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Preface

When I finished high school (gymnasium), I said I would never again do anything con-
cerned with natural sciences or technology, it was just too boring. I kept my word for
seven years, during which I worked as a cinema projectionist and got a B.A. (fil.kand.) in
philosophy. I loved it. Then I realized I had to get a job, and since philosophers were not
in high demand at the time, I sat down and considered the alternatives. I made a list of
educations I could get and the jobs they would lead to and I wrote them down in order
of priority based on what I thought I would endure best. Then I applied. At the top
of the list was M.D. but my grades were only almost good enough so I didn’t get in. In
second place I had put down computer engineer and there I got in. I figured I would just
barely make it through and then I would get a job. Not a dream job, but it would pay
the rent. I didn’t just barely make it through, it went very well. Little by little something
happened that surprised me more that anyone. I started to enjoy mathematics. When we
got to choose courses I directed my education towards mathematics and when I took my
first course in mathematical image analysis for Kalle Åström I felt that this was it, this was
what I wanted to do. So I took some more courses and then I decided to do my masters
thesis in the field. I was still interested in medicine so I talked to Kalle about it and it
turned out that he had a Ph.D.-student working with medical image analysis. That was
Anders Ericsson and he and Kalle supervised my masters thesis "Automatic positioning
of landmarks for shape analysis". That went very well too and things got even more in-
teresting and enjoyable so I started talking to Kalle about doing a Ph.D. and now here I
am. Life is funny.

The work of this thesis makes contributions to the field of automatic optimal shape
modeling. The reason that the title is "Towards fully automatic optimal shape modeling"
instead of simply "Fully automatic optimal shape modeling" is that automaticity and
optimality are important properties that I think can never be fully reached, because we
can always redefine what we mean by automatic and optimal. We develop our tools in this
direction, getting better and better tools. This thesis is part of this eternal development
of the tools.
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Chapter 1

Introduction

Strive not to be a success, but rather to be of value.

Albert Einstein

1.1 Motivation

This thesis deals with statistical shape models and with the effort of building them as
automatically and as optimally as possible.

There are many areas where statistical models of shape are useful. One of the main
ones is medical image analysis. Medical images are becoming more and more prominent
both in medical research and in clinical practice. The standard case involves 3D images,
often of high resolution, and often in several different modalities, for example MR, PET,
and CT, giving information about physical anatomy as well as different kinds of function-
ality. These sets of images contain loads of information but analyzing them is difficult
and time consuming for the medical staff. One large reason for this is that we humans
can not view 3D-data. We can view 2D-slices of the 3D-image and we can view sur-
faces of 3D objects but these are poor substitutes. Computers do not have this problem,
but by themselves they lack human capacities for pattern recognition an analysis. This is
where image analysis tools like the models studied in this thesis come into play. Often
a specific organ is the subject of examination and if the computer automatically detects
and segments this organ and presents it visually in a manner suited for the problem at
hand, along with information about its shape and appearance, and possibly a suggested
diagnosis, this is very helpful.

A statistical shape model is built from a set of training examples. One of the main
issues with statistical shape models is that the result depends on how well the model is
built. Building them well is difficult and time consuming. Therefore, there is motivation
for automation and optimization of this model building. This thesis makes contributions
to this.

1.2 Organization of the Thesis

In Part I Shape Models are introduced in Chapter 2 and a complete chain of steps for
building and using such models is presented in Chapter 3. An improvement to the stan-
dard approach is presented in Chapter 4. Part II goes deeper into the automatic and op-

1



CHAPTER 1. INTRODUCTION

timal construction of shape models using Minimum Description Length (MDL). First,
construction of models from a training set of object outlines is described. MDL is used
for establishing correspondences (Chapter 5) and for aligning the shapes (Chapter 6). In
Chapter 7 a solution to a serious problem with the MDL-approach (formerly solved with
ad-hoc techniques) is presented. Methods for evaluating the resulting correspondences
and the resulting shape models is discussed in Chapter 8. Finally a method for construct-
ing models directly from a training set of images without first segmenting object outlines
is presented in Chapter 9.

Here is a chapter by chapter description of the contents.

Part I

Chapter 2 First a background of deformable models is given and then the general the-
ory of shape and shape models is presented since this is the type of models that will be
used in this thesis.

Chapter 3 As an illustration of the construction and use of shape models, a complete
segmentation system using 3D-shape models for segmenting the femur in the knee in
Magnetic Resonance Images (MRI) and the brain in Single Photon Emission Computed
Tomography (SPECT) images is presented. The chapter is based on Paper XIII.

Chapter 4 A modification of the segmentation algorithm using integral approximation
is here shown to give better results.

Part II

Chapter 5 One of the main tools used for automatic model building is Minimum
Description Length (MDL). Here this is defined and the description length of a shape
model is presented. The gradient of the description length to be used in optimization is
also described.

Chapter 6 When using MDL for establishing correspondences we may want to also
align the shapes using MDL instead of using standard Procrustes analysis. The gradient
of the description length with respect to rotation is derived. The alignment of the shapes
is then optimized using the Gauss-Newton algorithm. This chapter is based on Paper
VIII.

Chapter 7 When optimizing Minimum Description Length an undesired side-effect is
that landmarks tend to cluster together. This has been addressed using ad hoc methods.
Here novel theory to prevent clustering during correspondence optimization is presented.

2



1.3. MAIN CONTRIBUTIONS

The standard scalar product is replaced by a new formula that is invariant to mutual
reparameterizations and this solves the problem. This chapter is based on Paper IX.

Chapter 8 As there are several different algorithms used for establishing correspon-
dences, there is a need for comparing them to see which algorithm is best. In this chapter
severe problems with the standard model quality measures compactness, generality and
specificity are discussed. A ground truth correspondence measure (GCM) is proposed
for benchmarking and benchmarking is performed on several algorithms. This chapter is
based on Papers V-VII.

Chapter 9 In the model building in the thesis so far, it is assumed that the outlines of
the objects in the training images are given. In this chapter a new model building tech-
nique that works fully automatically from unlabeled images is developed. This chapter is
based on Papers I-IV.

Chapter 10 A brief summary and conclusions of the thesis.

Appendix A A description of the datasets used in most experiments.

Appendix B Notations used in the thesis presented in alphabetical order.

1.3 Main Contributions

In Chapter 4 the segmentation algorithm is improved by adding area weights to the
objective function as a way of approximating an integral instead of using a sum. This
improves segmentation results. This work was all done by the author of this thesis.

Apart from this contribution, all the main contributions are concerned not with using
the models but with the establishing of correspondences needed for building the models.
This was chosen as the main focus because if this is done poorly the rest of the chain will
be of low quality and because the previously existing methods may work reasonably well
most of the time in a research setting but both automaticity and optimality can definitely
be improved and for applications like medical decision support demands for robustness
and precision are very high and in a realistic application setting the existing methods are
often not useful.

When optimizing correspondences using MDL you may want to also align shapes
using MDL. This has been noted before but in Chapter 6 this is examined more closely
than before and the gradient to be used in optimization is derived and the results are
analyzed. This work was done in close collaboration by the author of this thesis and
Ericsson.

When establishing correspondences by optimizing the parameterizations of the shapes
with the standard formulation the problem is ill-posed and the global optimum is useless.

3
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This also gives instability in practice. In Chapter 7 the standard scalar product is replaced
with a new formula that makes the parameterization optimization invariant to mutual
reparameterizations. This solves the problem. This work was done in close collaboration
by the author of this thesis and Ericsson with input from Åström.

Several algorithms exist for correspondence optimization and they must be compared.
In Chapter 8 the standard model quality measures compactness, generality and speci-
ficity are criticized and a new measure built on ground truth is presented and used to
benchmark algorithms for correspondence localization. This work was also done in close
collaboration by the author of this thesis and Ericsson.

So far we have started from a set of object outlines and established correspondences by
optimizing the parameterizations of these outlines. But getting these outlines is manual
work and we want automatic methods. Some such methods exist based on non-linear
registration of the entire images of the training set, but this is not always a good approach,
especially if the images are not produced in a very controlled environment. In Chapter
9 a new model building technique that works fully automatically from unlabeled images
with occlusions is presented. This work was done mainly by the author of this thesis,
based on work done mainly by Åström.
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Shape Models
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Chapter 2

Shape Model Theory

My own suspicion is that the universe is not only queerer than we suppose, but
queerer than we can suppose. I suspect that there are more things in heaven and
earth than are dreamed of or can be dreamed of in any philosophy.

J.B.S. Haldane

2.1 Introduction

The general motivation for model based methods is that if you have knowledge about the
object you are for example trying to segment you can use that knowledge to get a better
result. A model can also be used for interpretation of the shape and appearance of the
object or for data compression. This is especially useful if the images are of poor quality
with lots of noise and missing data. This is often the case for example in medical image
analysis or in surveillance.

2.1.1 Background

The first approaches in this area were either template matching techniques, where a fixed
template of the object is fitted to the image (or a processed version of the image for ex-
ample for edge detection [109]), by global transformations, such as Euclidean or affine
transformations, possibly allowing for some simple variation of the template like chang-
ing the scale (initial tentative discussion of local template deformation can be found in
for example [99]), or techniques where some features are calculated from the image and
fed to some classifier [63]. Some of these techniques can handle misalignment of the
template, for example by using features that are invariant to things like translation, rota-
tion and scale or by normalizing the data before calculating features [6, 20, 58]. Fit was
measured as overlap, for example using Hamming distance [20], or similarity of autocor-
relations [68] or cross-correlation between data and template [20] for template matching
techniques, or determined by feeding the image-pixels to some machine learning system
that typically calculates some features and does statistical tests [57, 75, 95] or runs the
features through a decision-tree [143] or some other machine learning process or classi-
fier like a hyperplane classifier [66], a Support Vector Machine (SVM) or a neural net.
The template can be a typical specimen or some type of mean object learned from ex-
amples or it can be based on a mathematical model of the object. In some cases, the
object always looks approximately the same and then this approach can work well but
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often the appearance of the object can be different in different images and then there will
be problems.

2.1.2 Deformable Models

For many applications there are significant global and local variations of the shape in
different instances of objects from the same object class. Therefore different methods of
including deformations of the shape in the model were developed. This thesis deals with
such deformable models, where the model describes the typical appearance and the ways
that the appearance can be deformed and still be a valid instance of the object.

Deformable models are typically curves or surfaces defined within an image domain.
They can move and change globally and locally either by searching through parameters
or under the influence of internal forces, which are defined within the curve or surface
itself, and external forces, which are computed from the image data. The internal forces
are designed to control model attributes such as smoothness and to ensure object class
validity during deformation. The external forces are defined to move the model towards
an object boundary or other desired features within an image. Deformable models can be
active in the sense that they can adapt themselves to fit the given data.

Deformable models have been used for a wide range of applications including shape
analysis [65], image restoration [3], segmentation [19, 21, 39] , object recognition and
identification [72, 98, 112], object tracking [9, 14, 52, 81, 134], database retrieval [13,
145, 153] and medical imaging [131]. In this thesis the focus is on the building of
models of shape and appearance, and specifically issues of optimality, automaticity and
verification are addressed.

An early type of deformable models were introduced in 1973 by Widrow [147, 148].
He called it “the rubber mask technique”, but the deformations were not free rubber
sheet deformations in the style of the later popular Thin Plate Splines (TPS). Rather
a specific model was built for the object including a number of parameters controlling
angles and widths and such. Another approach was Fischler and Elschlager’s “spring-
loaded” templates [49]. A related but somewhat different problem is handled by Barrow
who matches images to 3D symbolic maps by optimizing camera parameters [8].

Since then there has been a lot of research on deformable models and the modern
techniques are widely used in image analysis and pattern recognition, see for example
[15, 31, 53, 97, 119, 125, 133].

Deformable models can be divided into two types; free-form models and parametric
models [71]. Free-form models can represent any shape as long as some general regular-
ization constraint, such as continuity or smoothness, is satisfied, i.e. they are typically not
specific for a certain object class. Well known examples are snakes and level set methods.
Recently attempts have been made to include some apriori knowledge of the typical shape
of the object being searched for into these models. Parametric models typically model a
specific object class with its mean shape and its modes of variation. The current shape is

8



2.1. INTRODUCTION

specified by a set of parameters controlling the modes of variation. This thesis deals with
parametric models.

One advantage with these models is that a compact description of the shape can be
achieved using the parameters. Another important aspect is that robustness and shape
validity is more likely to be achieved with a global shape model. This is very important
if parts of the object are occluded or of very poor image quality, which is often the case.
Another advantage is that after locating and segmenting the object, the parameters for the
model can be analyzed and conclusions about the shape can be drawn. For example, in
medical imaging a classifier can attempt to diagnose a patient from the shape parameters
of some organ.

The mean shape and the shape variation modes can either be specified mathemat-
ically (analytical deformable templates) or learned from training data (prototype-based
deformable templates) [71].

The analytical deformable template is defined by a set of analytical curves (e.g. lines,
ellipses). Deformations are typically defined for example as axes and positions of such el-
lipses. Widrow’s early “rubber masks” [147], is one example of an analytical shape model.
The work by Yuille et al. [149] is another. They built a model of the eye and mouth using
circles and parabolic curves for video image segmentation. Object-specific parameters,
such as the radius of the iris, are used to deform the model in order to optimize an object
specific designed energy function in object specific steps (first finding the iris by looking
at valley potentials and so on). Advantages of these models can be simplicity and speed
of calculations. Disadvantages are for example the by hand model and objective function
design, and of course not all objects are easily described by simple shapes like ellipses if
the number of parameters is to be kept small.

The prototype-based deformable template is defined around a prototype template
which describes the average shape of a class of objects. This prototype or mean shape and
its modes of variation are learnt from training data and formulated so that a relatively
small number of parameters control it. Statistics for these parameters can be calculated
from training data so that good measures of the probability of different shape instances
can be defined [21, 60, 61].

