(t) denote the mea-

sured and modeled responses, respectively. The least square error E(d) and the
optimal modeling error are illustrated in Figure 18. In Figure 19 is shown a compar-
ison of the attenuation and the phase delay of the power cable based on the modeled

transmission factor e−γd (with d = 81.8 km) and the estimated ê−γd given by (2.10).
It is concluded that a single-mode transmission line model is not adequate to

account for the mismatch between the power cable and the instrumentation, and that
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Figure 12: Low-frequency impedance characteristics of the power cable over the
frequency range 0�1 kHz. The blue lines show ReZ and the red lines show − ImZ
corresponding to the two modes TM01 (solid lines) and TM02 (dashed lines), respec-
tively.

the mismatch calibration procedure yields a model that is accurate for early times
of pulse arrival. There are several physical circumstances to consider to account for
the remaining modeling errors. Possible candidates are e.g., the choice of modeling
parameters, the radius of curvature of the rolled up cable (here approximately 15-
20m) and the corresponding coupling, the presence of a continuous spectrum in the
solution to the Maxwell's equations, the need for more elaborate modeling of the
cable armour consisting of steel wires or the need to further improve the mismatch
calibration and/or modeling to account for the connection between the power cable
and the measurement cable. It is di�cult to say which of the factors listed above
that has the greatest impact on the modeling error, but we believe that the latter
two are of great interest, i.e., to incorporate into the model the e�ect of the cable
armour and the excitation of higher order modes at the cable connection.
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Figure 13: Parameter study with regard to the dispersion characteristics of the
power cable TM01 mode over the frequency range 0�1 kHz: a) Normalized wave
velocity c/c0 = k/ Im γ(k). b) Attenuation 2 · 106 log e Re γ in dB/100km. The
exterior parameters are (εr8, σ8) = (1, 0) (solid lines), (εr8, σ8) = (80, 0) (dashed
lines) and (εr8, σ8) = (80, 1) (dash-dotted lines).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80
Characteristic impedance Z [Ω]

ReZ

− ImZ

f [ kHz]

Figure 14: Parameter study with regard to the impedance characteristics of the
power cable TM01 mode over the frequency range 0�1 kHz. The blue lines show ReZ
and the red lines show − ImZ. The exterior parameters are (εr8, σ8) = (1, 0) (solid
lines), (εr8, σ8) = (80, 0) (dashed lines) and (εr8, σ8) = (80, 1) (dash-dotted lines).
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Figure 15: Input data for mismatch calibration: a) re�ection data. b) transmission
data. The solid lines show the original measurement data and the dashed lines the
resampled and extrapolated data. The re�ection data has been time-gated.
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Figure 16: Magnitude of the transmission coe�cients |S21S12|. The blue line is
based on the single-mode transmission line model and the red line on the calibrated
parameters.
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Figure 17: Comparison between transmission measurement data (solid line), mod-
eled response based on single-mode transmission line theory (dashed line) and mod-
eled response based on mismatch calibration (red dash-dotted line). A rectangular
pulse with duration 100µs was transmitted at t = 0 and received at the far-end at
about 460µs. The time-domain samples for length-estimation are based on the rais-
ing edge of the measured pulse in the interval 460 − 560µs, and the corresponding
modeled response is indicated here by the red circles.
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Figure 18: a) Least square error E(d) as a function of estimated distance d. b)
Modeling error for d = 81.8 km.
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Figure 19: a) Attenuation Re γd · 20 log e in dB. b) Phase delay Im γd/ω in ms.
The length is estimated to d = 81.8 km. The solid blue lines show the measured
quantities based on the mismatch calibration and the red dashed lines the corre-
sponding modeled quantities.
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4.3 Statistical sensitivity analysis for high-resolution length-

estimation

To illustrate the potential of high-resolution distance measurements for very long
power cables, a statistically based sensitivity analysis is described below. Hence,
based on the assumption that the measurement noise is uncorrelated and Gaussian
distributed, in addition to the assumption that the electromagnetic model given by
(2.4) in section 2 is perfectly correct, the Cramér-Rao lower bound [13, 31] for esti-
mating the distance parameter d can be readily calculated. The basic de�nitions and
derivations regarding the maximum likelihood criterion and the Fisher information
for measurements over a frequency interval can be found in e.g., [15, 18].

