
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Sum rules and physical bounds on passive metamaterials

Gustafsson, Mats; Sjöberg, Daniel

2010

Link to publication

Citation for published version (APA):
Gustafsson, M., & Sjöberg, D. (2010). Sum rules and physical bounds on passive metamaterials. (Technical
Report LUTEDX/(TEAT-7186)/1-19/(2010); Vol. TEAT-7186). [Publisher information missing].

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/c3d0e6e2-1a51-4e56-bbc6-e150463b8a9d


Electromagnetic Theory
Department of Electrical and Information Technology
Lund University
Sweden 

CODEN:LUTEDX/(TEAT-7186)/1-19/(2010)

Sum rules and physical bounds on
passive metamaterials

Mats Gustafsson and Daniel Sjöberg
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Abstract

Frequency dependence of the permittivity and permeability is inevitable in

metamaterial applications such as cloaking and perfect lenses. In this paper,

Herglotz functions are used as a tool to construct sum rules from which we

derive physical bounds suited for metamaterial applications, where the mate-

rial parameters are often designed to be negative or near zero in the frequency

band of interest. Several sum rules are presented that relate the temporal dis-

persion of the material parameters with the di�erence between the static and

instantaneous parameter values, which are used to give upper bounds on the

bandwidth of the application. This substantially advances the understanding

of the behavior of metamaterials with extraordinary material parameters, and

reveals a beautiful connection between properties in the design band (�nite

frequencies) and the low- and high-frequency limit.

1 Introduction

The intriguing physics based on negative index of refraction [28] and ε-near-zero
materials [26] with applications such as the perfect lens [33] and cloaking [2, 24] has
created a renewed interest in the fundamental properties of the interaction between
electromagnetic �elds and materials [14, 20, 32]. The ideal behavior of, e.g., the
(relative) permittivity is that ε(ω) ≈ εm over a range of angular frequencies, where
εm is a real-valued number, e.g., εm ≈ −1 or εm ≈ 0, depending on the applica-
tion [2, 26, 28, 33]. It is well known that the electromagnetic response of materials is
temporally dispersive, i.e., it depends on frequency. The classical Kramers-Kronig
relations [10, 13, 16] relate the frequency dependence of the real- and imaginary parts
of the permittivity and the permeability for causal material models.

In metamaterial applications it is essential to consider realistic material mod-
els to obtain reliable and physically realizable results. Since engineered materials
with very complex frequency dependence are often considered, it is not su�cient to
analyze only Drude and Lorentz models if all potentials and restrictions of future
metamaterials applications are to be evaluated.

Approaches based on the Hilbert transform or equivalently the Kramers-Kronig
relations [10] are commonly used to derive bounds for causal material models. The
investigation in [32] is one attempt to understand the constraints that causality
puts on negative index of refraction materials. However, as illustrated in [18], it is
di�cult to derive absolute bounds from this approach due to the high sensitivity to
losses at the evaluation frequency [14]. In [20, 27], it is also shown that there are no
severe restrictions if just the condition of causality is employed. The results in [17]
show that |ε(ω)− εm| ≥ B, where εm = −1 and B denotes the fractional bandwidth,
if the additional assumption of passivity is used [13, 34]

In this paper, constraints on the constitutive relations based on the assumptions
of causality and passivity are further analyzed. The analysis is for simplicity re-
stricted to isotropic constitutive relations (with some extensions to bi-anisotropic
media given in Sec. 4), that are characterized by their (relative) permittivity ε and
(relative) permeability µ. The results are given in Sec. 3 as several sum rules that
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relate the instantaneous and static response of the material model with weighted
integrals of the constitutive parameter over all spectrum. The integrals typically
measure how close a material parameter ε(ω) can be to a target value εm over a fre-
quency interval. The sum rules can be expressed as bounds on the variation around
the target value, and are somewhat di�erent depending on the value of εm. Let εs
and ε∞ denote the limiting values of ε(ω) as ω → 0 and ω → ∞, respectively. If
ε∞ ≤ εm ≤ εs, there is in principle no bandwidth limitation, but if εm < ε∞, we de-
rive the following bounds in sections 3.1 and 3.2 (where B = [ω1, ω2] is the frequency
band, and B = (ω2 − ω1)/ω0 is the fractional bandwidth, writing ω0 = (ω2 + ω1)/2
for the center frequency):

max
ω∈B
|ε(ω)− εm| ≥

B/2

1 +B/2
(ε∞ − εm) (with or without static conductivity) (1.1)

max
ω∈B

|ε(ω)− εm|
|ε(ω)− ε∞|

≥ B/2

1 +B/2

εs − εm
εs − ε∞

(no static conductivity, i.e., an insulator)

(1.2)
If instead the target value is larger than the static value, i.e., εm ≥ εs, we derive the
following bound in Sec. 3.3:

max
ω∈B

|ε(ω)− εm|
|ε(ω)− ε∞|

≥ B/2

1 +B/2

εm − εs
εs − ε∞

(1.3)

If the material is lossless in the frequency band of interest B = [ω1, ω2], the right
hand sides should be multiplied by 2. The bounds can be tightened if a priori
knowledge of the plasma frequency is added, see Sec. 3.4.

