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Convergence analysis for the exponential Lie splitting scheme
applied to the abstract differential Riccati equation

Tony Stillfjorda

aCentre for Mathematical Sciences, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden.

Abstract

We consider differential Riccati equations (DREs). These equations arise in many areas
and are very important within the field of optimal control. In particular, DREs provide
the crucial link between the state and the optimal input in the solution of linear quadratic
regulator (LQR) problems. For the approximation of the solutions to DREs we consider
the recently introduced splitting methods, with the aim of proving convergence orders in
the space of Hilbert–Schmidt operators. The use of this abstract setting yields stronger
than usual temporal convergence results, and also implies that these are independent of
a subsequent (reasonable) spatial discretization. The main result is that the exponential
Lie splitting is first-order convergent, under no artificial regularity assumptions. As side-
effects of the analysis, we also acquire concise proofs of the existence and positivity of the
exact solutions to abstract DREs, in a more general setting than previously considered.

Keywords: Differential Riccati equation, splitting, error analysis, convergence order,
Hilbert–Schmidt operators

1. Introduction

We consider the differential Riccati equation:

Ṗ (t) +A∗P (t) + P (t)A+ P (t)SP (t) = Q, t ∈ (0, T ),

P (0) = P0.
(1)

This is a semi-linear operator-valued evolution equation for P , where A, S, and Q are
given linear operators. A prototypical A would be an elliptic differential operator. For
brevity, we denote the composition of operators by juxtaposition; thus e.g. P (t)A means
P (t) ◦A.

Such equations arise in many areas, for example in linear quadratic regulator (LQR)
problems and optimal state estimation [1, 6, 12]. The main applications that we have in
mind are the LQR problems, where the goal is to minimize the functional

J(u) =

∫ T

0

(Q̃y, y)Y + (Ru, u)U dt,
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subject to the state and output equations

ẋ = Ax+Bu,

y = Cx.
(2)

Here x, u and y belong to the Hilbert spaces
(
H, (·, ·)H

)
,
(
U, (·, ·)U

)
and

(
Y, (·, ·)Y

)
,

where the latter two are frequently finite-dimensional. Under certain assumptions on
the involved operators, it can be shown that the optimal input uopt is given in feedback
form as uopt(t) = −R−1B∗P (T − t)x(t), where P (t) solves the Riccati equation (1) with
S = BR−1B∗, Q = C∗Q̃C and P (0) = 0, see e.g. [12].

Previous approaches to approximate the solution of the infinite-dimensional Riccati
equation (1) include spatial Galerkin methods [7, 16], temporal BDF and Rosenbrock
methods [4] and temporal first-order splitting methods [3, 18]. In the finite-, but still
high-dimensional case, the main approach has been to employ matrix-versions of BDF
or Rosenbrock methods [4, 5, 14]. While these studies show that the respective methods
converge, they lack a convergence analysis which describes how quickly the convergence
occurs. Recently, also first- and second-order exponential splitting schemes were consid-
ered in [17], which demonstrates convergence orders in the finite-dimensional case. The
analysis is however “nonstiff”, and so still has a dependence on the spatial discretization
parameter.

The aim of this paper is therefore to extend the results of [17] and investigate whether
a “stiff” temporal error analysis can be carried out by considering the problem in the space
of Hilbert-Schmidt operators, as in [8]. We note that the approach here differs from the
one presented in [8] due to the fact that the nonlinearity is no longer necessarily accretive.

To informally introduce the numerical method that we consider, let

FP = A∗P + PA−Q and
GP = PSP.

Then the time-stepping operator of the exponential Lie splitting scheme is given by

Sh = e−hFe−hG ,

where e−tFP0 and e−tGP0 denote the solutions to the subproblems

Ṗ + FP = 0, P (0) = P0 and (3)

Ṗ + GP = 0, P (0) = P0. (4)

The motivation for this splitting is that the first subproblem is affine, and while the
second subproblem is nonlinear it has a simple closed-form expression for relevant initial
conditions.