If the assumptions stated above are ful�lled, the maximum likelihood criterion
[13, 31] for estimating d is based on the least squares error functional∫ ∞

−∞
|vM(t)− v(t, d)|2 dt =

∫ ∞
−∞
|V M(f)− V (f, d)|2 df (4.3)

where vM(t) and V M(f) represent the measured voltages and v(t, d) and V (f, d) the
modeled voltages in the time and frequency domains, respectively. Furthermore,
the Fisher information [13, 31] for the distance parameter d based on an observation
over the frequency interval [−B,B], is given by

I(d) =

∫ B

−B

1

RN(f)

∣∣∣∣∂V∂d
∣∣∣∣2 df =

1

N0

∫ B

−B
4
∣∣γV +

0 S21S12e−2γd
∣∣2 df, (4.4)

where RN(f) is the power spectral density [26] of the noise. Here, it has been as-
sumed that the power spectral density is a constant N0 over the frequency interval
of interest and ∂V

∂d
= −2γV +

0 S21S12e−2γd has been used based on the model given by
(2.4) and (2.5) in section 2. The Cramér-Rao lower bound [13, 31] asserts that the
error variance of any unbiased estimator d̂ of the parameter d is lower bounded by
Var{d̂} ≥ 1/I(d). Hence, a statistically based measure of the best possible accu-
racy (which is also asymptotically achievable [13, 31]), is given by the corresponding
standard deviation 1/

√
I(d).

To validate the �rst assumption above, a normal probability plot [6] was made
based on measurement noise that was collected prior to pulse excitation, see Figure
20. The measurement set-up and parameter choices were the same as have been
described in the previous sections and illustrated in Figure 9. A record of noise over
a 375 µs interval at a sampling rate of 500MHz was analyzed, and the power spectral
density of the noise was estimated to N0 = 2.1 · 10−13 V2s. The normal probability
plot was obtained by using the statistics toolbox in Matlab, and it shows a very close
linear �t with respect to the normal distribution. This is a clear indication that the
normal (or Gaussian) assumption about the noise statistics is well justi�ed, see [6].
A spectrum analysis also revealed that the noise can be regarded to be uncorrelated
over the frequency interval of interest.

Assuming that the electromagnetic model is perfectly correct, the corresponding
statistical accuracy 1/

√
I(d) is obtained using (4.4). Figures 21 a) and b) show
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the statistical accuracy as a function of the measurement bandwidth B over the
frequency ranges 0�500Hz and 0�50 kHz, respectively. These plots illustrate the po-
tential of achieving high-resolution estimation performance based on an extremely
accurate electromagnetic model, where the model errors can be neglected in com-
parison to the measurement errors. Based on the analysis of the measurement noise
in this particular example, a length-estimation accuracy in the order of centimeters
would be possible for a cable with a total length in the order of 10�80 km.
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Figure 20: Illustration of measurement noise statistics. The upper plot a) shows
375 µs of the measurement noise prior to pulse excitation (decimated here to a
sampling rate of 1MHz). The lower plot b) shows a normal probability plot corre-
sponding to 375 µs of the measurement noise at a sampling rate of 500MHz (187500
data points).

4.4 Statistical sensitivity analysis based on mismatch cali-

bration

A Fisher information analysis is given below regarding the high-resolution length-
estimation based on mismatch calibration, as described in section 4.2. The modeled
response Vt is given by (2.11) where the propagation constant γ is modeled as de-
scribed in section 3.1. The mis�t functional for length-estimation is given by (4.2).
The Fisher information for length-estimation based on the �nite time interval [t0, t1]
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Figure 21: Illustration of the potential of high-resolution estimation. The upper
plot a) shows the statistical accuracy 1/

√
I(d) over the frequency range 0− 500 Hz.