2 Theoretical background

2.1 Constitutive relations and Herglotz functions

We assume that the Maxwell equations in the time-domain can be used to model the
interaction between the electromagnetic �eld and the material. The linear, causal,
time translational invariant, continuous, and isotropic constitutive relations are [12]

D(t) = ε0ε∞E(t) + ε0

∫
R
χee(t− t′)E(t′) dt′ (2.1)

and

B(t) = µ0µ∞H(t) + µ0

∫
R
χmm(t− t′)H(t′) dt′, (2.2)

where χee(t) = 0 and χmm(t) = 0 for t < 0, the dependence of the spatial coordinates
is suppressed, and ε0 and µ0 denote the free space permittivity and permeability,
respectively. The material model is passive if

0 ≤
∫ T

−∞
E(t) · ∂D(t)

∂t
dt = ε0

∫ T

−∞

∫
R
E(t) · ∂

∂t

(
ε∞δ(t− t′) + χee(t− t′)

)
E(t′) dt′ dt

(2.3)
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and

0 ≤
∫ T

−∞
H(t) · ∂B(t)

∂t
dt = µ0

∫ T

−∞

∫
R
H(t) · ∂

∂t

(
µ∞δ(t−t′)+χmm(t−t′)

)
H(t′) dt′ dt

(2.4)
for all times T and �elds E and H . This classi�es

∂

∂t

(
ε∞δ(t) + χee(t)

)
and

∂

∂t

(
µ∞δ(t) + χmm(t)

)
(2.5)

as a passive convolution kernel [34], where δ(t) is the Dirac delta distribution. It
also restricts the instantaneous responses ε∞ and µ∞ to be non-negative. Moreover,
the Maxwell equations together with the constitutive relations (2.1) and (2.2) and
standard initial and boundary conditions are well posed if ε∞ > α and µ∞ > α for
some α > 0. This means that this requirement is su�cient to guarantee that a solu-
tion exists, is unique, and depends continuously on data [15]. This is e.g., required
for numerical solutions in the time domain such as with �nite di�erences [15]. Here,
we analyze the constraints that passivity (2.3) and (2.4) enforces on the temporal
dispersion of the models (2.1) and (2.2).

The wave-front speed limits the speed of the electromagnetic waves and is given
by c0/n∞, where n∞ =

√
ε∞µ∞ is the instantaneous refractive index. It is often

assumed that materials reduce to free space in the high-frequency limit, implying
that n∞ = ε∞ = µ∞ = 1. This is possible, but it is not necessary for the results
presented in this paper. Moreover, it is not obvious that ε∞ = µ∞ = 1 apply for all
engineered materials. Instead, a modeling approach is used where the high-frequency
limit is obtained by analytic continuation from the frequency interval of interest [7].

The Fourier transform (using time dependence e−iωt) of the constitutive rela-
tions (2.1) and (2.2) gives the frequency domain model

D(ω) = ε0ε(ω)E(ω) and B(ω) = µ0µ(ω)H(ω), (2.6)

where the symbols D,E,B and, H are reused to denote the electromagnetic �elds
as functions of the angular frequency ω. The permittivity, ε(ω), and permeability,
µ(ω), are also functions of ω, with frequency dependencies restricted by the Kramers-
Kronig relations [10, 13]. This relation follows from the analytic properties of ε(ω)
in Imω > 0 (using time dependence e−iωt) together with basic assumptions on
the asymptotic properties of ε for low- and high frequencies. Here, an alternative
approach is considered that is based on the additional assumption of passivity (2.3)
and (2.4). This restricts ε such that hε = ωε(ω) is a Herglotz function [13, 21],
i.e., hε(ω) is holomorphic and Imhε(ω) ≥ 0 in the upper halfplane Imω > 0. The
time-domain origin (2.1) imply the symmetry hε(ω) = −h∗ε(−ω∗), where a star
denotes the complex conjugate. The permeability de�nes a similar Herglotz function
hµ(ω) = ωµ(ω). Note that the high-frequency asymptotic is consistent with the
properties of Herglotz functions as a Herglotz function can not increase more than
linearly for large ω, i.e., h(ω) = O(ω) as ω→̂∞ [21], where the symbol →̂ is a short
hand notation for limits in α < argω < π − α for some α > 0.
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Figure 1: Illustration of the permittivity ε(ω) in (2.8) with εs = 2 and ε∞ = 1
and the di�erences |ε(ω) − εm| for εm = 1.5 and εm = −1. a) real-valued part
(solid curves) and imaginary part (dashed curves). b) the di�erences |ε(ω)− εm| for
εm = 1.5 and εm = −1.