Worth mentioning are also physical deformable models, that attempt to incorporate
knowledge about the expected variation of an object based on assumptions based on
physics. Pentland and Sclaroff [103] and Nastar and Ayache [100] describe methods of
building and using such shape models. These methods are often called Finite Element
Methods (FEM) formulations, see also Cohen [23]. In [26] Cootes et al. developed a
combination of physical vibrational modes and statistical variational modes. Warping
techniques like Thin Plate Splines and Navier Splines also have underlying physical as-
sumptions.
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2.1.3 Statistical Shape Models

This thesis deals with a type of prototype-based deformable models often referred to as
statistical shape models. Here follows a brief account of these statistical shape models.
More details can be found for example in [28, 38, 79, 122].

Statistical shape models attempt to capture the patterns of variability found in a class
of objects as defined by a training set of examples. The basic idea is to estimate the
population statistics from a set of examples instead of using a single prototype. Some
of the most important work in this field, and the starting point for much of the work
in this thesis, has been done by Cootes et al. beginning with [24, 25, 29]. Statistical
Shape Models have turned out to be an effective tool in image segmentation and image
interpretation. Using the model it is possible to describe new formerly unseen shapes,
while ensuring that they are reasonable shapes given the shape class. Another important
aspect is the possibility of interpreting the shape parameters for example for the purpose
of medical diagnosis.

The shapes are typically boundaries of some objects and are commonly defined by
landmarks, curves or surfaces. In this thesis the shapes are typically n-dimensional man-
ifolds. Specifically often one-dimensional manifolds, i.e. curves, are considered but the
techniques discussed work equivalently for n-dimensional manifolds, for example sur-
faces. For more complicated shapes consisting of several manifolds problems are usually
solved by treating one manifold at a time.

In the most simple case a Point distribution model (PDM) is built, representing both
the mean shape and the variability modes of the shape class. The mean shape and each
mode are represented by a number of landmarks defining the shape. In order to build
the model, a collection of correctly annotated example shapes is established. This was
first done manually and later semi-automatically. The sets of landmarks are then aligned
using Procrustes-analysis. After the shapes have been aligned, a principal component
analysis (PCA) is performed to reduce dimensionality. Shapes can now be described by
a multivariate Gaussian model as the mean shape plus some variation along orthogonal
directions defined by a number of modes of shape variation. In this way the shape model
allows for considerable meaningful variability while still being specific to the class struc-
ture it represents. PCA has also been used to model appearance, i.e. pixel intensities at
corresponding shape locations [28, 82], and illumination [73]. Since the introduction of
these models there has been a lot of work in this area and this thesis is part of this.

When building these models, it is essential to establish correct correspondences be-
tween points on shapes throughout the training set. This can be, and often is, done by
annotating landmarks by hand. This can however be difficult and time consuming so
automatic and semi-automatic approaches have been developed [31]. This thesis deals
with such automatic algorithms for establishing correspondences.
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2.2 Shape

2.2.1 Definition

One of the earliest instances of geometrical shape analysis was developed from a biological
point of view by D’arcy Thompson [137]. Since then the field of shape modeling and
shape analysis has grown and is of great importance in a wide variety of disciplines, e.g.
image segmentation, classification and interpretation.

Let us first define the objects whose shape will be modelled.

Definition 2.2.1 (Parameterized Geometric Object).

• A geometric object is a subset of Rnd , where nd is the dimension, e.g. nd = 2 for
planar curves and nd = 3 for surfaces.

• A parameterization of a geometric object assigns a set of parameter values to each
point in the object.

Now we need to define what we mean by the shape of such objects.

Definition 2.2.2 (Shape).

• Conceptually, the shape of a geometric object is all the geometric information that
remains when differences explained by the effects of translation, rotation and scale
are filtered out [78].

• More specifically, two geometric objects have the same shape, if they can be trans-
formed into each other by similarity (translation, rotation and positive scale i.e. no
reflection) transformations.

• Two geometric objects have the same size and shape, if they can be transformed
into each other by Euclidean (translation and rotation) transformations.

Here similarity transformations are used to define what is meant by same shape. Sim-
ilarly any group of transformations G : Rnd 7→ Rnd can be used. Let S be a geometric
object and let

GS = {GS|G ∈ G} (2.1)

be the set of all geometric objects obtained from S by some transformation G ∈ G. This
set GS is called the the G-orbit of S. This gives us a more general definition of shape
[41].

Definition 2.2.3 (G-shape). G-shape is a function s defined on geometric objects, that is
constant on G-orbits and different on different G-orbits. Two geometric objects are hence
said to have the same G-shape, if they belong to the same G-orbit.
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The definition of shape above is then identified with Similarity-shape (G is the group
of Similarity transformations) and the definition of same size and shape is identified with
Euclidean-shape. In the rest of the thesis the shorter notation shape will be used to
mean Similarity-shape. The word shape will also be used de refer to specific geometric
objects belonging to the G-orbit. Whether the function value of the G-orbit or the specific
representative in form of a geometric object is meant should be clear from the context.

Another important use of G-shape is to work with parameterized geometric objects
and let G be the set of reparameterizations, i.e. transformations that do not change the
set of points making up the geometric object but changes the assigned parameter values
of the points. In this way objects can be said to have the same shape if one can be trans-
formed into the other by only changing the parameter values. Typically this would be
used together with for example similarity transformations, so that two object are con-
sidered to have the same shape if one can be transformed into the other by a similarity
transformation and a reparameterization.

2.2.2 Shape Representation and the Correspondence Problem

In order to model a class of shapes we need s set of geometric objects {S1, . . . ,Sns
} in

Rnd from the shape class to be modeled. This set is called the training set and should be
representative of the shape class.

In order to be able to analyze objects of different shape, a way of measuring the
distance between shapes and methods for the statistical analysis of shapes are necessary.
The simplest way to accomplish this is to annotate a geometric object S in Rnd with a
number of points X = {l1, . . . , lnp

} on the object. Such points are called landmarks.
When choosing landmarks there are many things to consider. For example, they should
represent features, which are present in most instances of objects from a certain class of
shapes and which can be located on those shapes.

To be able to compare shapes via the landmarks, the landmarks have to be in corre-
spondence. This means that on each shape in the training set, the landmarks with the
same number should be located at the same point on the object. For example, if the model
is of the outline of a hand, landmark number 5 may be located at the tip of the index
finger on each shape. In order for the shape class to be modeled properly we need such
corresponding landmarks on all parts of the shape. This is often referred to as establishing
a dense correspondence.

Traditionally, landmarks have been described as being of different types: anatomical,
mathematical and pseudo-landmarks.

Anatomical Landmarks. An anatomical landmark is a point that is located at a
meaningful point on the object that can be located on most instances from the shape
class through use of knowledge about the object. This can be e.g. the tip of a finger or
the top left corner of the wind shield on a car. Often anatomical landmarks are assigned
by experts on the object class being modeled. Often this can actually be one of the best
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ways of creating a high quality training set (see Chapter 8). The problem is that it is very
difficult and time consuming so in practice it is often not an option and for many types
of data it is not feasible at all.

Mathematical Landmarks. Mathematical landmarks are points whose correspon-
dences are determined according to some mathematical property. In simple cases this can
be for example points of extreme curvature or junctions of lines. Automatic algorithms
using some mathematical function for establishing correspondences have been an active
field of research in the last decade and this thesis deals with this topic.

Pseudo-Landmarks. Anatomical and mathematical landmarks may only give a sparse
description of the shape of the object. One way to obtain a richer shape description is
to place so called pseudo-landmarks in between the well-defined landmarks. Pseudo-
landmarks are points along the boundaries which are typically arranged to be uniformly
spaced between well-defined landmarks.

In another approach to handling the correspondence problem the entire images in
the training set are automatically registered using the non-linear registration technique
of your choice [5, 107, 128, 138]. This in a sense gives you correspondences for every
pixel/voxel in the registered images. However, often the images contain other things than
the object that is to be modeled and parts of the object may be occluded or undetectable
due to poor image quality, which can be problematic for this approach. Also, in many
cases expert knowledge is needed for segmentation of the object outline and/or corre-
spondence establishment, which can also be a problem for the registration approach. The
image registration approach is not used in this thesis.

To illustrate the importance of establishing good correspondences see Figure 2.1 and
Figure 2.2. Both these models are build from the same training set but with different
correspondences. Bad correspondences result in false modes of variation which means
both that the model cannot represent all legal instances from the shape class in a good
way and that the model can produce instances that are illegal instances that do not belong
to the shape class.

Instead of explicitly choosing a set of landmarks to represent the shape for further
analysis, the parameterization of the object can be chosen so that correspondence is estab-
lished. In this way, in a sense, every point on the object becomes a landmark. The points
with the same parameter values on different objects should then be in correspondence
across the whole training set. In this way, it is possible to keep the continuous shape
further in the analysis so that the model conceptually handles continuous shapes and the
sample points are introduced later for numerical computations only. To perform numer-
ical calculations, in practice the shapes are sampled at a number of corresponding points.
Temporarily during calculations then, these sample points function as landmarks, but
unlike a standard set of landmarks, this set of sample points can be different at different
calculation steps, as sampling strategies are free to differ as long as a good approximation
of the shape is achieved. However, whether we have selected explicit landmarks or param-
eterizations, for analysis of shape through numerical calculations, the geometric object in
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Mode 1 Mode 2 Mode 3

-3 std

+3 std

Figure 2.1: Shape model of a hand. Mean-shape ±3 standard deviations of the first
three modes of variation of a model built from arc-length parameterization (equidistant
landmarks along the curve). The poor correspondence results in illegal instances of the
shape class.

Mode 1 Mode 2 Mode 3

-3 std

+3 std

Figure 2.2: Shape model of a hand. Mean-shape ±3 standard deviations of the first
three modes of variation of a model built from optimized correspondences via optimized
parameterizations.
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R
nd is represented by a set of np landmarks or temporary sample points, each of which

is a point in Rnd . Typically, nd = 2 for planar shapes (most typically simple curves) or
nd = 3 for shapes in space (typically closed surfaces) or maybe nd = 4 for 3 dimensions
of space and one of time. We will sometimes refer to these points as landmarks even
though in practice we are typically working with temporary samples from parameterized
objects.

The shape is typically represented as a vector by stacking the coordinates of the land-
marks or sample points in a suitable order. This ndnp × 1 vector x, where npis the
number of landmarks and nd is the dimension of each landmark, is called a shape vector.
In two dimensions, it is often practical to use a representation in the complex plane, a
landmark l can be represented by a complex number and x is a vector in Cnp .

A training set of objects {X1, . . . ,Xns
}, with established correspondences, can now

be represented as a matrix X0 = [x1, . . . ,xns
], where xi is the shape vector correspond-

ing to the object Xi (i = 1, . . . , ns).
There are several other alternatives for representing the shape, while still being able

to analyze the shape variation by performing a principal component analysis [77, 89].
One interesting example is to represent shapes with signed distance functions as used in
level set techniques and doing PCA on column stacked samples of those functions rather
than on coordinates of corresponding points on the object outlines [90]. This seems to
avoid the correspondence problem but the resulting models may be similar to models
built from poor correspondences rather than carefully optimized ones. The strengths and
weaknesses of these different approaches are not the topic of this thesis and the most
common approach described above will be used throughout.

2.3 Alignment and Mean of the Training Set

Before calculating mean-shapes and doing other types of analysis needed for building the
model, the shapes in the training set are usually aligned in some way to remove variation
due to translation, scale and rotation, since this is not variation in shape. Methods for
alignment are many but the most common approach in this context is so called Procrustes
analysis [28]. This is what will used for the most part of this thesis but some alternatives
will also be considered.

2.3.1 Calculating the Mean Shape

For modeling the shape class it is necessary to know the mean-shape. The models will
represent shapes as the deviation from the mean-shape. There are many ways to define
the mean-shape and this is an area of research in itself. Typically, before estimating the
final mean shape, the training set must be aligned in some way. This is discussed below.
However, approximate mean-shapes are sometimes used during alignment. In this thesis,
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for the most part, the mean shape will be straightforwardly calculated by

x̄ =
1

ns

ns
∑

i=1

xi , (2.2)

where ns is the number of shapes in the set.

2.3.2 Procrustes Analysis

The Procrustes distance is a least-squares measure of the difference in shape between ge-
ometric objects [55]. Procrustes alignment gives this distance by minimizing a Euclidean
distance between shapes over similarity transforms. Here follows a brief review. For more
on this, see for example [38, 56, 79, 122].

Assume that one shape xi = [l1i ; . . . ; l
np

i ] is to be aligned to another shape xj =
[l1j ; . . . ; l

np

j ], where we here think of the shapes as vectors with landmarks as elements.
The similarity transform S used to transform xi operates on each landmark lki separately:

S(xi) =







S(l1i )
...

S(l
np

i )






. (2.3)

Now choose S so that the squared Euclidean distance between S(xi) and xj is min-
imized, i.e. solve

min
S
||xj − S(xi)||2 , (2.4)

where

xj − S(xi) =







l1j
...

l
np

j






− S













l1i
...

l
np

i












=







l1j − S(l1i )
...

l
np

j − S(l
np

i )






. (2.5)

When S is chosen optimally S(xi) is called the full Procrustes fit xi
P .

In 2D, simplifications can be made by working with the 2D landmarks as points
in the complex plane. This means that xi ∈ Cnp and xj ∈ Cnp . The similarity
transformation S in this context is simply S(·) = u + v·, u, v ∈ C. Transformation of
the landmarks then takes the form S(l) = u + vl and hence

S(xi) = u1np
+ vxi , (2.6)

where 1np
is a np×1 vector in Cnp with all elements equal to 1. The minimization then

takes the form

min
S
||xj − S(xi)||2 = min

u,v∈C

||xj − u1np
− vxi||2 , (2.7)
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which can be calculated as

min
u,v∈C

(xj − u1np
− vxi)

∗(xj − u1np
− vxi) , (2.8)

where (·)∗ denotes the transpose of the complex conjugate of (·).

Theorem 2.3.1. (Full Procrustes fit in 2D) If the shape vectors xi and xj with landmarks
in the complex plane have first been centered (transposed to have their mean at the origin) so
that 1T

np
xi = 0 and 1T

np
xj = 0, then the full Procrustes fit û + v̂xi has the parameters

û = 0 , (2.9)

v̂ = x∗i xj/(x∗i xi) . (2.10)

Proof. The proof can be found for example in [41].