A brief outline of the paper is as follows. In Section 2 we set up the abstract framework
for the analysis, and state the assumptions on the involved operators. The consequences
of these assumptions are investigated in Section 3, and lead to the convergence analysis
in Section 4. In Section 5 we give a brief motivation as to why a similar convergence
analys fails for the Strang splitting. Finally, in Section 6 we demonstrate that the scheme
produces positive semi-definite approximations and that also the exact solution has such
structure.
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2. Problem setting

Let us first fix the notation. Given a real Hilbert space X, we denote its inner
product by (·, ·)X , its norm by ‖·‖X and its dual space by X∗. The space of linear
bounded operators from X to another Hilbert space Y is denoted by L (X,Y ). Finally,
an operator F is locally Lipschitz continuous if for any ball Br = {x ∈ X ; ‖x‖ ≤ r}
there exists a local Lipschitz constant Lr[F ] <∞ such that

‖Fx− Fy‖ ≤ Lr[F ]‖x− y‖

for all x, y ∈ Br. If L[F ] = supr>0 Lr[F ] < ∞ we say that F is globally Lipschitz
continuous with Lipschitz constant L[F ].

The following is essentially the same setting as presented in [8], but reproduced here
for convenience. Let the Gelfand triple

V ↪→ H ∼= H∗ ↪→ V ∗

of Hilbert spaces V and H be given. We define the class of suitable operators A and A∗
by introducing a bilinear form a : V × V → R, satisfying the following:

Assumption 1. The bilinear form a : V × V → R is bounded and coercive, i.e. there
exists positive constants C1, C2 such that for all u, v ∈ V

|a(u, v)| ≤ C1‖u‖V ‖v‖V and a(u, u) ≥ C2‖u‖2V .

The operators A ∈ L (V, V ∗) and A∗ ∈ L (V, V ∗) are then given by

〈Au, v〉V ∗×V = a(u, v) and 〈A∗u, v〉V ∗×V = a(v, u).

Example 1. Let Ω be an open, bounded subset of Rd with a sufficiently regular boundary.
Take H = L2(Ω) and let V be either H1(Ω), H1

0 (Ω) or H1
per(Ω) depending on boundary

conditions. Further assume that α ∈ C(Ω) is a positive function. Then with λ > 0 (or
λ ≥ 0 for the Dirichlet case) and

a(u, v) = (
√
α∇u,

√
α∇v)H + λ(u, v)H ,

the above construction yields the diffusion operator A = −∇ ·
(
α∇u

)
+ λI.

We will look for solutions P (t) to the Riccati equation (1) in the setting of Hilbert-
Schmidt operators, as advocated by e.g. Temam [18]. For completeness, we therefore
now recall some basic theory about such operators, see e.g. [2, Sections II:3.3 and III:2.3]
and [16, 18] for a more extensive exposition. Let Hi denote generic Hilbert spaces. An
operator F ∈ L (H1, H2) is said to be Hilbert–Schmidt if

∞∑
k=1

(Fek, F ek)H2
<∞,

where {ek}∞k=1 is an orthonormal basis of H1. Note that the definition is independent of
the choice of the basis. We denote the space of all Hilbert–Schmidt operators from H1 to
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H2 by HS(H1, H2) and note that this is a Hilbert space when equipped with the inner
product

(F,G)HS(H1,H2)
=

∞∑
k=1

(Fek, Gek)H2
.

The corresponding induced Hilbert–Schmidt norm is denoted ‖·‖HS(H1,H2).
It is clear that the Hilbert–Schmidt norm is stronger than the operator norm, and in

fact
‖F‖L (H1,H2) ≤ ‖F‖HS(H1,H2).