Herglotz functions can be represented as

h(z) = Az +

∫
R

(
1

ξ − z
− ξ

1 + ξ2

)
dβ(ξ) = Az +

∫
R

z

ξ2 − z2
dβ(ξ), (2.7)

where
∫

(1 + ξ2)−1 dβ(ξ) < ∞, z = x + iy, y > 0, the symmetry is used in the
second equality, and limy→0 Imh(ξ + iy) dξ = π dβ(ξ) if Imh(ξ) is regular [11], cf.,
the Kramers-Kronig relations [13].

2.2 A classical bound for lossless media

In this paper, we analyze how the basic assumptions (2.1) to (2.4) constrain the
frequency dependence of the constitutive parameters. To start, consider a permit-
tivity ε(ω) with the low- and high-frequency asymptotes ε(0) = εs and ε(∞) = ε∞,
respectively. Simple examples show that the variation around εm ∈ [ε∞, εs] is not
restricted by passivity, e.g., the two-term Lorentz model

ε(ω) = ε∞ +
εs − εm

1− (ω/ω1)2 − iνω/ω1

+
εm − ε∞

1− (ω/ω2)2 − iνω/ω2

(2.8)

with ω1 � ω0 � ω2 and ν � 1 has ε(ω) ≈ εm for a large bandwidth, see Fig. 1.
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The example shows that the temporal dispersion does not restrict the frequency
dependence for values εm ∈ [ε∞, εs]. However, the example also shows that the
temporal dispersion severely limits the bandwidth for ε(ω) ≈ εm = −1. This is
in general true and basic restrictions on the dispersion for lossless models of ε(ω)
and µ(ω) can be obtained from the Kramers-Kronig relations [10, 13, 16] (Hilbert
transform) or here by the representation (2.7). Consider an interval [ω1, ω2] with
dβ(ξ) = 0 (or equivalently Im ε = 0), then di�erentiation of h(ω) gives

∂hε
∂ω

(ω0) = ε∞ +

∫
R

1

(ξ − ω0)2
dβ(ξ) ≥ ε∞ (2.9)

for ω1 < ω0 < ω2. With hε(ω) = ωε(ω), it shows that

ω0
∂ε

∂ω
(ω0) ≥ ε∞ − ε(ω0). (2.10)

The derivative of ε(ω0) is hence positive in intervals where Im ε(ω) = 0 and ε(ω0) <
ε∞. A sharper bound follows from [16]

∂ωhε
∂ω

(ω0) = 2ω0ε∞ +

∫
R

ξ

(ξ − ω0)2
dβ(ξ) ≥ 2ω0ε∞ (2.11)

for ω1 < ω0 < ω2. With hε(ω) = ωε(ω), it shows that

ω0
∂ε

∂ω
(ω0) ≥ 2(ε∞ − ε(ω0)). (2.12)

In particular, the restrictions on ∂ε
∂ω

increases as ε(ω0) decreases. The constraint (2.12)
is transformed into a bound on the variation around εm over a fractional bandwidth
B = (ω2 − ω1)/ω0 around the center frequency ω0 = (ω2 + ω1)/2 by observing that
∂ε(ω)
∂ω
≥ ∂ε(ω0)

∂ω
for ω1 < ω ≤ ω0 and hence, with ε(ω0) = εm

εm − ε(ω1) =

∫ ω0

ω1

∂ε(ω)

∂ω
dω ≥ 2

ω1 − ω0

ω0

(ε∞ − εm). (2.13)

This can be rewritten as

max
ω∈B
|ε(ω)− εm| ≥ B(ε∞ − εm) (2.14)

which demonstrates that the deviation of ε(ω) around εm is proportional to the
fractional bandwidth, B, in the interval B = [ω1, ω2] where the material model is
lossless.

The pointwise bound on the derivative (2.12) is not true when losses are present,
even if the loss (i.e., the imaginary part Imh(ω)) is arbitrarily small. Consider, e.g.,
the Lorentz model

hε(ω) = ε∞ω +
ων3/2

1− ω2 − iνω
, (2.15)

where ε∞ > 0 and ν ≥ 0. It has h(1) = ε∞ + iν1/2 ≈ ε∞ for ν � 1 but

∂hε
∂ω

(1) = ε∞ + iν1/2 − 2 + iν

ν1/2
= ε∞ −

2

ν1/2
→ −∞ as ν → 0. (2.16)
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This simple example shows that it is very di�cult to bound the derivative of Herglotz
functions (and hence ε and µ) pointwise. The requirements of lossless material
models are removed in [17], where it is shown that |ε(ω) + 1| ≥ B for all square
integrable susceptibilities ε(ω)− 1.