For the general case with landmarks of any dimension we can not use the representa-
tion in the complex plane, but still Umeyama [142] has prooved explicit formulas for the
Procrustes alignment.

Theorem 2.3.2. (Full Procrustes fit) Assume xi = [l1i ; . . . ; l
np

i ] and xj = [l1j ; . . . ; l
np

j ]
are shape vectors with landmarks in nd dimensions each represented as a nd × 1 vector. Let

µi =
1

np

np
∑

k=1

lki , (2.11)

µj =
1

np

np
∑

k=1

lkj , (2.12)

σ2 =
1

np

np
∑

k=1

||lki − µi||2 , (2.13)

Σ =
1

np

np
∑

k=1

(lkj − µj)(l
k
i − µi)

T (2.14)

and perform a singular value decomposition of Σ to get Σ = UDVT . Now let

A =

{

I if det(Σ) ≥ 0
diag(1, 1, . . . , 1,−1) if det(Σ) < 0

(2.15)

and let B = A unless rank(Σ) = nd − 1 in which case

B =

{

I if det(U)det(V) = 1
diag(1, 1, . . . , 1,−1) if det(U)det(V) = −1

. (2.16)
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Finally we can state that if rank(Σ) ≥ nd − 1 the full Prucrustes fit xP
i of xi onto xj is

xP
i = cRxi + t , (2.17)

where

c =
1

σ2
tr(DA) , (2.18)

R = UBVT and (2.19)

t = µj − cRµi . (2.20)

Proof. The proof can be found in [142].

For aligning the whole training set (often referred to as Generalized Procrustes Anal-
ysis), usually one of a number of alternative iterative procedures is used, see for example
[28, 56, 132]. The steps followed in this thesis are described in the box below.

input : The original training set: xi, i = 1,. . . ,ns

output: The Procrustes aligned training set

Translate the shapes in the training set so that the mean coordinates of each1

shape are at the origin
Chose one example as initial guess of the mean shape, x̄, and scale it so that2

‖x̄‖ = 1.
Record the first estimate as x̄0 to define the default reference frame.3

repeat4

Align each of the shapes in the set to the estimated mean shape.5

Estimate a new mean shape x̄.6

Normalize the new mean shape by aligning it with x̄0 and scaling it so that7

‖x̄‖ = 1.
until convergence8

Algorithm 1: Iterative Procrustes alignment of training set

In 2D it is possible to avoid the iterative procedure.

Theorem 2.3.3. (2D Procrustes mean shape) Assume the shapes are sampled in a set of
corresponding points and these points are represented as complex numbers. Each shape xi is
then a column of complex numbers. Assume further that the shapes are centered (translated so
they have their mean at the origin) and normalized so that they have euclidean size one. The
mean shape x̄ can then be calculated without iteration as the eigenvector corresponding to the
largest eigenvalue of the complex sum of squares and products matrix

S =

ns
∑

i=1

xix
∗
i . (2.21)
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Proof. The proof can be found for example in chapter 3 of [38].

Continuing with the 2D case with landmarks as complex numbers and using matrix
notation with the shapes as columns in the complex matrix X0, the mean-shape x̄ is
the eigenvector corresponding to the largest eigenvalue of X0X

∗
0. Often the number of

sample points is much larger than the number of shapes and then it is better to instead
calculate the eigenvector corresponding to the largest eigenvalue of X∗

0X0. Call this
eigenvector x̄0. We then get x̄ = X0x̄0/||X0x̄0||.

Note that rotations of the mean shape calculated as the eigenvector in this way are
also solutions. For visualization it is often desirable to not introduce a rotation like this.
Therefore it is common practice to rotate the calculated mean shape before using it. This
can either be done by rotating it to align it to one of the shapes, or some mean of the
rotations to all the shapes can be used. This alignment of the mean is also done in the
iterative algorithm above to prevent rotational drift.

There is also the possibility of calculating the mean-shape without iteration in higher
dimensions (i.e. 3 in practice) using multidimensional scaling methods [80]. However,
these methods may not give the correct mean-shape in the sense that the result may not
only be rotated (as is the case for the 2D method above) but also reflected. Because of this,
and the fact that the iterative methods usually converge quickly, these multidimensional
scaling methods are not used in this thesis (and rarely in shape analysis at all).

2.3.3 Discussion on Procrustes Alignment

There are some weaknesses of this alignment approach. One problem is outliers. If one
of the landmarks is very wrong for some reason this can destroy the alignment. Another
thing is that the error is scale dependent, so without the normalisation of the mean in
every step in the alignment of a set everything would converge to the origin. However,
with the normalisation, this is not a problem. Also, if some landmark is missing in one
or more of the shapes the standard procedure does not work. Finally, the alignment
produced may be neither the one a human would think natural nor the one that isolates
a mode of variation in the best way. There have been attempts to handle these problems
and some methods will be presented later in this thesis.

2.3.4 Alignment-introduced Nonlinearities

During alignment, if there are large variations in shape, non-linearities may be intro-
duced, e.g. as an effect of scaling. This undesired scaling effect can to some extent be
countered by projection to the tangent space. The tangent space is the hyperplane of
all vectors that are orthogonal to the mean-shape x̄ and that pass through x̄, i.e. all the
vectors x such that (x̄− x)T x̄ = 0, or x̄Tx = 1, if ||x̄||2 = 1 [28]. The mean-shape is
the origin in the tangent space. However, when there are such large variations in shape,
most non-linearities will probably not be artificially caused in this way (but instead will
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be an important aspect of the shape variation) and these variations will not become linear
by projection to the tangent space and then non-linear shape models (not the topic of
this thesis) are needed. It may be noted in this context that when there are only relatively
small shape variations the tangent space can be used e.g. in inference hypothesis tests [38].
For the PCA (on such data with relatively small shape variation), the difference between
projecting to the tangent space and performing the PCA on the Procrustes residuals is
typically very small [38].

2.4 Dimensionality Reduction

2.4.1 Introduction

Let a training set of ns aligned shapes in nd dimensions be given. Each shape is sampled
in np points and the shapes are then represented by vectors xi (i = 1, . . . , ns). Each
shape vector can also be thought of as a sample from a probability distribution in npnd-
dimensional space. By estimating this distribution from the training set, new samples can
then be generated from the distribution and they should then belong to the same shape
class. Also, a given shape can be analyzed be looking at the likelihood for its shape under
the assumption of its belonging to a certain shape class, i.e. being a sample from a certain
distribution.

The shape model will be denoted by M and a shape generated by the model will be
denoted by M(b), where b is the parameter vector that produces a certain shape x.

Since npnd can often be very large, some form of dimensionality reduction is useful,
so that b is of significantly smaller dimension than x.

The training set is viewed as a set of points in npnd dimensional space. The key now
is that for most shape classes this point cloud is approximately contained in a subspace
of significantly lower dimension. This has also been stated as this subspace having a low
fractal dimension [120].

It would be advantageous to describe the shapes with coordinates in this subspace
instead. This is what dimensionality reduction does.

Principal Component analysis (PCA) is the most commonly used technique for di-
mensionality reduction of the shape space and it is an effective approach. Several other
methods have however been proposed, for example Mixture Models [27], sparse-PCA
[121], kernel-PCA [140], Independent Component Analysis (ICA) [144], Orthomax
[126], Factor Analysis [93], Maximum Autocorrelation Factors (MAF) [40, 87], Min-
imum Noise Fraction (MNF) [59], Multi-layer perceptron point distribution models
(MLPPDM) [124] and manifold learning techniques like ISOMAP [85] and Locally
Linear Embedding (LLE) [106].

In this thesis the focus is not on the choice of dimensionality reduction method and
therefore PCA will be used throughout. The topics in this thesis are equally relevant when
using some other method.
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2.4.2 PCA

PCA (also known as Karhunen-Loève transform or Hotelling transform) was introduced
in the beginning of the 20th century [69, 102]. The technique computes a new basis
for the shape space such that this new basis is adapted to the points in the training set.
The first basis vector is chosen as the direction of maximum variance in the point cloud
and each of the following basis vectors are in turn chosen as directions with maximum
variance with the added constraint that the new basis vectors are orthogonal to the ones
already chosen. The points are then described with their positions along these axes. Ap-
proximation consists of choosing a small number of axis. An attractive feature of PCA
is that the linear approximating reconstruction of the data is optimal, i.e. the error is
minimal given linear reconstruction with a certain number of modes.

The principal components axes are typically calculated by performing a singular value
decomposition (SVD) of the tangent space coordinates or the Procrustes residuals of the
shapes in the training set. Very briefly, any M ×N matrix A can be factored as

A = USVT =

N
∑

i=1

siUiV
T
i , (2.22)

where U = [U1, . . . ,UM ] is an M × M orthogonal matrix with the columns Ui,
V = [V1, . . . ,VN ] is an N × N orthogonal matrix with the columns Viand S is an
M ×N diagonal matrix with non-negative diagonal elements (the singular values). This
is the singular value decomposition of A. The singular values si (i = 1, . . . , N) are the
positive square roots of the eigenvalues of the matrix ATA and can also be interpreted as
the standard deviations of the data along the principal component axes.

Let

X = [x1 − x̄, . . . ,xns
− x̄] (2.23)

be an ndnp × ns matrix containing the vectors describing the tangent space coordinates
or the deviations of the shapes xi (i = 1, . . . , ns) from the the mean shape x̄, i.e. the
Procrustes residuals (or alternatively let X contain the tangent space coordinates).

The maximum likelihood approximation of the covariance matrix of the shapes is
then

C =
1

ns − 1
XXT . (2.24)

The principal components of X can be found by solving the eigenvector problem

CΦ = ΛΦ , (2.25)

where Φ is an orthogonal matrix with the eigenvectors as columns and Λ is a diagonal
matrix containing the corresponding eigenvalues.
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This is solved by an SVD-factorization of X as

X = USVT , (2.26)

where U and V are (ndnp× ndnp) and (ns × ns) orthogonal matrices respectively and
S is a (ndnp × ns) diagonal matrix containing the singular values of X.

This gives

XXT = USVTVSTUT = USST UT = UDUT , (2.27)

where D is a diagonal matrix with the first elements of the diagonal being the squares of
the singular values. This in turn gives

1

ns − 1
XXT U =

1

ns − 1
UD . (2.28)

From this it is clear that U is an orthogonal matrix with eigenvectors of C =
1

ns−1XXT as columns and 1
ns−1D is the diagonal matrix with the corresponding eigen-

values.
Note that, in many practical cases, ndnp is much larger than ns and then there may

be a more efficient way of doing these computations by looking at 1
ns−1X

T X instead

of 1
ns−1XXT [28]. Whether this needs to be done depends among other things on the

implementation of the SVD.

2.5 Shape Model

Define Φ =
[

Φ1, . . . ,Φnm

]

, where Φi = Ui (column number i) and nm ≤ ns − 1.
The columns of Φ are the nm eigenvectors of the shape covariance matrix C correspond-
ing to the nm largest eigenvalues. These vectors are the basis that will be used to describe
the shapes in the shape class. They will be referred to as modes of variation or shape
modes. Remember that they are used for describing the deviation from the mean shape
x̄, so if the modeling has been successful, any shape x from the shape class can now be
approximated well as x′ and be described as

x ≈ x′ = x̄ + Φb = x̄ +

nm
∑

j=1

Φjb
j , (2.29)

where b is the parameter vector for describing the shape using the model. If the corre-
spondences of the points in X were correct and the variations in the shape class are not
too chaotic the shape modes should capture relevant and reasonable shape variations, see
Figure 2.2.

By choosing to include only the most important principal components the dimen-
sionality can be reduced further. The key is that the principal components are ordered so
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that the first component explains the largest part of the variation in the training set and
so on. Since the principal components are orthogonal, the total variance in the training
set is the sum of the variances along the principal components and these are equal to
the eigenvalues of the covariance matrix described above or equivalently the squares of
the singular values in the SVD. One common approach is to include enough principal
components to cover a certain fraction of the total variance.

Let λi (i = 1, . . . , N , λi ≥ λi+1) be the N nonzero eigenvalues of the covariance
matrix C of the training data (2.24) and let Φi be the corresponding eigenvectors. The
variance of the data in the direction of the principal component Φi is equal to the eigen-
value λi. The total variance of the model is VTot =

∑N
i=1 λi. If p is the fraction of the

total variance that should be explained by the model, the number of modes nm to use
can be decided by choosing nm as small as possible but such that

nm
∑

i=1

λi ≥ p VTot . (2.30)

Another intuitive approach is to choose the number of modes so that all shapes in
the training set can be approximated so that all landmarks are within a certain distance
of the original shape. There are other methods for automatic model selection that can be
used, but the details concerning the choice of the number of modes is not the topic of
this thesis.

Assuming a model M(b) = x̄ + Φb, new shapes are generated by varying b and a
shape x is approximated by x′ = x̄ + Φb. Put Φb = x′ − x̄ and multiply with ΦT

from the left to get

b = ΦT (x′ − x̄) . (2.31)

This formula is exact and if we replace x′ with x we get the formula for calculating
the parameters for optimal approximation of x,

b = ΦT (x− x̄) . (2.32)

The columns of the matrix Φ are the nm modes of shape variation and span a linear
subspace in shape space. The approximation consists of orthogonal projection onto this
linear subspace.

Another use of this is analysis of shapes. The probability distribution of the b-
parameters can be modeled for example as a Gaussian using the training set. The proba-
bility of a new shape can then be estimated.

2.6 Measuring Shape Model Quality

Traditionally, three properties have been used to measure model quality. First of all, the
model should be able to represent the shape class. A model that is able to represent any
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instance of the class is said to be general. Secondly, the model should not be able to rep-
resent instances not belonging to the shape class. A model which only produces instances
of the correct shape class for reasonable parameter values is called specific. Thirdly, the
ideal model is also compact in the sense that it needs few parameters with small values to
represent all shapes in the shape class.

Apart from these three properties it is also common to evaluate correspondences, both
in the training set and on shapes produced by the model, by ploting the landmarks on
the shapes and visually evaluating the correspondences.