Further, Hilbert–Schmidt operators are invariant under composition with linear bounded
operators from both the left and from the right. That is, if F ∈ HS(H2, H3), G1 ∈
L (H1, H2) and G2 ∈ L (H3, H4) then G2FG1 ∈ HS(H1, H4) and

‖G2FG1‖HS(H1,H4) ≤ ‖G2‖L (H3,H4)‖F‖HS(H2,H3)‖G1‖L (H1,H2).

Based on this, we define the spaces

V = HS(H,V ) ∩HS(V ∗, H) and H = HS(H,H).

These can be shown to give rise to a new Gelfand triple

V ↪→ H ∼= H∗ ↪→ V∗,

where V∗ is identified with HS(V,H) +HS(H,V ∗). If P ∈ V then A∗P ∈ HS(H,V ∗)
and PA ∈ HS(V,H), i.e. A∗P + PA ∈ V∗. The operator P 7→ A∗P + PA thus belongs
to L (V,V∗) and we consider the restriction L : D (L) ⊂ H → H given by

D (L) = {P ∈ V ; A∗P + PA ∈ H} and
LP = A∗P + PA for all P ∈ D (L) .

Assumption 2. The operator Q is an element of H.

Under Assumption 2, we can also consider the perturbed operator F : D (F) ⊂ H →
H, given by

D (F) = D (L) and
FP = A∗P + PA−Q for all P ∈ D (F) .

For the nonlinearity PSP we will consider two possibilities. First:

Assumption 3. The operator G : H → H is given by GP = PSP , with an operator
S ∈ L (V ∗, H) ∩L (H,V ).

Note that the definition makes sense, as the requirement on S also means that S ∈
L (H,H). The reason for not only requiring S ∈ L (H,H) is that we will need terms of
the form FGP to be well defined. This is the case under Assumption 3, since it is easily
verified that if P ∈ V, then also PSP ∈ V. It is also the case in the absence of S. More
precisely, we have the following alternative assumption:

Assumption 4. The operator G : H → H is given by GP = sPP , with s ∈ R.

Given either Assumption 3 or 4, we define the full problem by

D (F + G) = D (L) and (F + G)P = FP + GP.
4



3. Preliminary results

The abstract setting at hand is motivated by the results in [2, 18], which essentially
say that under Assumption 4 with s > 0, the operators F , G and F +G are all accretive,
and satisfy useful range conditions. In the situation of Assumption 3, the results for F
are of course unchanged, and while G is no longer necessarily accretive1, it is still a locally
Lipschitz continuous operator. This turns out to be enough to draw similar conclusions.
We start out with the following immediate extension of [2, Lemma II:3.5]:

Lemma 1. Under Assumption 1, the operator L is strongly V-coercive, i.e. there exists
an α > 0 such that

(LP, P )H ≥ α‖P‖
2
V for all P ∈ D (L) .

As a consequence, both L and F are maximal accretive operators and the solution oper-
ators e−tL and e−tF exist and are nonexpansive.

We thus get the existence of a classical solution to the affine subproblem Ṗ +FP = 0
if P0 ∈ D (L). For the operator G, we have:

Lemma 2. The operator G is infinitely many times Fréchet differentiable, and its first
two derivatives are given by

DG[P1]P2 = P1SP2 + P2SP1 and D2G[P1](P2, P3) = P2SP3 + P3SP2.

As a consequence, G is locally Lipschitz continuous with the local Lipschitz constant
Lr[G] ≤ 2r‖S‖L (H,H).

Proof. The differentiability of G follows directly from the definition after a straightfor-
ward calculation. The bound for the local Lipschitz constant follows from the differen-
tiability, but also immediately from the identity

GP1 − GP2 = P1S(P1 − P2) + (P1 − P2)SP2.