2.3 Construction of sum rules

Here, it is shown that bounds similar to (2.14) are valid for all passive constitutive
relations of the form (2.6). It is also shown that the di�erence εs−ε∞ further restricts
the bandwidth. The results are based on sum rules obtained by considering weighted
integrals applied to Herglotz functions under the assumption of the following asymp-
totic expansions at low frequencies: h(ω) =

∑
n a2n−1ω

2n−1 +o(ω2N0−1) as k→̂0, and
at high frequencies, h(ω) =

∑
n b2n−1ω

1−2n + o(ω−2N∞+1) as k→̂∞. The results are
restricted to Herglotz functions satisfying the cross symmetry h(ω) = −h∗(−ω∗),
where a star denotes the complex conjugate, and hence to real valued an and bn for
odd n, giving the following family of integral identities:

2

π

∫ ∞
0

Imh(ω)

ω2n
dω = a2n−1 − b1−2n, (2.17)

for 1−N∞ ≤ n ≤ N0. Physical bounds are obtained by bounding the integral from
below by restricting it to a �nite interval [3�6, 8, 9, 23, 30, 31].

The sum rules generated by hε and hµ with no static conductivity are identical
to the ones obtained from the Kramers-Kronig relations [10, 13, 16], e.g.,

2

π

∫ ∞
0

Imhε(ω)

ω2
dω =

2

π

∫ ∞
0

Im ε(ω)

ω
dω = εs − ε∞. (2.18)

This sum rule relates the losses to the asymptotic values and it shows that εs ≥ ε∞.
Compositions of Herglotz functions are used to create new Herglotz functions that
instead relate the variation around a �xed value, e.g., εm, to the corresponding
asymptotes.

As the Herglotz identities (2.17) relate the imaginary part of the function with its
asymptotic values, it is necessary to transform the Herglotz function such that the
imaginary part is of primary interest. Construct a Herglotz function, h∆(z), with
an imaginary part given by Imh∆(x) = 1 for |x| < ∆ and Imh∆(x) = 0 for |x| > ∆,
where z = x + iy with y > 0. Analytic continuation using the representation (2.7)
gives

h∆(z) =
1

π

∫ ∆

−∆

1

ξ − z
dξ =

1

π
ln
z −∆
z +∆

, for Im z > 0 (2.19)

Here, the logarithm has its branch cut along the negative real axis. The imaginary
part is bounded by unity and the region with 1 ≥ Imh∆(z) ≥ ζ ≥ 1/2 is given by
the union of the circle

x2 +

(
y − ∆

tan(πζ)

)2

≤ ∆2

(
1 +

1

tan2(πζ)

)
(2.20)
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Figure 2: Illustrations of the Herglotz function h∆(z) in (2.19) with ∆ = 1. a) real
and imaginary parts for Im z = 0. b) contour plot of Imh∆(x+ iy).

and the plane y > 0, see Fig. 2. Note that the circle intersects the points z = ±∆
and z = i∆2 sin2(πζ/2)/ sin(πζ) and in particular Imh∆(z) ≥ 1/2 for |z| ≤ ∆. The
asymptotes of (2.19) are

h∆(z) ∼

{
1, as z→̂0
−2∆
πz
, as z→̂∞

(2.21)

where ∼ denotes asymptotic similar, de�ned as h(ω) ∼ h1(ω) as ω→̂∞ if h(ω) =
h1(ω) + o(|h1(ω)|) as ω→̂∞. The function (2.19) is useful to restrict the interval
where the amplitude of a Herglotz function is small, as compositions of h∆ with e.g.,
hε maps regions where |hε| < ∆ to imaginary values between 1/2 and 1.

3 Sum rules for metamaterials

In this section, four sum rules are used to derive bounds for di�erent a priori knowl-
edge of the low- and high-frequency asymptotes. In Sec. 3.1 sum rules independent
of the low-frequency asymptote are derived which gives a bound expressed in the
di�erence between the target value and the high-frequency asymptote. Sum rules
valid for models without a static conductivity are derived in Sec. 3.2 which produces
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a bound proportional to the di�erence between the high- and low-frequency asymp-
totes. The third sum rule in Sec. 3.3 constrains parameter values larger than the
static limit and is particular interesting for arti�cial magnets. The �nal sum rules
derived in Sec. 3.4 are identities expressed in the plasma frequency.