The lower plot b) shows the statistical accuracy 1/
√
I(d) over the frequency range

0− 50 kHz. In both cases, four plots are shown for d = 10, 20, 41, 82 km.

is given by4

I(d) =
1

N0

∫ t1

t0

∣∣∣∣∂vt(t)

∂d

∣∣∣∣2 dt ≈ Ts

N0

∑
i

∣∣∣∣∂vt(ti)

∂d

∣∣∣∣2 (4.5)

where N0 is the spectral density of the noise and the sensitivity pulse ∂vt(t)
∂d

is the
inverse Fourier transform of the corresponding sensitivity expression in the frequency
domain

∂Vt

∂d
= −γV +

0t Ŝ21S12e−γd. (4.6)

The sensitivity pulse ∂vt(t)
∂d

is readily computed from an inverse FFT operation based
on (4.6) and is plotted in Figure 22.

Let the Noise-Ratio NR be de�ned by NR = N0/(2.1 · 10−13) in relation to
the noise level of the present measurement data. Figure 23 shows the statistical
accuracy 1/

√
I(d) based on (4.5) as a function of the noise ratio NR. Assuming that

there is no modeling error, it is seen from Figure 23 that the estimation accuracy
for NR = 0 dB is in the order of centimeters. In Figure 23, the vertical dashed
line indicates the noise ratio that corresponds to the modeling error, i.e., NR =
E(d)Ts/(2.1 · 10−13) = 57.6 dB where E(d) is given by (4.2), see also Figure 18.

4The time-domain expression (4.5) follows readily from (4.4) by an application of the Parseval's
relation.
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When the noise ratio is signi�cantly above this limit, the model error is much less
than the Gaussian noise and can hence be neglected. It is therefore concluded from
Figure 23 that the accuracy for length-estimation in this application example is in
the order of 100m.
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Figure 22: The sensitivity pulse ∂vt(t)/∂d. The time-domain samples for length-
estimation are based on the raising edge of the measured pulse in the interval 460−
560µs, and the corresponding sensitivity values are indicated here by the blue circles.

5 Summary and future work

A general framework for electromagnetic modeling and computation regarding the
wave propagation characteristics of HVDC power cables has been presented in this
paper. The computational framework is well suited for time- and/or frequency-
domain measurements and modeling for very long (10 km or more) HVDC power
cables in the low frequency regime of about 0�100 kHz. An exact dispersion re-
lation is formulated together with a discussion on practical aspects regarding the
computation of the propagation constant and the related characteristic impedance.
Experimental time-domain measurement data from an 80 km long HVDC power ca-
ble is used to validate the model. It is concluded that a single-mode transmission
line model is not adequate to account for the mismatch between the power cable
and the instrumentation. A mismatch calibration procedure is therefore devised to
account for the connection between the measurement equipment and the cable. A
dispersion model is thus obtained that is accurate for early times of pulse arrival.

It is anticipated that an �exact� electromagnetic model will potentially be very
useful for future fault localization and diagnosis systems regarding the surveillance
of very long HVDC power cables, as well as for the possibility to measure accurately
the length of the power cables as an aid in the manufacturing process. Hence, future
work will be devoted to improve the electromagnetic dispersion models with the aim
of reaching an �exact� agreement between the measurement data and the modeling in
the sense that the modeling errors are less than (or comparable to) the measurement
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Figure 23: a) Statistical accuracy 1/
√
I(d) over the Noise-Ratio interval 0−20 dB.

b) Statistical accuracy 1/
√
I(d) over the Noise-Ratio interval 40 − 70 dB. The

computations are based on the estimated length d = 81.8 km. The vertical dashed
line indicates where the noise ratio corresponds to the modeling error.

errors. To this end, a systematic study will be pursued in order to investigate the
signi�cance (i.e., the sensitivity) of various modeling parameters. Possible model
improvements such as the incorporation of the cable armour consisting of steel wires,
or the connection to the power cable and the related excitation of higher order modes
will also be investigated. It has also been observed that the agreement between the
measurements and the model is best at very early times of pulse arrival, indicating
a di�culty to model correctly the propagation at lower frequencies. Hence, it is
also anticipated that there is a potential for developing asymptotic methods and
electromagnetic models that are accurate for early times of pulse arrival, and to
derive high-resolution estimation algorithms based on such models.
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Appendix A Fast Fourier inversion and rejection of

the Gibbs phenomena in the time-domain

The N -point Discrete Fourier Transform (DFT) and its inverse (IDFT) are de�ned
by 

