Active distances and cascaded convolutional codes

Höst, Stefan; Johannesson, Rolf; Zigangirov, Kamil; Zyablov, Viktor V.

Published in: [Host publication title missing]

DOI: 10.1109/ISIT.1997.613022

1997

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Active Distances and Cascaded Convolutional Codes

Stefan Höst(1), Rolf Johannesson(1), Kamil Sh. Zigangirov(1), and Viktor V. Zyablov(2)

(1) Dept. of Information Technology
Lund University
P.O. Box 118
S-221 00 Lund, Sweden
stefanh@it.lth.se, rolf@it.lth.se, kamil@it.lth.se

(2) Inst. for Problems of Information Transmission
of the Russian Academy of Science
B. Karetnyi per., 19, GSP-4
Moscow, 101447 Russia
zyablov@ippi.ac.msk.su

Abstract — A family of active distances for convolutional codes is introduced. Lower bounds are derived for the ensemble of periodically time-varying convolutional codes.

I. INTRODUCTION

The "extended distances" were introduced by Thommesen and Justesen [1] for unit memory (UM) convolutional codes. We present (non-trivial) extensions to encoder memories \(m \geq 1 \) and call them active distances since they stay "active" in the sense that we consider only those codewords which do not pass two consecutive zero states [2].

II. ACTIVE DISTANCES

Consider the ensemble of binary, rate \(R = b/c \), periodically time-varying convolutional codes encoded by a polynomial generator matrix of memory \(m \) and period \(T \),

\[
G = \begin{pmatrix}
G_0(t) & \cdots & G_m(t + m) \\
G_0(t + 1) & \cdots & G_m(t + m + 1) \\
\vdots & \ddots & \vdots \\
\end{pmatrix}
\]

in which each digit in each of the matrices \(G_i(t + T) \) for \(0 \leq t \leq m \) and \(0 \leq t < T - 1 \), is chosen independently and equally likely to be 0 and 1.

Let \(U_{t-m, t+j+m} \) be the set of information sequences \(u_{t-m} \ldots u_{t+j+m} \) such that the first \(m \) and the last \(m \) subblocks are zero and they do not contain \(m+1 \) consecutive zero subblocks.

Let \(U_{t, t+j} \) be the set of information sequences \(u_{t-m} \ldots u_{t+j} \) such that at least one subblock is nonzero and they do not contain \(m+1 \) consecutive zero subblocks.

Next we introduce the truncated time-varying generator matrix

\[
G_{[t, t+j]} = \begin{pmatrix}
G_m(t) \\
G_0(t) & \cdots & G_m(t + j) \\
\vdots & \ddots & \vdots \\
G_0(t + j) \\
\end{pmatrix}
\]

Definition 1 Let \(C \) be a time-varying convolutional code encoded by a time-varying, polynomial generator matrix. Then the \(j \)th order active row distance is

\[
a_j^r = \min_t \min_{U_{[t-m, t+j+m]}} w_H(u_{[t-m, t+j+m]} G_{[t, t+j+m]}),
\]

the \(j \)th order active column distance is

\[
a_j^c = \min_t \min_{U_{[t-m, t+j]}} w_H(u_{[t-m, t+j]} G_{[t+t+j]}),
\]

and the \(j \)th order active segment distance is

\[
a_j^s = \min_t \min_{U_{[t-t+j]}} w_H(u_{[t-t+j]} G_{[t+t+j]}).
\]

For a convolutional code encoded by a time-varying, non-catastrophic, polynomial generator matrix we define its free distance as \(d_{\text{free}} \).

III. CASCADED CODES

Consider a scheme with two convolutional codes in cascade. Theorem 1 There exist cascaded convolutional codes in the ensemble of periodically time-varying cascaded convolutional codes whose active distance satisfies

\[
\delta_i^* \equiv a_j^* \geq (l + 1) h^{-1} (1 - \frac{l}{l + 1}) R - O(\log_2 m)
\]

for \(l \geq l_0 = O(\frac{K}{R}) \).

REFERENCES