3.1 Bounds expressed in the instantaneous response

Consider a permittivity ε(ω) with the high-frequency asymptotes ε∞ obtained from (2.1)
and construct the Herglotz function

h1(ω) =
ω

ω0

(
ε(ω)− εm

)
∼

{
O(1), as z→̂0
ω(ε∞−εm)

ω0
, as z→̂∞

(3.1)

where εm < ε∞ is the desired value of ε(ω) around ω = ω0. It has the property
h1(ω) ≈ 0 if ε(ω) ≈ εm. Compose h∆ with h1 to construct a new Herglotz function,
i.e.,

h∆1(ω) = h∆(h1(ω)) ∼

{
O(1), as z → 0
−2ω0∆

ωπ(ε∞−εm)
, as z →∞

(3.2)

These asymptotes show that h∆1 has an n = 0 sum rule in (2.17), i.e.,∫ ∞
0

Imh∆1(ω) dω =

∫ ∞
0

1

π
arg
(ω(ε(ω)− εm

)
− ω0∆

ω
(
ε(ω)− εm

)
+ ω0∆

)
dω =

ω0∆

ε∞ − εm
. (3.3)

The properties of this sum rule are easiest to understand for intervals with Im ε(ω) ≈
0, where it is seen that the integrand is approximately one or zero depending on
whether |h1(ω)| is smaller or larger than ∆, respectively. This is made more precise
by consideration of a function h1(ω) that is restricted to the region de�ned by ζ
in (2.20) over the interval ω ∈ B = [ω1, ω2] with ω0 = (ω2 + ω1)/2 and B =
(ω2 − ω1)/ω0. The integral (3.3) is then bounded as

Bmin
ω∈B

Imh∆(h1(ω)) ≤ 1

ω0

∫ ω2

ω1

Imh∆1(ω) dω ≤ ∆

ε∞ − εm
(3.4)

and in particular in lossy and lossless cases

min
ω∈B

Imh∆(h1(ω)) ≥

{
1/2 for maxω∈B |h1(ω)| = ∆

1 for maxω∈B |h1(ω)| = ∆ and maxω∈B | Imh1(ω)| = 0

(3.5)
giving

max
ω∈B
|h1(ω)| ≥ B(ε∞ − εm)

{
1/2 lossy case

1 lossless case,
(3.6)

The bound (3.6) on h1 = ω(ε− εm)/ω0 is transformed into a bound on ε− εm as

max
ω∈B
|ε(ω)− εm| ≥

B

1 +B/2
(ε∞ − εm)

{
1/2 lossy case

1 lossless case,
(3.7)
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Figure 3: Illustrations of the Drude model (3.8) with the sum rule (3.3) and
bound (3.7). a) the permittivity ε(ω). b) the integrand in the sum rule (3.3),
Imh∆1 = Imh∆(h1), the function |h1|, the di�erence |ε − εm|, and the bandwidth
bound (3.4) with εm = −1 and ∆ = 0.4.

where the bound in lossy media is identical to the bound in [17] for B � 1, ε∞ = 1,
and εm = −1.

As an example consider the Drude model

ε(ω) = 1 +
1

−iω(0.01− iω)
, (3.8)

where ω is a dimensionless frequency variable and the plasma frequency is ωp = 1,
see Fig. 3a. It has a negative real part for ω < 1. The sum rule (3.3) is evaluated
for εm = −1 and ∆ = 0.4. The integrand in (3.3) is depicted in Fig. 3b, where
it is observed that it has most of its area in the region around ω0 ≈ 0.7, i.e., in
the region where |ε(ω) − εm| ≈ Re ε(ω) − εm ≤ ∆. The amplitudes |h1(ω)| and
|ε(ω)− εm| together with the bandwidth bound (3.4) are also included in the �gure.
The bound states that ε(ω) can not be designed such that its bandwidth is wider
than the bound depicted in Fig. 3b.

The sum rule (3.3) and bounds (3.7) are valid with or without a static conduc-
tivity. The corresponding results for the permeability µ are obtained by substitu-
tion of µ for ε in (3.1) to (3.7). They are also valid for the refractive index n(ω)
de�ned by the square-root composition of ωε and ωµ, i.e., the Herglotz function
hn = ωn = i

√
−hεhµ = i

√
−ω2εµ. Here, the square root has its branch cut along

the negative real axis and the minus sign inside the square root and multiplication
with the imaginary unit are essential steps to preserve the symmetry and the Her-
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bandwidth bound (3.7).

glotz property. Let n∞ denote the instantaneous response of the refractive index,
i.e., n(ω) ∼ n∞ as ω→̂∞. It is often assumed that n∞ ≥ 1 to ensure consistency
with the upper bound set by the speed of light in free space [10, 16]. The corre-
sponding instantaneous permittivity, ε∞ > 0, and permeability, µ∞ > 0, are related
through ε∞µ∞ = n2

∞.
A numerical example with negative index of refraction and low losses over a

broad frequency range is suggested in [18]. It is generated by the Kramers-Kronig
relations [10, 13] using the imaginary parts

Im ε(ω) = 0.9
ω(ω2 − 25)2

ω8 + 5.5
, and Imµ(ω) = 0.7

ω(ω2 − 25)2

ω8 + 4.2
. (3.9)

The index of refraction n = i
√
−εµ is depicted in 4a and it has n(0) ≈ 79, n∞ = 1,

ωp ≈ 6.7, and n(ω0) ≈ −1, where ω0 ≈ 4.9. The integrand in the sum rules (3.3)
for n(ω) ≈ −1 and ∆ = 0.25 is depicted in Fig. 4. It is observed that the area is
concentrated around ω0.