When calculating these quality measures, any norm could be used. In this thesis, the

norm used is ||f(x)|| =
√

∫

|f(x)|2dx (or ||f(x)|| =
√
∑ |f(x)|2 for discrete data),

i.e. L2-norm (or the l2 Euclidean norm for discrete data), unless otherwise stated. As
we will see, many of the problems with the standard measures are related to the fact that
they measure similarity between shapes using a norm of this type. If there was a general
measure that could pick out relevant information and determine shape similarity so that
the distance between shapes reflect the way they differ and not only the distance using
the Lp-norm and if this measure was invariant to the parameterizations and did not need
any ground truth information, many of the problems with the standard measures might
be solved. However, such a measure remains to be discovered.

2.6.1 Generality

Qualitatively, by generality is meant that the model should be able to generalize to for-
merly unseen shapes in the sense that the model should be able to describe all shapes of
the class and not only those of the training set. Quantitatively, this is measured by leave
one out tests, where a model is built using all but one of the shapes in the training set.
The left out shape is then approximated using the model. In [31] the error for one left
out shape is the squared norm of the difference between the true left out shape and the
approximation produced by the model. Generality is then measured as the mean over all
ns left out shapes:

G(nm) =
1

ns

ns
∑

j=1

||xj − x′j(nm)||2 , (2.33)

where xj is the left out shape and x′j(nm) is the approximation produced by the model
using nm modes.

2.6.2 Specificity

It is in general desirable that a shape model is specific. Qualitatively, a specific model
can only represent shapes from the shape class for valid parameter values. This has been
measured by generating a large number (N ) of shapes by picking random parameter
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values for the model. Each sample shape is then compared to the most similar shape in
the training set. A quantitative measure for this [31] is:

S(nm) =
1

N

N
∑

j=1

||yj − y′j(nm)||2 , (2.34)

where y′j are shape examples generated by the model, yj is the nearest member of the
training set to y′j and nm is the number of modes used to create the samples. Formally,

yj = arg inf
xj∈{x1,...,xns}

||xj − y′j(nm)||2 , (2.35)

where {x1, . . . ,xns
} is the training set.

In [111] this is interpreted as an approximation of

S(nm) =

∫

Ω

p(y′j)||yj − y′j(nm)||dy′j , (2.36)

where p(y′j) is the distribution function describing the probability that the model gener-
ates the shape y′j and Ω is the shape space.

A more general definition is

S(nm) =

∫

Ω

||yj − y′j(nm)||2dµp(y
′
j) , (2.37)

where µp is the probability measure for the shapes y′j .
In [141] specificity is interpreted as a graph based estimator of cross-entropy and KL

divergence. However in order to do this estimation a number of limits and assumptions
are needed, which means that this estimation is usually not valid in practice.

2.6.3 Compactness

Qualitatively, a compact model is a model that represents all shapes of the class with as
little variance as possible in the shape variation modes and preferably with few modes. A
quantitative measure that tries to capture this is the sum of variances of the model [31],

C(nm) =

nm
∑

j=1

λj , (2.38)

where λj is the variance in shape mode j and C(nm) is the compactness using nm

number of modes.
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2.6.4 Comparing Quality of Models

For compactness it is common to compare the total variance, i.e. to let nm = ns − 1,
but often we do not want to include all the modes and then this analysis may not be
sufficient. It is common to plot the measures over the number of modes used in the
model. If the curve of the error-measure over number of modes for one model is below
or equal to the curve for another model for all nm and lower for some nm, the model
represented by the lower curve is often said to be more general or specific depending on
the measured quantity [31]. Sometimes, only the total error is considered. A common
situation when comparing the quality of two models using the measures described above
is that the plotted curves of two models cross each other. It can therefore be hard to
choose, which model is actually better.

2.6.5 Discussion

These standard measures have some severe weaknesses which will be analyzed both theo-
retically and experimentally in this thesis. Also, an alternative model quality measure will
be presented.

2.7 Segmentation Using an Active Shape Model

Different versions of segmentation algorithms have been used with Active Shape Models.
Since this thesis focuses mostly on the model building phase, here only the standard ver-
sion is applied. This is an iterative approach. After an initial guess the steps in algorithm 2
are iterated.

input : The image and the shape model
output: Optimized model parameters

repeat1

Search in the direction of the normal from every landmark to find a2

suitable point to place the landmark in.
Update the parameters for translation, rotation, scale and shape modes to3

make the best fit to the new points.
until convergence4

Algorithm 2: Active Shape Model Segmentation

2.7.1 Getting the Initial Guess

In order to obtain a fast and robust segmentation it is important to have a good initial
estimation of the position and orientation of the shape. In the initial guess the shape
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is assumed to have the mean shape. This makes it necessary to find values of seven
parameters to make a suitable initial guess in three dimensions (three for translation, three
for rotation and one for scale). The method to find the initial guess is usually application
dependent.

2.7.2 Multi-Resolution Approach for Active Shape Models

To improve the robustness and the speed of the algorithm a multi-resolution approach is
used. The idea of multi-resolution is to first search in a coarser image and then change
to a more high resolution image when the search in the first image is not expected to
improve. This improves the robustness because the amount of noise is less at the coarse
level and therefore it is easier to find a way to the right object. The high resolution images
are then used to find small structures. The speed increases because there is less data to
handle at the coarse levels.

2.7.3 Finding Suitable Points

At every landmark l in the shape model, the variations of the image appearance is mod-
eled. This model of appearance is later used when searching in the direction of the normal
of the landmark to locate its new position.

Modeling Intensity Profiles

In order to model the appearance from the training set, image intensities are sampled at
points along the normal of the surface from the landmark in both directions, say in 2k+1
equidistant points. These intensity values can have a large variation of intensity over the
training set. To minimize this effect the derivative of the intensity along the normal
is used. The sampled derivatives are put in a vector gi. These values are then further
normalized by dividing with the sum of absolute values of the vector. The resulting
vector is sometimes called the profile for the landmark. This is repeated for all surfaces
in the training set and gives a set of profiles {gi} for each landmark in the model. These
are assumed to be Gaussian distributed with the mean ḡ and the covariance matrix Sg ,
calculated from {gi}. This results in a statistical model of the grey level profile at each
landmark.

Through the process of manual marking of the objects in the training images and
the following surface estimation, small errors in the surface position will inevitably be
introduced. This will make the modeled surface not exactly coincide with the true object
surface. Because of this, the profiles will be translated a bit which close to image edges will
be very noticeable in the image intensities and as a consequence the means and variances
of the profiles will be of low quality and the benefit of the profile model will be small. To
reduce these problems an edge detection a short distance along the normal to the surface
is performed. If the edge detection finds a suitable edge the landmarks are moved to
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that position before modeling the image intensity profiles. The edge detection is made
by fitting cubic splines to the sampled values in the profile. With aid of the new points
that are calculated the edge can be located with sub pixel precision. The edge detection
searches for positions where the second derivative is zero. If such a point also has a
minimum in the first derivative the point is considered an edge. The detection is made
in two steps. First it is done at a coarse level and in a second step the detection is made at
the level with the highest resolution.

Getting New Points

When a new point is to be located, while searching in the direction of the normal during
segmentation, the quality of the fit is measured by the Mahalanobis distances given by

f(gs) = (gs − ḡ)T S−1
g (gs − ḡ), (2.39)

where gs is the sample made around the new point candidate. This value is related
to the probability that gs is drawn from the model. Minimizing f(gs) is the same as
maximizing the probability that gs comes from the distribution and therefore that the
point is at the sought-after edge.

To speed up the algorithm only a few of the landmarks are used at the coarse levels.
One quarter of the landmarks were kept for every step to a coarser level.

2.7.4 Updating Parameters

When new landmark positions are located the next step is to update the parameters for
translation, scale, rotation and shape modes to best fit the new points. This is done by an
iterative process. The aim is to minimize

‖x̃− Tt,s,θ(x̄ + Φb)‖2, (2.40)

where x̃ is the new points and T is a similarity transformation. The iterative approach as
presented by Cootes et al. [28] is given in algorithm 3.

In the segmentation only shapes relatively similar to the shapes in the training set
are of interest. Therefore constraints are applied to the b parameters. Usually those
constraints are |bi| ≤ 3

√
σi where σi is the eigenvalue corresponding to shape mode i.
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input : The Active Shape Model
output: The b-parameters

Set the shape parameters b initially to zero.1

repeat2

Generate the shape given by the present b.3

Find the similarity transform that best fits the shape to the new points.4

Calculate new parameters b.5

Apply constraints on b.6

until convergence7

Algorithm 3: Update parameters
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Chapter 3

Shape Model Application

For one who has conquered the mind, his mind is the best of friends; but for one
who has failed to do so, his mind will be the greatest enemy.

Bhagavad Gita

This chapter presents a complete system for building active shape models and using them
for segmentation of medical data and for possible further analysis of that data. Two
different types of medical image data are handled. One application is segmentation of
the femur in the knee in MR-images for injury analysis and surgery planning. Another
application is the segmentation of the brain surface in SPECT images for blood flow
analysis and for linkage to other examination data for the purpose of dementia assessment.

For both applications the overall procedure is the same. Several data sets were first
segmented manually with the help of medical experts. The resulting structures were rep-
resented by unorganized point clouds. Using level set methods, surfaces were fitted to
these point clouds. The iterative closest point (ICP) algorithm was then applied to estab-
lish correspondences between the different surfaces. Surfaces and correspondences were
then used to build a three dimensional statistical shape model using Principal Component
Analysis (PCA). The resulting three dimensional Active Shape Models were then used to
automatically segment the relevant structures in subsequent data sets for further analysis.

3.1 Introduction

Hospitals today produce large amounts of diagnostic images such as Magnetic Resonance
Imaging (MRI), Single Photon Emission Computed Tomography (SPECT), Computed
Tomography (CT) and digital mammography. These technologies are a crucial tool in
diagnosis and treatment planning. The growing number of images in the medical field
have increased the need for computerized tools as a help to find anatomical structures
and to make decision support systems. Today almost all analysis of images is still done
by manual inspection by the doctors even though most images are digital. Even for an
experienced doctor the diagnosis can be hard to state and the process is often time con-
suming, especially since most images are three dimensional images, which are difficult to
view. Model based approaches like Active Shape Models are often used for segmentation
since they can handle noisy data, which is often the case with medical images.

Here a system for this will be presented.
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3.2 Shape Reconstruction from Point Clouds

In the images in the training set the shapes are manually marked producing a large number
of points located at the surface of the object. A typical point cloud for a shape in the femur
data set can be seen in Figure 3.1.

Figure 3.1: Unorganized point cloud of the femur.

From this unorganized point cloud the aim is to get a triangulation of the surface
that the points are (approximately) located at. To handle the noisy representation of the
shape at this point, a level set approach is used for this surface fitting problem in order to
reconstruct the shape. Since this thesis is not about level set methods this is not described
in detail here. For descriptions of these methods, see [1, 118, 123, 150, 151]. The idea
of the level set method is to represent the surface as an implicit distance function which
is zero at the surface and negative inside. The function is then updated to solve a PDE
describing the solution of an optimization problem that is constructed in such a way that
it will hopefully have a minimum at the true surface. By updating the function iteratively
it will fit better and better to the surface of the object.

An example of the result can be seen in Figure 3.2.

3.3 Establishing Correspondences

As we saw in the previous chapter, it is of great importance that during training of an
Active Shape Model a dense correspondence is established across the training set. This is
the most difficult part and often the most important for a good result of the upcoming
segmentation.

The traditional approach to solve this is to manually place landmarks of correspon-
dence at the surface. Another approach for finding correspondence between shapes is
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Figure 3.2: The surface fitted to an unorganized point cloud. It is hard to see the points
inside the femur and this makes the surface look like it lies inside the points.

to achieve corresponding parameterization of the shapes through optimization of some
objective function.

In this chapter the correspondence of points across the training set is established by
the Iterative Closest Point (ICP) algorithm [12]. Using the ICP algorithm corresponding
triangulations of the structures are achieved.

The ICP algorithm matches two surfaces. It uses one as source surface and one as
target. The triangulation of the source is kept fixed and the aim is to get an optimal
corresponding triangulation on the target surface. To do this an iterative process is applied
with the steps described in algorithm 4.

When convergence is reached the closest points on the target surface are calculated
one last time and these points give the new vertices in the triangulation of the target
surface.

This algorithm gives two surfaces with corresponding triangulation and each point
on the surface can be looked at as a landmark with a corresponding landmark at the
other surface. In practice the vertexes can be picked as corresponding sample points. If
the source surface is fixed (typically letting the source be the mean shape) and the target
surface is interchanged it is possible to find corresponding landmarks in a larger training
set. Then a new mean-shape can be calculated and then new correspondences can be
calculated, and so on till convergence.

3.4 Building the Shape Model

Next, the shapes in the training set are aligned as discussed in Section 2.3.2. Now the
model can be built.
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input : The training set of surfaces
output: The corresponding point sets xi, i = 1,. . . ,ns on the surfaces

repeat1

For each vertex at the source surface find the closest point at the target2

surface, typically using Euclidean distance.
Compute the transformation from the source to the new points, located in3

the previous step, that minimizes the mean square error between the two
point clouds. Typically the set of allowed transformations are similarity
transformations (translation, scale and rotation) or rigid (translation and
rotation) transformations.
Apply the transformation4

until the improvement of the error between two iterations is less than a threshold5

value τ > 0.
Algorithm 4: Iterative Closest Point

Here an active shape model is used, as explained in Section 2.5, so that new shapes
can be expressed by the linear model x = x̄ + Φb. With this approach it is possible to
constrain the parameters in b so the new shape always will be accurate.

The model is generated by using Principal Component Analysis (PCA) on the covari-
ance matrix of the training shapes, see Section 2.4.

Cootes et al. propose in [28] a constraint of the bi parameters of ±3λi, where λi are
the square roots of the eigenvalues of the covariance matrix, to ensure that any new shape
is similar to the shapes in the training set. This method will be used here.