S(k) =
N−1∑
n=0

s(n)e−i 2π
N
kn

s(n) =
1

N

N−1∑
k=0

S(k)ei 2π
N
kn

(A.1)

where s(n) is a real, discrete-time signal de�ned for n = 0, 1, . . . , N − 1 [21, 27]. An
important property is that the symmetry S(k) = S∗(N −k) holds if and only if s(n)
is real. Both signals S(k) and s(n) are regarded to be periodic with period N . An
e�cient algorithm to compute the DFT is the Fast Fourier Transform (FFT) where
N is assumed to be a power of two, see e.g., [21, 27].

Let V (f) = Fv(t) denoted a frequency domain function which is observed over
the frequency interval f ∈ [−B,B] where B is the bandwidth. Here, F denotes the
classical Fourier transform for continuous-time signals [23]. It is desired to employ
the FFT to obtain an approximation of the inverse v(t) = F−1V (f), based on N
uniform samples of V (f) over the bandwidth f ∈ [−B,B].

De�ne the 
sampling rate: fs = 2B

samling interval: Ts = 1
fs

period: T = NTs

frequency sampling interval: ∆f = 1
T

= fs
N

(A.2)

and de�ne the frequency domain samples by
S(k) = WkV (fk) 0 ≤ k ≤ N

2
− 1

S(k) = 0 k = N
2

S(k) = S∗(N − k) N
2

+ 1 ≤ k ≤ N − 1

(A.3)

where Wk is a positive window function, and where

fk = k∆f. (A.4)

The window function Wk is de�ned for k = −N
2

+ 1, . . . , N
2
− 1 and is symmetric

with Wk = W−k. The corresponding T -periodic time domain pulse is obtained as
the following Fourier series

p(t) =

N
2
−1∑

k=−N
2

+1

Wke
i 2π
T
kt. (A.5)

De�ne also the Fourier series coe�cients

Sp(k) =

{ 1
T
S(k) −N

2
+ 1 ≤ k ≤ N

2
− 1

0 |k| ≥ N
2

(A.6)
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and the corresponding T -periodic function

sp(t) =

N
2
−1∑

k=−N
2

+1

Sp(k)ei 2π
T
kt. (A.7)

It is then readily seen that

s(n) =
1

N

N−1∑
k=0

S(k)ei 2π
N
kn =

1

N

N
2
−1∑

k=−N
2

+1

TSp(k)ei 2π
N
kn

= Ts

N
2
−1∑

k=−N
2

+1

Sp(k)ei 2π
T
knTs = Tssp(nTs), (A.8)

and hence

sp(nTs) =
1

Ts

s(n). (A.9)

From (A.3) and (A.6) follows that

Sp(k) =
1

T
V (fk)Wk (A.10)

and hence that

sp(t) =
1

T
P{v(t)} ⊗ p(t) (A.11)

where ⊗ denotes the circular convolution de�ned by x(t)⊗y(t) =
∫
T
x(τ)y(t−τ) dτ ,

and P{v(t)} the periodic extension

P{v(t)} =
∞∑

l=−∞

v(t− lT ) (A.12)

with Fourier coe�cients

1

T

∫
T

P{v(t)}e−i 2π
T
kt dt =

1

T
V (fk). (A.13)

The window function Wk is chosen such that W0 = 1, and Wk → 1 for any �xed
k as N →∞ and T = NTs is �xed. Hence, the pulse

1
T
p(t) approaches the periodic

distribution
1

T
p(t)→

∞∑
l=−∞

δ(t− lT ), (A.14)

and it follows from (A.11) that

sp(t)→
∞∑

l=−∞

v(t− lT ) (A.15)
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as N → ∞ and T = NTs is �xed. This is of course the reasonable asymptotic
behavior of any well balanced window function.

Note that the relation (A.11) also displays the fact that with a �nite window
length N , it will be the main-lobe and the side-lobe behavior of the convolving
pulse p(t) that governs the time-domain resolution as well as the dynamic range and
the e�ect of the Gibbs phenomena. To this end, the Kaiser window [11, 12, 21, 27]
is a �exible window that can be used to trade time resolution (width of main-lobe)
for dynamic range, i.e., the rejection of side-lobes and the Gibbs phenomena in the
time-domain.