3.2 Metamaterials without a static conductivity

The low-frequency asymptotes of ε, µ, and n depend on the presence of static con-
ductivity. In the case with no static conductivity, the linear response of hε(ω) =
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εsω+ o(ω) as ω→̂0 results in sum rules expressed in the static permittivity εs. Con-
sider a permittivity with high-frequency limit ε∞ ≥ 0 and a desired permittivity
εm ≤ ε∞. The corresponding results for the permeability and index of refraction are
obtained from the corresponding permittivity sum rules with the substitution of µ
or n for ε.

A sum rule that incorporates the static permittivity εs in the bound on |ε(ω)−εm|
is constructed from the Herglotz function

h2(ω) = −ω0

ω

ε∞ − εm
ε(ω)− ε∞

− ω0

ω
= −ω0

ω

ε(ω)− εm
ε(ω)− ε∞

∼

{
−ω0

ω
εs−εm
εs−ε∞ as ω→̂0

O(ω) as ω→̂∞
(3.10)

that has the property |h2(ω)| ≈ 0 if ε(ω) ≈ εm. Compose (3.10) with (2.19) to get
the Herglotz function

h∆2(ω) = h∆(h2(ω)) ∼

{
2ω∆
ω0π

εs−ε∞
εs−εm , as ω→̂0

o(ω), as ω→̂∞
(3.11)

It has the n = 1 sum rule∫ ∞
0

ω2
0

ω2π
arg
(ω0

(
ε(ω)− εm

)
+ ω∆

(
ε(ω)− ε∞

)
ω0

(
ε(ω)− εm

)
− ω∆

(
ε(ω)− ε∞

)) dω = ω0∆
εs − ε∞
εs − εm

(3.12)

Bound the integral as in (3.4) to get

Bmin
ω∈B

Imh∆(h2(ω)) ≤ ∆
εs − ε∞
εs − εm

(3.13)

and �nally

max
ω∈B

|ε(ω)− εm|
|ε(ω)− ε∞|

≥ B

1 +B/2

εs − εm
εs − ε∞

{
1/2 lossy case

1 lossless case
(3.14)

The sum rule (3.12) and bound (3.14) show that the constraints on the variation of
ε around εm is proportional to the di�erence εs − ε∞. It is hence necessary to have
a static permittivity εs > 1 or a small instantaneous response ε∞ < 1 for broadband
performance. Note that these results are valid for the case ε∞ = 0, although it is
in general very di�cult to show that the time-domain Maxwell equations are well
posed in this case.

As an example, the classical Lorentz model is considered for the permittivity

ε(ω) = 1 +
0.2

1− ω2 − 0.001iω
(3.15)

that has ε∞ = 1 and εs = 1.2. It is not a particularly good candidate for εm = −1
materials but is has a narrow frequency range around ω = 1.05ω0 where Re ε ≈ −1.
The integrand of the sum rules (3.10) is depicted in Fig. 5. for εm = −1 and ∆ = 0.2.
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Figure 5: Illustrations of a Lorentz model (3.15) and sum rules. a) the permittivity
ε(ω). b) imaginary part of the integrand of the sum rule (3.12).

Although an e�ective small-signal magnetic conductivity can theoretically be
created in suitably biased ferromagnetic material [22], we exclude the possibility
of a static magnetic conductivity in linear, passive materials as considered in this
paper. Thus, the corresponding sum rules and bounds for permeability are given by
simply replacing ε by µ in the preceding equations.

If a static electric conductivity is present, the low-frequency asymptote of n is
hn(ω) = O(ω1/2) as ω→̂0. The sum rules and bounds for the refractive index are
then given by replacing ε by n and replacing the static value by in�nity, ns = ∞.
It is seen that in the sum rules and bounds, the right hand side is maximized if
the static material properties are large. This implies that the bounds are generally
tighter for permeability than for permittivity and refractive index if an electrical
conductivity is present.