Another way to constrain the parameters in the shape model would be to look at the
probability that the new shape is from the training set and constrain the shape into a
reasonable interval.

3.5 Experiments

The algorithm was used on two data sets, MR images of the knee and SPECT images of
the brain.

3.5.1 Modeling Comments

If for example the left knees were mirrored in the left-right direction of the patient it was
possible to use both left and right knees at the same time to build the model of knees.

A source to make the result worse was that the images did not cover exactly the same
area of the patient in all images. Sometimes that made the surfaces cover a larger part
of the femur in the knee images and in the brain images the whole brain was not always
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covered in the image. This resulted in some loss of shape information quality at the top
of the femur and at the bottom of the brain.

3.5.2 Segmentation

Results for MR Images of the Knee

Generally, the femur was well segmented. When the initial guess was not good enough
the model was not able to find the way to the femur. Instead other edges were located
that were of no interest (sometimes the edge of the image).

If the initial guess was good enough the search algorithm found the right edges almost
every time, in the presence of many local structures, but in some parts of the images the
result was not as good. During the segmentation only the sagittal images were used and if
the result was visually examined the result looked better in the sagittal view. In Figure 3.3
the result from a segmentation is viewed.

Figure 3.3: An example of the result of the segmentation of the femur in the knee. Note
that the image is in 3D and the segmentation was of a surface in 3D, but for visualization
2D slices in two different directions are shown. The shape information in the model
is not as good in the upper part as in the lower part, since the coverage of the training
images differ. Since it is the shape and segmentation of the lower part that is of most
interest anyway, this is not a big problem.
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The continuation of this project includes several elements. More parts of the knee are
planned to be modeled and linked to the femur model. Strategies for improving the qual-
ity of the segmentations further, for example by incorporating level set techniques, should
be examined. Finally, the models are to be used both for analyzing shape differences and
their link to the risk of later injury and also for planning surgery before opening up the
knee.

Results for SPECT Images of the Brain

When the segmentation was done on the SPECT images a very good result was usually
obtained. When the algorithm was used on a number of brains which were also manually
segmented by an expert and the result was compared it was hard to tell which segmenta-
tion was the choice of the computer and which was the experts. In Figure 3.4 the result
from a segmentation is viewed. In this example the whole brain is visible, but the algo-
rithm was robust in the sense that it looks the same also when for example the bottom of
the brain is cut off. The noise outside the brain does not show up very well in the image,
but there are still edges there, only with smaller intensity values.

Figure 3.4: The result of the segmentation on a SPECT image of the brain. Note that
the image is in 3D and the segmentation was of a surface in 3D, but for visualization 2D
slices in three different directions are shown.

This project was continued in the following way. SPECT measures relative blood flow
in the whole brain, i.e. we do not get absolute values of blood flow. Since global reduction
of blood flow is also an interesting parameter in dementia assessment absolute values of
blood flow would be valuable. There is another technique for measuring blood flow in
the cortex, the brain surface layer, based on inhalation of Xenon, which measures absolute
blood flow using detectors placed on the skull. In this project the long term plan is to link
these two examinations to get the best of both worlds, absolute blood flow in the whole
brain. In order to do this a number of patients underwent both examinations. After the
Xe examination radioactive markers for the position of the Xe detectors were placed on
the skull. During the SPECT examination these markers then show up in the images
along with the brain. After segmentation of the brain the position of these markers,
i.e. the position of the Xe detectors, in relation to the brain model were then registered.
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After doing this for a set of patients it is then possible to get a model of where on the
brain these detectors statistically speaking measure the blood flow. On later patients the
time and work demanding process with the markers are then no longer necessary since
after segmenting the brain in the SPECT image the positions of the Xe detectors can be
estimated fairly well using the model. This part of the project worked well. Next the
relationship between the measured values using the Xe detectors and the intensities in the
SPECT images is to be analyzed (on the set of patients where the marker examinations
have been performed so that we have the true detector positions) in order to complete
the link. Unfortunately, during the time for this thesis work, not enough patient were
examined successfully with the special marker procedure to get statistical significance for
this link between the different values of blood flow. This remains to be done when more
data is available.

3.6 Summary and Conclusions

In this chapter a complete system for segmentation of three dimensional medical images
with active shape models is presented. The algorithm has been tested at MR images of
knees and SPECT images of the brain. The results are promising, especially in the SPECT
images. In the MR images it is harder to find a good initial guess which makes the result
less robust and not as good as in the SPECT images. But if the initial guess is good the
segmentation algorithm usually gives a good result.
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Chapter 4

Segmentation using Integral
Approximation

An error doesn’t become a mistake until you refuse to correct it.

Orlando A. Battista

Active shape segmentation is a promising technique, but the standard algorithm is
sensitive to poor image conditions with many local minima. An alternative approach is
to use a generic optimization of the parameters for translation, rotation, scale and shape,
using some cost-function to evaluate the segmentation. This has been done by calculating
a cost for each landmark and summing up the results. This leads to un-proportional
concern for areas with many landmarks. By seeing the cost-function as an integral of a
cost measure over the surface in 3D or curve in 2D and then approximating this integral it
becomes clear how to deal with this problem. In this chapter it is shown how this is done
and also experiments are presented to confirm the value of the addition to the algorithm.

4.1 Introduction

Image analysis is becoming common in many fields, for example in analyzing medical
data when diagnosing patients. In these contexts it is often necessary to first find the
interesting area in the image, image segmentation. Then the segmented area of the image
is analyzed. In both these steps the shape of the area is often important. It is easier
to perform the segmentation if you know what shape the area usually has, and once
segmented the shape of the area can be analyzed along with the data within the shape.

Using image analysis techniques it is for example possible to give support to medical
staff in analyzing the huge amounts of data that modern scanning techniques produce.
Improvements both in speed and accuracy can be achieved, especially in the case of three
dimensional data that are becoming common and that are hard to view and analyze manu-
ally in a natural way (although research and progress are being made here too). Automatic
analysis of medical data can also be used as a backup. All available data can be checked
and a warning can be given if there are indications that the physician may have missed
something.
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4.1.1 Active Shape Segmentation

One way of segmenting and analyzing shapes is to use Active Shape Models as described
earlier. The standard algorithm for segmenting the shape from an image is as follows.

The training images are sampled at each landmark along lines orthogonal to the sur-
faces (or curves in 2D). The profiles differentiated and normalized to get a model of the
appearance of the image at each landmark. The means and variances of these profiles
across the training set is taken as a model of the appearance of the image around each
landmark. When segmenting an image, a search is made along lines orthogonal to the
surface (or curve in 2D) in its current position and shape. Along the line profiles are
sampled, differentiated, normalized and compared to the modeled appearance from the
training set. Then the landmark is moved to the point along the line with the best fit.
When this has been done for all the landmarks they are probably not in positions that fit
the model. Therefore the closest position of the model to the points is calculated and the
landmarks are adjusted to fit the model. Typically a maximum of three standard devia-
tions from the mean is allowed for the shape parameters. This finishes one iteration and
the procedure is iterated till convergence.

4.1.2 Problems

If all is well this works fine and fast. But all is not always well. If the image quality is poor,
as it often is in for example medical image analysis, or if there are many local structures in
the image giving rise to many locally optimal positions that according to the cost function
are almost as good as the global optimum but in reality are far from correct, there can be
trouble. Images of this type are not uncommon. One of the key problems is that the cost
function does not really evaluate the position that we end up moving the surface to. This
is because of the extra step after the optimization of individual points which we need in
order to adapt to the model. If neighboring landmarks have moved irregularly before this
adapting takes place we don’t really know what we will get when adapting to the model.
The new position might not be as good a step towards the optimum as it appeared when
viewing one landmark at a time. And neighboring landmarks do move irregularly if the
images are of the poor type described above. Also, the algorithm requires a reasonably
good initial guess for the landmarks, otherwise the searches along lines orthogonal to the
surface will not give good positions for the landmarks. To some extent these problems
can be lessened by using a multi scale approach but it does not solve the problems.

4.1.3 Solutions

To overcome these difficulties alternative search strategies can be adopted. A general
optimization algorithm can be used to optimize parameters for scale, rotation, translation
and shape. The parameters for shape are just the coefficients for the modes of variation in
the linear combination of the shape model. We evaluate a set of parameters by applying
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them to the shape, sampling the image along the surface, and calculating a cost. To
calculate the cost we can sample profiles as before but without the search along the lines.
The costs for each landmark are summed up to make the total cost function. This is not
optimal since undue weight is given to areas with many sample points on the shape. In
this chapter instead of simply summing up the values for each point, an integral over the
shape is approximated which gives better robustness to the algorithm. Other things have
also been shown to increase robustness. This concerns for example variations of the norm
used when calculating the cost [105] and optimizing which sampled features around the
landmarks to use (instead of just sampling at even distances along a orthogonal profile
line) [54]. There are other strategies, some of which are discussed in [54].

4.2 Modification of Segmentation Search Algorithm

4.2.1 Point of View

We first look at an idealized problem. By this we mean that the surface is simply a regular
continuous surface in 3D or a regular continuous curve in 2D, not a set of landmarks or
sample points. We want to measure the cost for a position and shape of the surface in the
image. This then means integrating a cost function c over the shape S. For the 3Dcase
we get the following formula.

cost =

∫

S

c(s) dA(s) , (4.1)

where dA is an area-measure. Now, to compute this numerically we have to approximate
it as the sum

cost =
∑

S

c(Ai) ∆Ai , (4.2)

where Ai is a small part of the surface with area ∆Ai. For the 2Dcase we get the following
corresponding formulas:

cost =

∫

S

c(t) dL(t) , (4.3)

cost =
∑

S

c(Li) ∆Li , (4.4)

where dL is a length-measure and Li is a small part of the curve with length ∆Li. In
practice, the approximation procedure means that we sample the surface or curve at some
sample points or landmarks. We then calculate the cost function c at those points. The
value of the cost function at a landmark is then seen as representative of the cost function
in the vicinity of that landmark, Ai above. From the above equations it is now obvious
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that we should not only sum up the costs for each landmark since this only constitutes
the c in the equation. We also have to calculate the size of the surface (or curve) element
and use this as a weight for c at each landmark.

4.2.2 Computing the Area of the Surface Element

Experiments show that adding this correction is effective even if the calculation of the size
of the surface element is not very exact. It can of course be approximated though. In this
work it was done by using the approximation of the surface that we get by taking a well
defined triangulation between the landmarks. The area around each landmark is then a
function of the areas of the neighboring triangles, which are of course easily calculated.
To calculate the area of the surface segment corresponding to a certain landmark, each
triangle is divided into three parts, where the border of each part is a polygon with one
corner at a landmark, two corners at the midpoints of the triangle edges leaving that land-
mark and one corner in the middle of the triangle. The area associated with a landmark
is then a sum of such triangle-parts. This approach is illustrated in Figure 4.1.

Figure 4.1: Illustration of area of surface segment around a landmark.
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A simpler approach, giving the same relative weights, is to just use the sum of the
areas of the triangles around the landmark.

An even simpler approximation (not used here) is to use the mean distance to neigh-
boring landmarks. In 2D we want a weight proportional to the length of the curve
segment around the landmark, which can be calculated as the sum of the distances to the
two neighboring landmarks.

An alternative is to not calculate these weights from the current shape, but instead use
weights calculated from the model mean-shape.

Note also that sometimes it is possible to calculate the weights from the parameteriza-
tion function for the object, since this function determines the density of sample points
generated by equidistant parameter values.

4.2.3 Impact

This correction leads to improved performance. This is because the density of landmarks
can and often does vary considerably across the surface. This means that without the
correction, areas with many landmarks will get an un-proportional influence on the cost
function. The cost function is then no longer a good measure of global cost for the entire
surface and so the search performance is effected negatively. The experiments show that
this effect is clearly visible in real applications. This effect is actually equally true for the
standard algorithm searching for new positions for each landmark individually along the
normal directions. It does not sum up the costs, but the effect of giving undue weight
to areas with many landmarks is still true. It is then coming into effect when calculating
how best to adapt the model to the moved landmarks.

4.3 Experiments

The experiments concerned finding the surface of the brain in SPECT images. The
algorithm was tested both on healthy patients and on patients with Alzheimers disease.
Since the purpose was to study the importance of the correction to the cost function
we did not put much effort into optimizing the performance using other factors. One
such factor is the active shape model. The training set was small, only six images with
marked surfaces. Also, the correspondences of the landmarks across the training set were
not optimized very carefully. Another factor is the search optimization. It was not very
advanced or run for very long. The experiments show a clear general improvement when
using the modified cost function with the integral approximation using the area weights.
The improvement generally gets clearer the longer the optimization is run.
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4.3.1 The Active Shape Model

Six SPECT images with the surfaces manually marked by an expert were used to build
the active shape model and correspondences were optimized using minimum description
length. Figure 4.2 is a view of the variation according to one of the modes. The amount
of variation is exaggerated for illustration purposes.
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Figure 4.2: Variation according to one mode of the model.

4.3.2 Qualitative Comparison

A typical example of the segmentation result with and without the area weight modifica-
tion to the cost function is presented in Figure 4.3. This all happens in 3D. The shape
is a closed surface and the image is a volume of intensities. To visualize the segmentation
three orthogonal slices of the image are shown. The surface is visualized by the curves that
are the intersections of the surface with the planes along which the slices of the image are
taken. Figure 4.3 shows the result without and with the area weight modification. The
improvement is consistent (i.e. other tests looked similar) and clear (see figures). The
segmentation is not perfect even with the correction. This is due to the simple active
shape model used and the limited optimization procedure.

4.4 Extensions

Not only the function determining the quality of fit can be improved in this way. There
are other steps in the algorithm that are computed as sums over landmarks but should
really be integrals over the surface and these calculations could also be improved using
weights for the landmarks as in this chapter. This includes parameters controlling ro-
tation, translation and scale in the alignment procedure and the calculation of shape
parameters. For example, remember that shape parameters are calculated as

b = ΦT (x′ − x̄) , (4.5)
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Figure 4.3: Segmentation result with standard formulation to the left and with modified
formulation with area weights to the right.
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i.e. the parameter for mode i is

bi = ΦT
i (x′ − x̄) , (4.6)

where Φi is shape mode i which is column i of Φ. If this sum over points on the
shape is interpreted as an approximation of an integral over the shape we can improve the
approximation as above by adding weights to the terms. Similarly weights can be added
to the appropriate calculations in the alignment step giving parameters for translation,
rotation and scale. It is also possible to use these weights for the PCA, by modifying the
matrix to be factored using the singular value decomposition. Either each landmark can
be multiplied with its area-weight, or alternatively each row of corresponding landmarks
can be multiplied by the mean area-weigh.