On sufficiently short time intervals, the local Lipschitz continuity of G guarantees the
existence of a strong solution e−tGP0 to the nonlinear subproblem for all P0 ∈ H, see
e.g. [15, Theorem 6.1.4, 6.1.6]. Further, this solution satisfies the equation

e−tGP0 = P0 −
∫ t

0

Ge−τGP0dτ . (5)

Since also the mapping P 7→ GP−Q is locally Lipschitz continuous, we have in fact shown
the existence of a strong solution e−t(F+G)P0 to the full problem on a time interval [0, T ],
where T depends on P0. Similarly to the nonlinear subproblem, this solution satisfies
the variation of constants formula

e−t(F+G)P0 = e−tLP0 +

∫ t

0

e−(t−τ)L
(
− Ge−τ(F+G)P0 +Q

)
dτ . (6)

1As a simple counterexample, consider H = R2. Then H consists of 2× 2-matrices, and (P1, P2)H =
(P1e1, P2e1) + (P1e2, P2e2), where e1 = (1, 0)T and e2 = (0, 1)T . With the positive definite ma-

trix S =

(
1 −2
−2 5

)
it is easily seen that for, e.g., P1 =

(
2 1
1 2

)
and P2 =

(
1 1
1 2

)
we have

(GP1 − GP2, P1 − P2)H = −1.
5



Consider now terms of the form LGP0. As the next Lemma shows, these are well
defined in H for P0 ∈ D (L), and the operator LG thus defined satisfies a local Lipschitz
condition.

Lemma 3. Under Assumptions 1, 2 and either 3 or 4, D (L) is invariant under G.
Additionally, G is locally Lipschitz continuous on D (L) equipped with the graph norm.

Proof. Let P ∈ D (L). We consider only Assumption 3, as the case of Assumption 4 is
analogous and simpler. Thus, we have that

A∗PSP ∈ HS(V ∗, V ∗) ⊂ HS(H,V ∗) and PSPA ∈ HS(V, V ) ⊂ HS(V,H),

i.e. LGP ∈ V∗. Further, by writing

A∗PSP + PSPA = (A∗P + PA)SP + PS(A∗P + PA)− PASP − PSA∗P,

we see that in fact LGP ∈ H since the four terms all belong to H. To show the Lipschitz
continuity, assume that P1 and P2 belong to D (L). Then2

L
(
P1SP1

)
−
(
LP2SP2

)
= L

(
P1S(P1 − P2) + (P1 − P2)SP2

)
=
(
LP1

)
S(P1 − P2) +

(
L(P1 − P2)

)
SP2

+ P1SL(P1 − P2) + (P1 − P2)SLP2

− P1

(
AS + SA∗)(P1 − P2)− (P1 − P2)

(
AS + SA∗)P2,

so that

‖LGP1 − LGP2‖H ≤ ‖P1 − P2‖H‖S‖L (H,H)

(
‖LP1‖H + ‖LP2‖H

)
+ ‖L(P1 − P2)‖H‖S‖L (H,H)

(
‖P1‖H + ‖P2‖H

)
+ ‖A‖L (V,V ∗)

(
‖S‖L (H,V ) + ‖S‖L (V ∗,H)

)
‖P1 − P2‖V

(
‖P1‖V + ‖P2‖V

)
.

Since L is strictly V-coercive by Lemma 1, we have the bound

‖P‖V ≤ C
(
‖P‖H + ‖LP‖H

)
,

and thus get

‖GP1 − GP2‖H + ‖LGP1 − LGP2‖H ≤ C
(
‖P2 − P1‖H + ‖L(P2 − P1)‖H

)
,

where the constant C depends on S, ‖P1‖D(L) and ‖P2‖D(L).

Remark 1. A side-effect of Lemma 3 is that if Q ∈ D (L) then e−t(F+G)P0 is actually a
classical solution to Equation (1) on its interval of existence [15, Theorem 6.1.7].

2The reader should write this calculation down in terms of A∗ and A. The reason for the seemingly
needlessly complicated expression is that the terms A∗P and PA are not necessarily in H separately,
even though their sum is.
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4. Convergence

In order to prove that the Lie splitting scheme is first-order convergent, we first
establish its consistency.