Appendix B Cylindrical vector waves

The cylindrical vector waves are de�ned here by
χ1m =

1

κ
∇× (ẑψm(κρ)eimφe−γz)

χ2m =
1

k
∇× χ1m

(B.1)

where κ =
√
k2ε+ γ2 is the radial wave number with Imκ ≤ 0, and ψm(κρ)eimφe−γz

is a scalar partial wave satisfying Helmholtz wave equation where ψm(κρ) is a Bessel
function or a Hankel function of the �rst or second kind and order m, see also [4, 10].
The scaling factors used in (B.1) can be de�ned di�erently, but are chosen here
for notational convenience in the derivation of boundary conditions and dispersion
relations. Note that the vector waves de�ned above are dimensionless.

The following explicit expressions are obtained in cylindrical coordinates
χ1m(ρ) = ρ̂

im

κρ
ψm(κρ)− φ̂ψ′m(κρ)

χ2m(ρ) = −ρ̂γ
k
ψ′m(κρ)− φ̂ imγ

kκρ
ψm(κρ) + ẑ

κ

k
ψm(κρ)

(B.2)

where χlm = χlm(ρ)eimφe−γz (l = 1, 2) and where ψ′(·) denotes a di�erentiation with
respect to the argument.

It can be shown by direct calculation that ∇× χ2m = kεχ1m, and the following
important curl properties are thus obtained{

∇× χ1m = kχ2m

∇× χ2m = kεχ1m.
(B.3)

It follows from (B.3) that the two cylindrical vector waves are source free with
∇ · χ1m = ∇ · χ2m = 0. Hence, the cylindrical vector waves satisfy also the vector
Helmholtz wave equation {

∇2χ1m + k2εχ1m = 0

∇2χ2m + k2εχ2m = 0
(B.4)
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and can therefore be used as models for solving the source-free Maxwell's equations
(3.1).

The electric and magnetic �elds can generally be expanded as

E =
1

2πi

∫ i∞

−i∞

[
∞∑

m=−∞

a1mχ
(1)
1m + b1mχ

(2)
1m + a2mχ

(1)
2m + b2mχ

(2)
2m

]
dγ (B.5)

and

H =
1

2πη0

∫ i∞

−i∞

[
∞∑

m=−∞

a1mχ
(1)
2m + b1mχ

(2)
2m + a2mεχ

(1)
1m + b2mεχ

(2)
1m

]
dγ, (B.6)

where H = 1
−iωµ0

∇ × E and (B.3) have been used, see also [4]. Here, a1m, b1m,
a2m and b2m are complex valued expansion coe�cients with the same dimension as
the electric �eld (V/m), and which can be determined by applying the appropriate
boundary conditions. The expansion (B.5) and (B.6) is valid in source free cylindri-
cal regions or layers where the material parameter ε is constant. The vector waves
χ

(j)
1m and χ

(j)
2m are based on Bessel functions or Hankel functions ψ

(j)
m (κρ) of the �rst

kind (j = 1) and the second kind (j = 2) denoted here by Jm(κρ) and Ym(κρ), or

H
(1)
m (κρ) and H

(2)
m (κρ), respectively, all of order m, see e.g., [20].

For a homogeneous inner region the Neumann functions Ym(κρ) become singular
at ρ = 0, and hence only the Bessel functions of the �rst kind Jm(κρ) can be
employed which are regular at the origin ρ = 0. For an unbounded outer domain,
the Hankel function ψ

(2)
m (κρ) = H

(2)
m (κρ) of the second kind and orderm is employed.

This function satis�es the proper radiation condition [10] at in�nity with H
(2)
m (κρ) ∼√

2/(πκρ)e−i(κρ−mπ/2−π/4) as ρ → ∞, and limρ→∞H
(2)
m (κρ) = 0 when Im{κ} ≤ 0.

Note also that H
(1)
m (κρ) and H

(2)
m (κρ) can be interpreted as incoming and outgoing

waves, respectively, when the time-convention is eiωt.
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