4.5 Summary and Conclusions

Measuring the cost of a position and shape of the surface should be seen as approximating
the integral of a cost function over the surface. This means adding the size of the area
element around each landmark as a weight for the cost function at that landmark. This
improves the segmentation.
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Part II

Automatic and Optimal
Construction of Shape Models
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Chapter 5

Establishing Correspondences on
Object Outlines Using MDL

The path is as sharp as a razor.

The Upanishads

As explained previously, when modeling shape in statistical shape modeling a dense corre-
spondence of good quality between the shapes in the training set needs to be established.
Traditionally this has been done by hand, but this is both time consuming and difficult,
especially in 3D. Automatic and semi-automatic algorithms for establishing the corre-
spondences have been developed in the last two decades. One successful approach is
based on optimizing the minimum description length (MDL) of the training set as de-
scribed by the model built from the correspondences. As this approach will be used for
several things in this thesis it will be briefly described here. More details can be found for
example in [31, 41].

5.1 Introduction

Algorithms for automatic shape modeling usually establish dense correspondences by op-
timizing the parameterizations of the shapes with some suitable objective function for
evaluating the model. There have been many different approaches, using different key
concepts. Examples include: registration of images or of distance functions from object
outlines [30, 108, 138], key landmarks located using features such as curvature extrema
and equidistant landmarks in-between [11, 74, 130], geodesics [146], "shape context"
[10], polygonal approximation [67], dynamic programming to match features such as
curve length and curvature [113], point clustering and nonrigid transformation [22], lo-
cal neighborhood structure [152], Iterative Closest Point (ICP) [12, 62], determinant of
covariance matrix [83], and Minimum Description Length (MDL) [35, 41]. It may be
interesting to note that when using registration based methods there is an alternative to
using the resulting corresponding coordinates. Instead the deformation field parameters
can be analyzed with for example a PCA. The resulting models are then called deforma-
tion models instead of shape models [107].

There are a number of different methods for selecting which model is to be considered
optimal. Well established are for example AIC (An Information Criterion) and BIC
(Bayes Information Criterion) [51, 88]. Another alternative is Ljungs Final Prediction
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Error (FPE) [91]. In shape modeling, Minimum Description Length (MDL) has proved
to be a successful criterion, and this thesis focuses on MDL.

Minimum Description Length was introduced by Rissanen in [104]. Since then it
has been used in different fields, for example in model selection/optimization. Davies et
al. introduced MDL as a way of establishing dense correspondences for shape modeling
[31] and since then it has been successfully used in different versions in this field.

The minimum description length measure originated in information theory and is,
simply put, the minimum amount of data that is needed to code the training set with the
aid of the model, using an optimal coding strategy. A good model will be able to code the
training set with less data and hence will have a lower description length.

Part of the idea behind using MDL as evaluation function is that it is thought to
make a trade-off between a model that is general (can represent any instance from the
shape class), a model that is specific (can only represent instances from the correct shape
class) and a model that is compact (can represent the shapes with as few parameters as
possible and with low variance in the parameter values).

When using MDL for establishing correspondences for shape modeling, some type
of optimizer will typically search for an optimal set of parameterization functions γi (i =
1, . . . , ns) for the shapes in the training set. The function used to evaluate a set of
parameterization functions then consists of building a model from the correspondences
produced by the parameterizations and calculating the description length for the training
set using the model.

5.2 The Minimum Description Length

5.2.1 Preliminaries

In this section the minimum description length for a training set using a shape model
will be presented. The formulas to be used will be stated and briefly explained. For more
detailed derivation and analysis see [31, 41].

What is given is a training set of ns shapes, each sampled in np points in nd dimen-
sions, giving the shape vectors xi(i = 1, . . . , ns), gathered as columns in X efter the
mean-shape is subtracted. A linear model for approximating shapes as

x ≈ x̄ + Φb = x̄ +

nm
∑

j=1

Φjb
j , (5.1)

where Φj are the shape modes (eigenvectors of XXT ), bj are the shape space coordinates
and nm is the number of shape modes, is to be built.

Since MDL is to be used for finding the optimal parameterizations, the parts of the
description length that are constant for different sets of parameterization functions can be
ignored during optimization. This includes things like the description length of the mean
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shape x̄. Some parts of the total description length do not depend directly on the param-
eterization functions, but do depend on the number of modes included in the model.
This includes things like the description length of the eigenvectors Φj . In this section,
all modes will be included in the total description length so the description length of Φj

is constant and can be ignored during optimization of the parameterization functions.
Later in the thesis the number of modes will not be constant, and the description length
of Φj will be included in the total description length during optimization. When using
all modes, the shapes in the training set can be described exactly, but when not using all
modes they will only be approximated and then also the residuals need to be coded and
included in the total description length. This will be done later, when not all modes are
necessarily used during optimization. For now, using all modes and ignoring the constant
parts, what is left is the description length of the shape parameters bj

i .
The coordinates bj

i of the training shapes xi are

bj
i = (Φj)

T (xi − x̄), (i = 1, . . . , ns, j = 1, . . . , nm) . (5.2)

Since the shape modes Φj are orthogonal, the total description length L of the set of all
bj
i , can be calculated as a sum

L =

nm
∑

j=1

Lj , (5.3)

where Lj is the description length of the 1D-dataset Y = {bj
1, . . . , b

j
ns
}.

Shannon Minimum Description Length

The data is modeled as a set of one-parameter Gaussians (mean zero). After Procrustes
alignment this is usually a reasonable model of the data. Using Shannon’s minimal code-
word length [115, 116], given a probability density P , the description length of a given
value, α̂, is

− log (P(α̂)) . (5.4)

In order to calculate the description length in bits the logarithms should really be calcu-
lated in base 2. To simplify calculations the natural logarithm can be used instead, which
gives the description length in so called nats. If desired for some reason, this can of course
easily be converted to bits.

Quantization

It requires an infinite amount of information (bits) to describe a real number to arbitrary
accuracy. So, before considering the description length, the data must be discretized. A
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real number y, described with an accuracy δ (a positive real number), is represented using
the integer N , that solves

min
N∈Z

|y − δN | , (5.5)

giving the approximation y ≈ ŷ = δN .
The constant δ should be chosen in relation to the estimated noise of the training

data.

Data Range

Besides the discretization accuracy δ, the range of the data must also be determined.
Assume that the shape vectors

xi =
[

x1
i , . . . , x

nd

i , xnd+1
i , . . . , x

ndnp

i

]T
(5.6)

in the original space, Rndnp , are bounded so that

−r ≤ xj
i − x̄j ≤ r, (j = 1, . . . , npnd, i = 1, . . . , ns) . (5.7)

In shape space, where each shape is a vector, this corresponds to the range R2 = r2 +
r2 + . . . + r2 = npndr

2 so that ||xi − x̄|| ≤ R = r
√

npnd, which in turn gives,

|bj
i | = |(Φj)

T (xi − x̄)| ≤ |Φj ||xi − x̄| = 1|xi − x̄| ≤ R (5.8)

for all i = 1, . . . , ns, j = 1, . . . , nm.

5.2.2 MDL of a 1D-dataset

In this section the minimum description length of the discretized 1D-datasets Y =

{ŷ1, . . . , ŷns
} (containing the bj

i ), where ŷi is Gaussianly distributed with mean zero,
will be described. The distribution is described by the density function

f(x; σ) =
1

σ
√

2π
e

“

− x2

2σ2

”

. (5.9)

An estimation s of σ from Y = {ŷ1, . . . , ŷns
} is,

s =

√

√

√

√

1

ns

ns
∑

i=1

ŷi
2 , (5.10)

or after discretization to accuracy δ, ŝ = nδ, n ∈ N. The probability of x being in the
interval ŷ ± δ/2 is then

P(ŷ; ŝ) =

∫ ŷ+ δ
2

ŷ− δ
2

f(x; ŝ)dx , (5.11)
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which, if ŝ is not to small [31], can be approximated well by

P(ŷ; ŝ) ≈ δ

ŝ
√

2π
e

“

− ŷ2

2ŝ2

”

. (5.12)

Using a two-part coding scheme the minimum description length is decomposed as

L = Lparam + Ldata , (5.13)

where Lparam is the description length of the parameters to be used for the Gaussian
encoding and Ldata is the description length of the bj

i using the Gaussians.

Coding the Parameters

The variance of the Gaussian needs to be coded. It must be discretized using the accuracy
δ. Without prior knowledge, the standard deviation ŝ, is assumed to have the same range
as the data, smax = R. If s is further assumed to be uniformly distributed in this range,
the description length is

Lparam = Lŝ = − logP(ŝ) = log(
R

δ
) . (5.14)

The accuracy δ must also be coded but this will give a constant since it does not
depend on the correspondences so this is ignored. Actually, as seen above, Lŝ will also be
independent of optimization choices for a given training set (assuming a constant δ), so
Lparam will not have to be considered during optimization.

It is possible to try to choose an optimal δ for the minimum description length cal-
culations to follow. However, one may argue that δ should be chosen as a constant based
on the desired accuracy for the application. Also, the description-length-optimal δ can
have negative consequences such as loosing continuity of the derivative of the description
length. In this thesis δ will be chosen as a suitable constant. For more details see [41].

Coding the Data

Depending on the actual range and standard deviation s of the current dataset there are
three different encoding strategies. If ŝ is not to small, a simple approximation of the
Shannon description length can be used. Define some small scut to be the cutoff for
when to use the approximation. A standard choice is to put scut = 2δ. If ŝ ≤ scut, the
approximation formula is not valid and ŝ is replaced with scut. If the range of Y ≤ δ the
data can simply be coded as zeros and the description length is zero.
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Case 1 (ŝ > scut) The minimum description length of the data set consisting of the
parameters for the whole training set in one of the modes is

Ldata = −
ns
∑

i=1

log(P(ŷi)) = −
ns
∑

i=1

log(
δ

ŝ
√

2π
e

“

− ŷ2

2ŝ2

”

) =

−ns log δ +
ns

2
log(2πŝ2) +

1

2ŝ2

ns
∑

i=1

ŷi
2 = −ns log δ +

ns

2
log(2πŝ2) +

nss
2

2ŝ2
.

Case 2 (ŝ ≤ scut) Replacing ŝ with scut gives

Ldata = −ns log δ +
ns

2
log(2πs2

cut) +
nss

2

2scut
2

.

Case 3 When the range of Y ≤ δ we get

Ldata = 0 .

Before putting together the total minimum description length we make one more
simplification. Assuming δ is small, we can replace ŝ with s, giving the following descrip-
tions lengths (the indexes (1) and (2) referring to case 1 and case 2 respectively).

Ldata(1) = −ns log(δ) +
ns

2
log(2π) + ns log (s) +

ns

2
,

Ldata(2) = −ns log(δ) +
ns

2
log(2π) + ns log (scut) +

ns

2
(

s

scut

)2 .

(5.15)

5.2.3 The Total Description Length

Putting the description lengths Lj in the different shape modes together as shown in
Equation (5.3) and adding the description lengths of the parameters and the data as
shown in Equation (5.13) gives the total description length

Ltotal =

nm
∑

j=1

Lj = F0(ns, R, δ) +
∑

sj>scut

(

ns log(sj) +
ns

2

)

+

∑

sj≤scut, range(Yj)≥δ

(

ns log(scut) +
ns

2
(

sj

scut

)2
)

.
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Since δ is normally chosen quite small, in many real applications case 3 will be rare and
even when it does occur, usually the corresponding sj will be small indeed so incorporat-
ing case 3 into case 2 will usually not change the value of the objective function noticeably.
This results in the simpler objective function

F0(ns, R, δ) +
∑

sj>scut

(

ns log(sj) +
ns

2

)

+
∑

sj≤scut

(

ns log(scut) +
ns

2
(

sj

scut

)2
)

=

F (ns, R, δ) +
ns

2





∑

sj>scut

(

log(
sj

scut

)2 + 1

)

+
∑

sj≤scut

(
sj

scut

)2



 =

F (ns, R, δ) +
ns

2





∑

λj>λc

(

log(
λj

λc

) + 1

)

+
∑

λj≤λc

λj

λc



 ,

where F0(ns, R, δ) and F (ns, R, δ) are functions of ns, R and δ that are constant with
respect to parameterizations. Also, the eigenvalues λi of the covariance matrix (2.24) are
equal to s2

j , so the substitutions s2
i = λi and s2

cut = λc have been made.
While optimizing the parameterizations to find a minimum of this function, the term

F (ns, R, δ) is constant and can be ignored. It is also clear that skipping the factor ns

2
will not change anything so this can also be ignored, resulting in the objective function

L =
∑

λj>λc

(

log(
λj

λc

) + 1

)

+
∑

λj≤λc

λj

λc

. (5.16)

The original version of MDL is not continuous. Therefore an additional step involv-
ing numerical integration is introduced in [31]. However the simplified version above is
continuous so integration is not necessary.

5.3 Correspondence Optimization

5.3.1 Parameterization Optimization

As mentioned earlier, correspondences are usually optimized by optimizing the param-
eterizations of the shapes. To illustrate the optimization of the parameterizations, opti-
mization of the parameterizations of shapes defined by planar curves will be described.
The basic principles are the same for 3D-curves, surfaces, or other parameterized shapes,
but the details can be different depending on the type of shapes to be modeled.