Lemma 4. Let Assumptions 1, 2 and either 3 or 4 be fulfilled. Then if P0 ∈ D (L), we
have

‖e−hFe−hGP0 − e−h(F+G)P0‖H ≤ C(P0, S)h2,

where C(P0, S) indicates a constant depending continuously on P0 and on S.

For the proof, we will follow the idea presented in [10]. This consists of repeated
applications of the variation of constants formula, combined with Taylor expansions of
G and e−tG (allowable due to Lemma 2). Finally, the local errors are identified as
quadrature errors. The latter part was originally used in [13].

Proof. We first consider the exact solution to the full problem (1). Since

e−hFP0 = e−hLP0 +

∫ h

0

e−(h−τ)LQdτ ,

the variation of constants formula (6) can also be written

e−h(F+G)P0 = e−hFP0 −
∫ h

0

e−(h−τ)LGe−τ(F+G)P0 dτ

= e−hFP0 − hU(h),

where

U(h) =

∫ 1

0

e−h(1−τ)LGe−hτ(F+G)P0 dτ

is bounded in H. This follows from the local Lipschitz continuity of G, as e−hL is
nonexpansive and e−hτ(F+G)P0 is continuous. A repeated application of the formula for
e−h(F+G), followed by a first-order Taylor expansion of G around e−τFP0, yields

e−h(F+G)P0 = e−hFP0 −
∫ h

0

e−(h−τ)LG
(
e−τFP0 − τU(τ)

)
dτ

= e−hFP0 −
∫ h

0

e−(h−τ)FGe−τFP0 dτ + h2RT ,

where

h2RT =

∫ h

0

τ

∫ 1

0

e−(h−τ)LDG[e−τFP0 − στU(τ)]U(τ) dσ dτ+

∫ h

0

∫ h−τ

0

e(h−τ−σ)LQdσ dτ .

As U(h) is bounded, so is the rest-term RT .
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Now consider the Lie splitting, Sh = e−hGe−hF . A Taylor-expansion of e−hG around
e−hFP0 yields

ShP0 = e−hFP0 − hGe−hFP0 + h2RS ,

where the rest term

RS =

∫ 1

0

(1− τ)DG[e−τhGe−hFP0]Ge−τhGe−hFP0 dτ ,

is again bounded in H due to the local Lipschitz continuity of G. By introducing the
function φ : [0, h]→ H given by

φ(τ) = e−(h−τ)FGe−τFP0,

and collecting terms, we can thus express the local error as

ShP0 − e−h(F+G)P0 =

∫ h

0

φ(τ) dτ − hφ(h) + h2(RS −RT ).

But the first two terms in this expression constitute the local error of a first-order quadra-
ture rule applied to φ. In particular, we have∫ h

0

φ(τ) dτ − hφ(h) =

∫ h

0

∫ 1

0

τφ′(στ)− hφ′(σh)dσdτ ,

where φ′ : [0, h]→ H is given by

φ′(τ) = Fe−(h−τ)FGe−τFP0 − e−(h−τ)FDG[e−τFP0]Fe−τFP0

+

∫ h−τ

0

e(h−τ−σ)LQdσ.

This expression is well defined in view of Lemma 3, and as etL is nonexpansive by
Lemma 1 we additionally see that φ′(τ) is uniformly bounded on [0, h]. Thus the quadra-
ture error, and therefore also the local error of the Lie splitting, is O(h2), as desired.
The continuous dependence of the error on P0 follows directly, as e−tF and e−tG are both
continuous semigroups.

We are now able to prove that the Lie splitting scheme, given by Sh = e−hFe−hG ,
converges with order 1.

Theorem 1. Let Assumptions 1, 2 and either 3 or 4 be fulfilled. Then with 0 ≤ nh ≤ T
and h sufficiently small we have for P0 ∈ D (L) that

‖SnhP0 − e−nh(F+G)P0‖H ≤ Ch,

where the constant C depends on S, P0 and T , but not on h or n separately.
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Proof. Denote P (t) = e−t(F+G)P0 and define tk = kh for k = 0, 1, . . .. By the continuity
of P , we can define the finite number

r− = max
0≤t≤T

‖P (t)‖H.