3.3 Arti�cial permeability

In applications with arti�cial magnetics, it is desired to design materials with a
permeability, Reµ(ω) larger than its static value µs, i.e., µ(ω0) ≈ µm > µs. Consider
the Herglotz function

h3(ω) = − ω0(µm − µ∞)

ω(µ(ω)− µ∞)
+
ω0

ω
=
ω0

ω

µ(ω)− µm

µ(ω)− µ∞
∼

{
−ω0

ω
µm−µs

µs−µ∞ as ω→̂0

O(ω) as ω→̂∞
(3.16)
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where µm > µs. Compose with h∆ to get the Herglotz function h∆3 with the asymp-
totes

h∆3(ω) = h∆(h3(ω)) ∼

{
2ω∆
πω0

µs−µ∞
µm−µs

as ω→̂0

O(ω−1) as ω→̂∞
(3.17)

and the sum rule ∫ ∞
0

ω2
0

ω2π
arg
(h3(ω) +∆

h3(ω)−∆

)
dω = ω0∆

µs − µ∞
µm − µs

(3.18)

with the bound

max
ω∈B

|µ(ω)− µm|
|µ(ω)− µ∞|

≥ B

1 +B/2

µm − µs

µs − µ∞

{
1/2 lossy case

1 lossless case
(3.19)

The Lorentz model is a common resonance model that has a narrow frequency range
with values larger than its static value. Here, it used to illustrate the sum rule (3.18)
and bound (3.19) on arti�cial permeability. Consider a permeability

µ(ω) = 1 +
2

1− ω2 − 0.01iω
(3.20)

that has µ∞ = 1 and µs = 3. It is has a narrow frequency range around ω = 0.9
where Reµ ≈ µm = 10. The integrand of the sum rules (3.18) is depicted in Fig. 5.
for εm = 10 and ∆ = 0.5.

3.4 Bounds expressed in the plasma frequency

A priori information about the plasma frequency can be used to derive additional
sum rules and constraints on metamaterials. It is often assumed that, e.g., ε(ω) ∼
ε∞ − ω2

p/ω
2 as ω →∞, where ωp is the plasma frequency [10].

A sum rule involving the plasma frequency ωp is constructed from the Herglotz
function h2 in (3.10) with the high-frequency asymptote h2(ω) ∼ ωω0

ω2
p

(ε∞ − εm) as

ω→̂∞ and

h∆(h2(ω)) ∼

{
O(ω) as ω→̂0
−2ω2

p∆

πωω0(ε∞−εm)
as ω→̂∞

(3.21)

It has an n = 0 sum rule, viz.,∫ ∞
0

1

π
arg
(ω0

(
ε(ω)− εm

)
+∆ω

(
ε(ω)− ε∞

)
ω0

(
ε(ω)− εm

)
−∆ω

(
ε(ω)− ε∞

)) dω =
ω2

p∆

ω0(ε∞ − εm)
(3.22)

and the associate physical bound

max
ω∈B

|ε(ω)− εm|
|ε(ω)− ε∞|

≥ B

1 +B/2

ω2
0

ω2
p

(ε∞ − εm)

{
1/2 lossy case

1 lossless case
(3.23)



14

0.5 1 1.5 2

-5

0

5

10

15

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Im
Re

!

¹(!)a)

²m

!

b)

j¹(!)-¹  jm

j h (!)j3

bound

Im  h   (!)¢3

2¢

Figure 6: Illustrations of the Lorentz model (3.20) and sum rule (3.18) for arti�cial
permeability. a) the permeability µ(ω). b) imaginary part of the integrand of the
sum rule (3.18).

The Herglotz function h3 in (3.16) with µ(ω) ∼ µ∞ − ω2
p/ω

2 as ω→̂∞ has the
high-frequency asymptote h3(ω) ∼ (µm − µ∞)ωω0/ω

2
p giving

h∆(h3(ω)) ∼

{
O(ω) as ω→̂0
−2ω2

p∆

πωω0(µm−µ∞)
as ω→̂∞

(3.24)

for µm > µs giving the sum rule∫ ∞
0

1

π
arg
(h3(ω) +∆

h3(ω)−∆

)
dω =

ω2
p∆

ω0(µm − µ∞)
(3.25)

with the bound

max
ω∈B

|µ(ω)− µm|
|µ(ω)− µ∞|

≥ B

1 +B/2

ω2
0

ω2
p

(µm − µ∞)

{
1/2 lossy case

1 lossless case
(3.26)

The bounds show that it is advantageous to have ω0 < ωp for good performance.

4 Bi-anisotropic constitutive relations

The constitutive relations treated in this paper can be augmented to include so
called bi-anisotropic materials. These are materials where the relation between the
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[E,H ] and [D,B] �elds is written in the frequency domain as(
D(ω)
B(ω)

)
=

(
ε0ε(ω) c−1

0 ξ(ω)
c−1
0 ζ(ω) µ0µ(ω)

)(
E(ω)
H(ω)

)
(4.1)

where the dimensionless ε, ξ, ζ, and µ are now matrix-valued functions of ω. The
material is passive if the total dissipated power is non-negative [12], i.e., the imagi-
nary part of all hermitian quadratic forms over the 6× 6 material matrix weighted
by ω are non-negative,

Im

{
ω

(
E(ω)∗

H(ω)∗

)
·
(
ε0ε(ω) c−1

0 ξ(ω)
c−1
0 ζ(ω) µ0µ(ω)