A set of parameterized geometric objects, represented by continuous curves with as-
sociated parameterization functions makes up the training set:

ci : [0, 1] ∋ s → ci(s) ∈ R
2 , i = 1, . . . , ns . (5.17)
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For simplicity, assume that every object is parameterized by arc length parameterization
to start with. A model such as in (2.29) of the shape of the curves in this training
set is to be built. As described earlier it is first necessary to solve the correspondence
problem. This means determining a set of reparameterization functions {γi}ns

i=1 (where
γi : [0, 1] → [0, 1] are strictly increasing bijective functions), such that ci(γi(s)) corre-
sponds to cj(γj(s)) for all pairs (i, j) and all parameter values s ∈ [0, 1]. Remember
that correspondence means that if, for example, the shapes describe an anatomical object
and ci(γi(s)) is at a certain anatomical point on shape i then cj(γj(s)) should be at
the corresponding anatomical point on shape j. To shorten notation, correspondence
between the shapes ci(γi(s)) and cj(γj(s)) can be denoted ci(γi(s)) :=: cj(γj(s)).

Now, some optimizer will try to find optimal reparameterization functions {γi}ns

i=1.
At each iteration in the optimization process, in order to evaluate the MDL-objective-
function, the shapes will be sampled in corresponding points according to the {γi}ns

i=1,
a model will be built and the description length will be calculated. Note that it is not
the case that a set of corresponding landmarks are placed on the curves and the optimizer
moves them around to optimize minimum description length. Working with a fixed set of
landmarks that are moved around leads more easily to problems with undesired clustering
of these landmarks. See Figures 5.1 and 5.2 for a simple illustration.
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Figure 5.1: In the two plots it can be seen how the sampling points, defined by equidistant
parameter values in [0,1], are mapped by two parameterization functions. The plots
show how the sampling points can cluster during optimization of the parameterisation
functions. In this example they cluster at the beginning of the curve.

This problem will be described and handled in detail later in the thesis. The sampling
that is performed is only done in order to perform numerical computations and the set
of sample points at one instance does not correspond to the set of sample points at an-
other instance. With continuous objects and parameterization functions all points on the
objects are landmarks but for numerical computations this infinite set must be sampled.
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Figure 5.2: In the two plots it can be seen how the sampling points, defined by equidistant
parameter values in [0,1], are mapped by two parameterization functions. The plots
show how the sampling points can cluster during optimization of the parameterisation
functions. In this example they cluster at the middle part of the curve.

The reparameterization functions {γi}ns

i=1 are controlled by a set of variables (typically
controlling some basis functions) and it is these variables that the optimizer modifies.

5.3.2 The Parameterization Functions

The parameterization functions can be built up by different types of basis functions,
typically on different levels of detail. Let γi(t) be built up by the basis functions pkl(t) as

γi(t) = t +

nl
∑

k=1

2(k−1)
∑

l=1

nklpkl(t) , (5.18)

where the scalars nkl are the variables to be optimized. Different alternatives of the type
of basis functions have different advantages. In this thesis the choice of basis functions
is not the main focus so a simple set of basis functions sometimes called tent-functions,
giving piecewise linear parameterization functions, will typically be used.

The basic tent-function is

g(t) =

{

t, 0 ≤ t < 1/2
1− t, 1/2 ≤ t ≤ 1

. (5.19)

The basis functions will be versions of this function that are translated, scaled and of
different width. The width of the basis function at level k is w = 1/2(k−1) and the basis
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functions are

pkl(t) =







0, 0 ≤ t ≤ w(l − 1)
w · g((t− w(l − 1))/w), w(l − 1) ≤ t ≤ wl

0, wl ≤ t ≤ 1
(5.20)

To simplify notation, the double index kl is replaced by the single index l (i.e. not the
same l) and instead an index i for shape object id is introduced to obtain

γi(t) = t +

nn
∑

l=1

nilpil(t) . (5.21)

Note that the strictly increasing property of the parameterization functions must be pre-
served during optimization, usually be restricting the possible values for the parameteri-
zation function control variables nil.

5.4 The Gradient of the Minimum Description Length

Many optimizers use the gradient of the objective function. How to do this for MDL
optimization will be briefly explained here. For details, see [4, 41, 44, 101].

The key result needed is the derivative of the singular values in S with respect to the
elements of the matrix A where A has the singular value decomposition A = USVT .
These are given by

∂sk

∂aij

= uikvjk , (5.22)

where sk is the k-th singular value, aij is the element on row i and column j of A, uik is
the element on row i and column k of U and vjk is the element on row j and column k
of V.

Let each parameterization function γj (j = 1, . . . , ns) have nn control variables,
with control variable l for curve j being denoted njl. Assume the objective function is

L =
∑

λk>λc

(

log(
λk

λc

) + 1

)

+
∑

λk≤λc

λk

λc

. (5.23)

Differentiation gives

∂L
∂njl

=
∑

λk>λc

1

λk

∂λk

∂njl

+
∑

λk≤λc

1

λc

∂λk

∂njl

=
∑

λk>λc

1

λk

∂s2
k

∂njl

+
∑

λk≤λc

1

λc

∂s2
k

∂njl

=

∑

λk>λc

2sk

λk

∂sk

∂njl

+
∑

λk≤λc

2sk

λc

∂sk

∂njl

(5.24)
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Let xij be the i-th sample point coordinate on shape j and ∂xij

∂njl
be the derivative

with respect to parameterization function control variable njl. Using Equation (5.22)
this gives

∂sk

∂njl

=
∑

i

∂sk

∂xij

∂xij

∂njl

=
∑

i

uikvjk

∂xij

∂njl

. (5.25)

Finally, even though ∂xij

∂njl
can somewhat be approached analytically, it is typically esti-

mated using differential approximation.
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Chapter 6

Aligning Shapes by Optimizing MDL

It is assumed that the phenomena which we now accept without surprise do not
excite our astonishment because they are understood, but this is not the case. If
they do not surprise us, it is not because they are understood. It is because they
are familiar.

Charles Robert Richet

As described earlier, shape is defined to be invariant to similarity transformations, so
before modeling shape as described earlier it is first necessary to normalize the objects
with respect to similarity transformations. This is normally done using Procrustes analysis
as described in Section 2.3.

Instead of Procrustes, the Minimum Description Length (MDL) from Chapter 5 can
be used also for the alignment, i.e. align the shapes using similarity transformations in
order to optimize the minimum description length of the set of shapes using the model
constructed giving the current alignment. This is used already in [31], but here the effects
of the different alignment strategies are more carefully analyzed and also the gradient of
the description length to be used in Gauss-Newton alignment optimization is stated and
derived.

The MDL based algorithm is compared to Procrustes on a number of data sets. Apart
from the obvious advantage of using the same measure for alignment and reparame-
terization, it is also concluded that there is improvement in generalization when using
Minimum Description Length to align the shapes. Often the difference is small, but a
synthetic example shows that the Procrustes alignment can fail significantly where the
proposed MDL method does not. This example shows that the alignment using mini-
mum description length can give more intuitive results and give much better generality
than when using Procrustes.

In [86] shapes are aligned by minimizing L1 distances instead of squared distances.
This results in positive effects similar to the ones presented here but the problem of
alternatingly optimizing two different measures of course remains.

6.1 Introduction

The common way to align shapes before building shape models is Procrustes analysis [38,
56], i.e. minimizing the sum of squared distances between corresponding sample points
from the mean shape to the shapes in the training set over similarity transformations. Of
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course, similarity transformations can be filtered out in many other ways. For example, in
[16, 38, 79, 122] so called Bookstein and Kendall coordinates are used. These alignment
strategies are not as intuitively optimal in any sense as Procrustes analysis.

In the previous chapter it was shown how MDL can be used to locate correspon-
dences. However, this means that different objective functions are used in different stages
of the optimization (sum of squared distances during alignment and MDL during repa-
rameterization), which can cause problems for the optimizer. It makes more sense to do
the alignment using the same goal function that is being used for the parameterization
evaluation step, so that the goal function is optimized with respect to parameterization
and alignment.

When the gradient of an objective function is known for a specific optimization prob-
lem, it generally pays off to use optimization techniques using the gradient. In this chapter
MDL will be used to align shapes, using gradient information. The Description Length is
here minimized using Gauss-Newton. In order to do this the derivative of the description
length with respect to rotation is derived.

In principle, optimization over similarity transformation includes translations, scaling
and rotation. In practice however, translation is well dealt with simply by translating the
mean to the origin and scale is usually fairly well dealt with by normalizing to size one,
so the main issue is typically rotation. Moreover, it has been observed that when it comes
to scale and translation, Procrustes analysis and MDL alignment give very similar results,
but for rotation the alignments are different. For these reasons this chapter focuses on
rotation. Of course, adding small adjustments in translation and scale according to MDL
may improve the result further.

6.2 Optimizing MDL using the Gradient

Let ns shapes x1, . . . ,xns
in complex coordinates be centered at the origin and with the

scale normalized so that the Euclidean norm is one. In complex coordinates a centered
shape xj is rotated by θj to xje

iθj . Differentiating the objective function

L =
∑

λk>λc

(

log(
λk

λc

) + 1

)

+
∑

λk≤λc

λk

λc

(6.1)

with respect to θj , we get

∂L
∂θj

=
∑

λk>λc

1

λk

∂λk

∂θj

+
∑

λk≤λc

1

λc

∂λk

∂θj

, (6.2)

so what is needed is ∂λk

∂θj
. Let the j-th column of X0 be the sampling points on shape j

in complex coordinates after rotation by θj ,

X0 =
[

X1, . . . , Xns

]

=
[

x1e
iθ1 , . . . , xns

eiθns

]

. (6.3)
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Let Y be the matrix holding the deviations from the mean shape,

Y = X0 −X , (6.4)

where each column in X is the mean shape x̄ ,

x̄ =
1

ns

ns
∑

j=1

Xj =
1

ns

ns
∑

j=1

xje
iθj . (6.5)

A singular value decomposition of Y gives us Y = USVT . Here U corresponds to
Φ in Equation (2.29) and the diagonal matrix STS holds the eigenvalues λk .

Now, if ypq is the p-th sample point on shape q and ∂ypq

∂θj
is the derivative with

respect to the rotation θj then

∂λk

∂θj

=
∂s2

k

∂θj

= 2sk

∂sk

∂θj

= 2sk

∑

pq

∂sk

∂ypq

∂ypq

∂θj

= 2sk

∑

pq

upkvqk

∂ypq

∂θj

. (6.6)

Here it is used that ∂sk

∂ypq
= upkvqk, where upk and vqk are elements in U and V, see

Section 5.4. Moreover,

∂ypq

∂θj

=
∂xq(p)eiθq

∂θj

− 1

ns

ns
∑

l=1

∂xl(p)eiθl

∂θj

=

{

i(1− 1
ns

)xj(p)eiθj q = j

−i 1
ns

xj(p)eiθj q 6= j
, (6.7)

since
∂xq(p)eiθq

∂θj

=

{

ixj(p)eiθj q = j

0 q 6= j
. (6.8)

To simplify the process, if ns is relatively large, this can be approximated by

∂ypq

∂θj

=

{

ixj(p)eiθj q = j

0 q 6= j
. (6.9)

Then ∂λk

∂θj
can be written as

∂λk

∂θj

= 2skivjkU
T
k xje

iθj = 2skivjkU
T
k Xj , (6.10)

where Uk is the k-th column in U. Finally this gives the gradient information

∂L
∂θj

=
∑

λk>λc

1

λk

2skivjkU
T
k xje

iθj +
∑

λk≤λc

1

λc

2skivjkU
T
k xje

iθj

=
∑

λk>λc

1

λk

2skivjkU
T
k Xj +

∑

λk≤λc

1

λc

2skivjkU
T
k Xj . (6.11)
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6.3 Experimental Validation

The experiments are done on 2D-shapes, but the principles are the same for any dimen-
sion.

Experiments were conducted as follows. Given a dataset, the center of gravity was
moved to the origin for all shapes and scale was normalized to one according to the
Euclidean norm. To make the comparison between Procrustes- and MDL-alignment
easier, the rotation of the shapes was initialized according to the Procrustes condition.
The rotation was then optimized using Gauss-Newton by optimizing MDL.

In Figure 6.1 the typical behavior of the cost function can be seen. Here, for visual-
ization, two rotations (x and y axis) have been optimized to align three shapes. In the top
figure it can be seen that the local minimum close to the origin is a global minimum. It
seems to be several minima, but this is due to the periodicity of the function (the range
goes from -2π to 2π in x and y). The bottom figure zooms in on the origin (the origin
corresponds to the Procrustes solution). It can be seen that the minimum is not at the
origin and thus the Procrustes solution does not coincide with the MDL solution. When
more shapes are aligned projections of the cost function to lower dimensions look similar
to these plots. As can be seen the difference in rotation is not typically large, but in some
cases it is.

Experiments were run on seven natural data sets, seen in Figure 6.2 and described in
appendix A. The contours were sampled with 64-128 sampling points using arc-length
parameterization. The quality of the models built from the aligned datasets was in this
experiment measured as the mean square error in leave-one-out reconstructions. This is
often interpreted as the models generalization ability, see Section 2.6.1, since it measures
the ability of the model to represent unseen shape instances of the object class. The model
is built with all but one example and then fitted to the unseen example. As will be seen
later in this thesis this measure can be problematic when used to evaluate parameterization
functions, but since in these experiments arc-length parameterization is always used, in
this case there is no problem. The results are shown in Figure 6.3 and Figure 6.4. The
plots show the mean squared approximation error against the number of modes used. For
all examples we get models that give the same or lower error when using the description
length criterion compared to Procrustes alignment. This means that the models generalize
better. The improvements on these datasets are small but consistent. The computational
cost of course increases when using this alignment compared to Procrustes, but it is often
worth while spending the extra time on building a model of the highest possible quality.
Once the model has been built it can be used over and over again.

One reason why the MDL alignment does not succeed in giving more improvement
of the results is that when there are many shapes in the training set, the path to the
minimum is often narrow and difficult for the optimizer to follow. Also, the derivatives
can get numerically unstable close to the minimum.