Further take r > r− and note that for any U ∈ Br there is a solution e−tGU to the
nonlinear subproblem, for at least those t such that t < 1/(‖S‖L (H,H)‖U‖H). This
follows directly from solving the differential inequality

d

dt
‖e−tGU‖H ≤ ‖S‖L (H,H)‖e−tGU‖2H.

Thus by Lemma 1 we can choose r+ > r and h sufficiently small such that ShU ∈ Br+
for all U ∈ Br. By the representation (5) it then follows that Sh is Lipschitz continuous
on Br with Lipschitz constant ehLr+

[G].
Clearly, S0hP0 = P0 ∈ Br. Suppose additionally that SkhP0 ∈ Br for j = 0, . . . , n.

Then by Lemma 4,

‖Sn+1
h P0 − P (tn+1)‖H ≤ ‖ShP (tn)− e−h(F+G)P (tn)‖H + ‖ShSnhP0 − ShP (tn)‖H

≤ h2C(P (tn), S) + e2hr‖S‖L (H,H)‖SnhP0 − P (tn)‖H.

Since ‖S0hP0 − P (t0)‖H = 0, solving this recursion yields

‖Sn+1
h P0 − P (tn+1)‖H ≤ h2

n∑
k=1

C(P (tk), S)e2h(n−k)r‖S‖L (H,H)

≤ hC ′e2rT‖S‖L (H,H) ,

where C ′ = supt∈[0,T ] C(P (tn), S)T < ∞ by the continuous dependence of C(P0, S) on
P0. But as P (tn+1) ∈ Br− , this guarantees that for small enough h, also Sn+1

h P0 ∈ Br.
This step size restriction can be decreased by choosing a larger r, with the drawback of
simultaneously increasing the error constants. The theorem finally follows by induction
over n.

Remark 2. We note that the approach used for the proof of Lemma 4 works equally
well for the scheme e−hF e−hG, and hence Theorem 1 applies also for this method.

5. Higher-order analysis

We would like to perform a similar analysis for higher-order schemes, e.g. the second-
order Strang splitting given by the time stepping operator

Sh = e−h/2Ge−hFe−h/2G .

Using the same approach fails, however, due to the fact that D
(
L2
)
is only invariant

under G under very restrictive conditions on S. For D (L), the problematic term is
P (AS + SA∗)P . By the properties of S, this belongs to H. For D

(
L2
)
, employing the

same argument unavoidably leads to the term

P
(
A(AS + SA∗) + (AS + SA∗)A∗

)
P,

9



or variations thereof. To ensure that this belongs to H, and in fact that the middle
expression is well defined at all, we need to assume that AS+SA∗ ∈ L (V ∗, H)∩L (H,V ),
similar to assuming P ∈ V. However, with the typical A = −∆, this excludes e.g. the
identity operator on V, and essentially requires S to be more regularising than ∆−1. In
the LQR applications, it excludes all simple input operators of the form B : Rm → V
with Bu =

∑m
k=1 ukvk for vk ∈ V . It is therefore an unreasonably strict assumption.

However, as mentioned in the introduction, the Hilbert-Schmidt setting is stronger than
usual, and we expect that higher-order convergence could be shown in a weaker setting.

6. Preservation of positivity

In the traditional matrix-valued setting of the Riccati equation, it can be shown that
the solution to (1) is self-adjoint and positive semi-definite if the same holds for Q, S
and P0. We therefore introduce the closed and convex cone C of such operators,

C = {P ∈ L (H,H) : P = P ∗ and (Pu, u)H ≥ 0 for all u ∈ H},

and make the following additional assumption:

Assumption 5. Let Assumptions 1 and 2 be satisfied, with Q ∈ C. Further, either let
Assumption 3 be satisfied with S ∈ C or let Assumption 4 be satisfied with s ≥ 0.