)(
E(ω)
H(ω)

)}
≥ 0 for all E and H (4.2)

Choosing [E(ω),H(ω)] = E0[e0, η
−1
0 h0] where E0 is a normalization constant and

e0 and h0 are dimensionless, constant and real-valued vectors, the dimensionless
quadratic form

q(ω) =

(
e0

h0

)
·
(
ε(ω) ξ(ω)
ζ(ω) µ(ω)

)(
e0

h0

)
(4.3)

then de�nes a Herglotz function hq(ω) = ωq(ω) for each �xed vector pair [e0,h0], and
all the previous sum rules apply to q(ω). The vectors e0 and h0 need to be real-valued
in order to keep the symmetry hq(ω) = −h∗q(−ω∗). The quadratic form q(ω) is a
linear combination of di�erent components of the material matrices ε(ω), ξ(ω), ζ(ω),
and µ(ω), but not all linear combinations are possible, only those corresponding to
diagonal elements of the 6 × 6 material matrix. Note in particular that we cannot
�nd a Herglotz function hq(ω) involving only the matrices ξ(ω) or ζ(ω), they are
always mixed with ε(ω) or µ(ω). We must also take into account that for reciprocal
media, the static limit of ξ(ω) and ζ(ω) is zero, since the coupling between electric
and magnetic �elds disappears in the static limit [25, p. 36], so that

q(0) =

(
e0

h0

)
·
(
ε(0) 0
0 µ(0)

)(
e0

h0

)
= e0 · ε(0)e0 + h0 · µ(0)h0 (4.4)

For instance, this means that the bound (3.7) for bi-anisotropic materials becomes

max
ω∈B
|q(ω)− qm| ≥

B

1 +B/2
(q∞ − qm)

{
1/2 lossy case

1 lossless case,
(4.5)

The simplest example of a material with coupling between electric and magnetic
�elds is a chiral material, which is a bi-isotropic material where all material matrices
are proportional to the identity matrix I,(

ε(ω) ξ(ω)
ζ(ω) µ(ω)

)
=

(
ε(ω)I iχ(ω)I
−iχ(ω)I µ(ω)I

)
(4.6)

The quadratic form q(ω) then only contains information on ε(ω) and µ(ω),

q(ω) =

(
e0

h0

)
·
(

ε(ω)I iχ(ω)I
−iχ(ω)I µ(ω)I

)(
e0

h0

)
= |e0|2ε(ω) + |h0|2µ(ω) (4.7)



16

This means the sum rules in this paper can be used to bound a linear combination of
ε(ω) and µ(ω), but provide no information on χ(ω). This is due to the requirement
of e0 and h0 to be real-valued vectors. The physical importance of the chirality
parameter χ is that it is proportional to the rotation of the polarization direction of
a linearly polarized wave as it propagates through the chiral material. Denoting the
real and imaginary parts with primes as χ = χ′ + iχ′′, the angle of rotation is [29]

φ(ω) =
ω

c0

χ′(ω) =
2π

λ
χ′(ω) (4.8)

per unit length of propagation. The following sum rule is proposed in [29]∫ ∞
0

ωχ′(ω) dω = 0 ⇔
∫ ∞

0

φ(ω) dω = 0 (4.9)

i.e., the total rotation of the polarization direction for all frequencies is zero. If the
material is also an insulator at zero frequency (no static conductivity), the additional
sum rule ∫ ∞

0

ω−1χ′(ω) dω = 0 ⇔
∫ ∞

0

φ(λ) dλ = 0 (4.10)

also applies. Thus, for an insulating chiral material, the total rotation for all fre-
quencies and all wavelengths is zero [29].

5 Conclusions

In conclusion, sum rules are presented that constrain the bandwidth of passive
metamaterials. The bandwidth limitations on ε(ω) ≈ εm < ε∞ are expressed in
either the di�erences between the low- and high-frequency permittivity or the plasma
frequency. The corresponding expressions for permeability or refractive index are
given by replacing ε by µ or n. The static permittivity and permeability are well
de�ned and can be determined by homogenization techniques for heterogeneous
materials; it is then well known that the e�ective material parameter is bounded by
the parameters of the included materials [19]. This demonstrates that for instance
a high static permeability cannot be created by a composite material unless one of
its component materials already has a high static permeability [1]. Many proposed
metamaterial designs for negative refractive index utilize only dielectrics and metal
structures, and since the static permeability of some good conductors such as copper
is very close to unity, the bandwidth is penalized by (3.10) and (3.14). We have also
demonstrated how a priori information about the plasma frequency can be used
to derive additional sum rules. Finally, we have shown that the sum rules can be
applied to bi-anisotropic material models, but only for the diagonal elements of the
6× 6 material matrix.
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