There are several approaches for showing that the solution e−t(F+G)P0 belongs to C
under Assumption 5 in the matrix-valued case. These all fail in the current operator-
valued setting, for various reasons. For the case GP = P 2, a proof is given in [2, Section
III:2.3], but this depends heavily on the accretiveness of G. Since this is potentially lost
under Assumption 3, there is no straightforward modification in this case. However, a
rather concise proof can be constructed by employing the splitting approximation.

First consider the following characterization of the solution to the nonlinear subprob-
lem:

Lemma 5. Under Assumption 5, the solution e−tGP0 to the problem (4) with P0 ∈ H∩C
on a compact interval t ∈ [0, T ] is given by

e−tGP0 = (I + tP0S)−1P0.

This holds in the case of Assumption 3. Under Assumption 4 we have instead e−tGP0 =
(I + tsP0)−1P0.

Proof. We consider only the case of Assumption 3, as the proof for Assumption 4 is
virtually the same, but more simple. We first note that for any U, V ∈ C, we have

‖(I + UV )−1‖L (H,H) ≤ 1 + ‖U‖L (H,H)‖V ‖L (H,H)

see e.g. [11, Lemma 2A.1]. Thus the function P (t) given by

t 7→ (I + tP0S)−1P0

10



is well defined for all t ≥ 0, and maps into H. Further, we have

‖(I + (t+ h)P0S)−1P0 − (I + tP0S)−1P0‖H =

=
∥∥(I + (t+ h)P0S

)−1[
(I + tP0S)−

(
I + (t+ h)P0S

)]
(I + tP0S)−1P0)

∥∥
H

=
∥∥− h(I + (t+ h)P0S

)−1
P0S(I + tP0S)−1P0

∥∥
H

≤ h‖(I + (t+ h)P0S)−1‖L (H,H)‖P0S‖L (H,H)‖(I + tP0S)−1‖L (H,H)‖P0S‖H
≤ h

(
1 + (t+ h)‖P0‖L (H,H)‖S‖L (H,H)

)(
1 + t‖P0‖L (H,H)‖S‖L (H,H)

)
‖P0‖2H

≤ hC(‖P0‖H, ‖S‖H),

and t 7→ P (t) is therefore continuous in H. By the same construction we obtain that

lim
h→0
‖(P (t+ h)− P (t))/h+ P (t)SP (t)‖H = 0.

The function t 7→ P (t) is thus continuously differentiable and satisfies the equation (4),
which means that it must be equal to e−tGP0.

Corollary 1. Let Assumption 5 be valid and T > 0. Then with 0 ≤ nh ≤ T and h
sufficiently small, both SnhP0 and e−nh(F+G)P0 belong to C.

Proof. We have thatH∩C is invariant under e−tL [2, Lemma II:3.5], from which it follows
by the variation of constants formula that it is also invariant under e−tF . Consider next
the operator e−tG . For all P0 ∈ C, there exists P 1/2

0 ∈ C such that P0 = P
1/2
0 P

1/2
0 .

By [11, Lemma 2A.1], we have

(I + tP0S)−1 = I − tP 1/2
0 (I + tP

1/2
0 SP

1/2
0 )−1P

1/2
0 S,

which means that

e−tGP0 = (I + tP0S)−1P0

= P
1/2
0 P

1/2
0 − P 1/2

0

(
(I + tP

1/2
0 SP

1/2
0 )−1tP

1/2
0 SP

1/2
0

)
P

1/2
0

= P
1/2
0 (I + tP

1/2
0 SP

1/2
0 )−1P

1/2
0 .

But this expression is clearly self-adjoint and positive semi-definite, i.e. e−tGP0 ∈ C.
Thus the splitting approximation SnhP0 belongs to C for all P0 ∈ C. Now by Theorem 1,
e−nh(F+G)P0 is the limit of a sequence of approximations all belonging to the closed set
C, and thus also belongs to C.
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