In some cases the difference between standard Procrustes and MDL alignment is large,
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Figure 6.1: The MDL cost function. In the upper figure the range on each axis is -2π
to 2π. The lower figure zooms in on the origin showing that the minimum of the 3D
surface is not at the origin.
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The letter g Hands Femurs

The three dataset The letter p Silhouettes Metacarpals

Figure 6.2: The description length aligned datasets.

in favor of MDL alignment. In Figure 6.5 is an example of when standard Procrustes goes
visibly wrong. In this case the dataset is a synthetic shape class consisting of identical boxes
with an identical bump in different positions on the top edge of the box. This means that
this dataset has one linear shape variation mode. The 24 shapes are represented using
128 landmarks, with a higher concentration of landmarks on the bump. For a human
it would be natural to align the boxes and let the bump be misaligned, as shown at the
top in Figure 6.5, or possibly to align the bumps and let the boxes be misaligned, which
is almost what can be seen at the bottom in the same figure (In Chapter 8 it is investi-
gated further how well human opinion agrees with the results of computer algorithms for
locating correspondences). Procrustes alignment does not give such a natural alignment
and introduces nonlinearities in the shape variation. Note that, since this data only has
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Figure 6.3: The mean squared error of “leave one out” reconstructions of the g-dataset,
the hand dataset, the femur dataset and the three dataset.
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Figure 6.4: The mean squared error of “leave one out” reconstructions of the p dataset,
the silhouette dataset and the metacarpal dataset.
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Figure 6.5: A synthetic example. At the top is the training set consisting of boxes with
a bump in different positions (one linear shape mode). In the middle is the Procrustes
alignment, which has failed to give a natural alignment isolating the shape mode. At the
bottom is the result of the description length alignment, which is successful.

69



CHAPTER 6. ALIGNING SHAPES BY OPTIMIZING MDL

one shape mode, perfect alignment should give zero mean squared error on the “leave one
out” reconstruction using just one mode. In this experiment the model built from the de-
scription length aligned shapes gets almost zero error on the first shape mode, see Figure
6.6, whereas the model built from the Procrustes aligned dataset needs two modes to get
a small error. The MDL aligned shapes also corresponds well to how humans would align
the shapes, whereas the Procrustes aligned shapes do not. This is a trivial example, but
it points out that care must be taken when using Procrustes alignment, especially when
parameterizations are determined automatically. In some cases Procrustes really does not
give the desired result.
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Figure 6.6: The generalization ability of the models. The minimum description length
alignment succeeds in locating the only shape mode (the error is zero already with one
mode so the curve is extremely close to the x-axis) but the Procrustes alignment needs two
modes.
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Chapter 7

Stable Correspondence Optimization
using Parameterization Invariance

Believe nothing, o monks, merely because you have been told it. Do not believe
what your teacher tells you merely out of respect for the teacher. But whatsoever,
after due examination and analysis, you find conducive to the good, the benefit,
the welfare of all beings - that doctrine believe and cling to and take as your
guide.

Buddha

A major problem during correspondence optimization is that landmarks tend to cluster
together on parts of the shape with small variation. This is a problem both when mov-
ing around a set of landmarks and when defining landmarks via sample points using say
equidistant parameter values. Ad hoc strategies to handle this problem include keeping
the parameterization of one shape in the training set fixed or adding a penalty to the objec-
tive function that penalizes reparameterizing many shapes in the training set in the same
way which is how the clustering is often achieved. In this chapter novel theory to prevent
clustering during correspondence optimization is presented. The theory is developed for
continuous shapes, specifically curves, as opposed to working with a finite number of
landmarks along the curves. Instead of representing continuous curves using landmarks,
the problem is treated analytically and numerical approximations are introduced at the
last stage.

The major problem here is to define shape variation in a way that is invariant to curve
parameterizations. The problem is solved by observing that at the core of calculating the
shape model is a set of scalar products. These are replaced by modified formulas that are
invariant to mutual reparameterizations.

The suggested algorithm increases stability and the resulting models are also of higher
quality both according to the generalization measure and according to visual inspection
of the specificity.

We first published this solution in 2004 in [76]. In 2007, [139], Twining et.al.
described a version achieving similar results by letting the measure used in the scalar
product integral be the area measure on the mean shape.
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7.1 Introduction

The problem is the following. Correspondences of landmarks do not necessarily imply
correspondence of the entire shapes. If many sample points are in approximately one
point or a small region with small variation (clustering), the objective function measuring
the correspondence may get a low value, but this value is based on a small nonrepresenta-
tive part of the curve. Increasing the number of sample points does not solve the problem.
This is because even though increasing the number of sample points may result in most
parts of the shape being sampled, the weight distribution (defined by the parameteriza-
tion functions) will be unchanged. Most sample points will still be in the small areas with
small variation and the value of the objective function will be mostly determined by these
points.

MDL along with most objective functions for correspondence optimization suffers
from these problems. It has been suggested that this can be prevented by using a “master
example”, i.e. an example that is not reparameterized during optimization. The idea is
that each curve will be reparameterized to fit the “master example”. This strategy can
work if there are very few shapes in the training set but breaks down if there are too many
shapes in the training set. For example, if one keeps the parameterization of the first
curve unchanged it is still possible to reparameterize the other ns − 1 curves to put more
weight to a particular part of the curves. If there are many curves and they ignore the
mismatch with the one kept fixed, their clustering of sample points may lead to a lower
MDL while giving worse correspondences. In [135] a penalty is suggested if the mean of a
parameterization function control variable over the examples in the training set is different
from zero. This penalizes that the parameterizations move in the same direction on all the
shapes. This means that the mean movement of corresponding sampling points should be
zero during optimization. However, even when these methods prevent clustering collapse,
it is a problem that further constraints on the parameterization functions are needed in
the optimization formulation, since this will effect optimality.

Here a different solution is proposed. The scalar product at the core of the calcula-
tions is replaced with a formula which is invariant to mutual reparameterizations. This
formulation is then invariant to the types of reparameterizations that typically cause clus-
tering and it also approximates equal weighting of all parts of the curves.

In this chapter it is shown that the infimum of the minimum description length
(MDL) in the standard formulation is actually always zero. This global infimum for
the standard formulation is reachable by reparameterizing all the shapes so that all sam-
ple points are positioned in approximately the same point (or that approximately all the
weight is there in the case of increased number of sample points). This solution to the cor-
respondence problem is of course completely useless, so the global minimum corresponds
to the worst possible solution for landmark correspondence.

Using the new formula instead of the standard scalar product when calculating the
covariance matrix makes the optimization well defined in the sense that the infimum of
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the MDL does not correspond to moving all the sample points to approximately the same
point. With this formulation the advantage of clustering (placing all sample points at one
point or in a small region) is essentially removed.

7.2 Preliminaries

7.2.1 Continuous Formulation

The standard shape model (introduced in Section 2.5) describes the variation of a set of
points as linear combinations of a set of basis vectors

x = x̄ + Φb . (7.1)

Here we will work with a shape theory that is intrinsically defined for continuous objects,
specifically curves, and is independent of mutual reparameterizations of the shapes in the
training set (such reparameterizations do not change correspondence), i.e. only depends
on relative differences in parameterization (which do change correspondence). By mutual
reparameterization is meant a reparameterization function that is applied to all curves in
the training set. Such a mutual reparameterization function can put most of the weight
at one point or a small section of the curve. As with the standard shape model, the model
will be a linear model, i.e.

c(s) = c̄(s) +

nm
∑

k=1

bkΦk(s) = c̄(s) + Φ(s)b, s ∈ [0, 1] , (7.2)

where in the last step we allow ourselves a matrix-type notation even though the Φk(s)
are really infinite-dimensional. Think of Φ as consisting of the orthogonal principal
components Φk(s) of the formally infinite dimensional covariance matrix of the shapes
in the training set. nm is the number of modes of shape variation and c(s) , c̄(s) and
Φk(s) are functions of the continuous parameter s.

The standard way of determining Φ from experimental data, where the shapes {ci}ns

i=1

have been aligned e.g. according to the Procrustes condition (similarity transformations),
is to find the eigenvectors of the covariance matrix

C0 =
1

ns − 1
XXT , (7.3)

where each column in X represents one shape with the mean-shape subtracted.
This is straightforward in the case of finite point configurations, but for curves it is

more difficult since the “column vectors” are infinite dimensional. However, (with slight
abuse of notation) the covariance matrix C = 1

ns−1X
T X (where with infinite columns

in X, each element is really an integral) is finite dimensional and has the same non
zero singular values as C0. For illustration, let X be finite dimensional for a moment.
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Using singular value decomposition X can be written X = USVT , which means that
C = 1

ns−1VS2VT and C0 = 1
ns−1US2UT . We see that, as in Chapter 2, Φ =

V and Φ0 = U. The basis Φ0 can thus easily be calculated from the singular value
decomposition of C in the following way,

Φ0 = U = USVTVS−1 = XΦS−1 . (7.4)

This can now be generalized to an infinite dimensional X since C will still be finite.
In order to do this (7.4) is interpreted in the following way. M = ΦS−1 is a matrix
determining what combinations of the functions Xj (that with slight abuse of notation
are columns in X) make up the modes in Φ0,

Φ0i =
∑

j

MjiXj . (7.5)

In the standard case as described earlier in the thesis, each column in X is built up
as follows. First comes the coordinates for the first landmark or sample point, then the
coordinates for the second point etc. This means that the coordinates alternate. In the 2D
case we may say that x-coordinates and y-coordinates alternate. This ordering is arbitrary
and if we instead build up the columns of X by first taking the x-coordinates for all
sample points and then the y-coordinates this is better suited for the current problem.
With this ordering we can think of the columns as first having a continuous function
describing the x-coordinate and then another continuous function for the y-coordinate,

X =

[

cx
1 ◦ γ1 − c̄x, . . . , cx

ns
◦ γns

− c̄x

c
y
1 ◦ γ1 − c̄y , . . . , cy

ns
◦ γns

− c̄y

]

, (7.6)

c̄x(s) =
1

ns

ns
∑

i=1

cx
i ◦ γi(s) , (7.7)

c̄y(s) =
1

ns

ns
∑

i=1

c
y
i ◦ γi(s) . (7.8)

7.2.2 The Scalar Product and MDL

The element cij on row i and column j of C can be seen as a scalar product of shape i
with shape j defined by

cij =
1

ns − 1
(

∫ 1

0

(cx
i (γi(s))− c̄x(s)) · (cx

j (γj(s))− c̄x(s))ds +

∫ 1

0

(cy
i (γi(s))− c̄y(s)) · (cy

j (γj(s))− c̄y(s))ds) (7.9)
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Dividing the time interval into s0, . . . , sN , where sn = n/N , the scalar product can be
evaluated numerically using the set {sn : sn = n/N, n = 0, . . . , N}.

A useful objective function for solving the correspondence problem

ci(γi(s)) :=: cj(γj(s)), ∀ i, j (7.10)

is the minimum description length of the shape model. The reparameterization func-
tions {γi}ns

i=1 are located by minimizing MDL. In Chapter 5 the description length of a
training set using the shape model M was formulated as

MDL(M) =
∑

λi>λc

(log
λi

λc

+ 1) +
∑

λi≤λc

λi

λc

+ K , (7.11)

where the scalars λi are the eigenvalues of the covariance matrix C, the scalar λc is a
cutoff constant and K is a scalar, which is independent of the parameterizations. The
constant K can be ignored during optimization and the following cost function is used,

F (C) =
∑

λi>λc

(log
λi

λc

+ 1) +
∑

λi≤λc

λi

λc

, (7.12)

where C is the covariance matrix defined above and the elements of C can be interpreted
as scalar products between the shapes in the training set, as in Equation (7.9).

7.2.3 Formulation Using Vector Scalar Product

Instead of thinking of the shape as one function for each parameter (x and y in 2D), it is
possible to use a formulation where the shape is a vector valued function. Then you get
the shorter notation

cij =
1

ns − 1

∫ 1

0

(ci(γi(s))− c̄(s)) · (cj(γj(s)) − c̄(s))ds , (7.13)

where the · stands for the vector scalar product, which of course means that this is actually
the same as the formula in Equation (7.9) above. Because of the clearer connection with
the discrete case and with implementation we will use the earlier formulation in Equation
(7.9) without the vector valued functions and without the vector scalar product.

7.3 The Problem with Parameterization Dependence

One problem with optimizing MDL as presented above is that it is not independent
of mutual reparameterizations. The scalar product depends on the reparameterization
functions γi and γj . How a parameterization function can distribute the weights on
different parts of a curve is illustrated in Figures 5.1. In this figure it can be seen how
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two parameterization functions put more weight on the first part of the curve. Using the
standard scalar product in this case, it is possible that γi(sn) ≤ ǫ for all sn < sN . This
means that ci(s), s ∈ (ǫ, 1) is not taken into account in the calculation of the scalar
product. If the number of sample points is increased it is possible to get some points
ci(s), s ∈ (ǫ, 1) but γi may still be such that the fraction of points ci(s), s ∈ (ǫ, 1)
will be neglectable. Another example is given in Figure 5.2. Here two parameterization
functions put more weight on the middle part of the curve so that |γi(sn) − 0.5| ≤ ǫ
for all sample points 0 < sn < sN so ci(s), s ∈ (0, 0.5 − ǫ) ∪ (0.5 + ǫ, 1) is not
taken into account. If the number of sample points is increased it is possible to get
some points ci(s), s ∈ (0, 0.5 − ǫ) ∪ (0.5 + ǫ, 1) but γi may still be such that the
fraction of points ci(s), s ∈ (0, 0.5 − ǫ) ∪ (0.5 + ǫ, 1) will be neglectable. Even if
the entire shape is considered to some extent, the result is not independent of curve
parameterizations. By changing all parameterizations γi with a mutual parameterization
γ, so that γ̃i = γi ◦ γ, one effectively puts different weights at different parts of the
curves without changing the correspondences. The same problem occurs when a discrete
set of landmarks is used as in [32, 34]. The most weight is put on that part of the curve
which has the most landmarks. The problem with this is that the optimization scheme
for locating correspondences becomes ill-posed as illustrated by the following theorem.
In this chapter the standard scalar product is replaced by a formula that does not suffer
from this problem.

Theorem 7.3.1. For F (C) defined by (7.12) via (7.9),

inf
γ1,...,γns

F (C) = 0 . (7.14)

The infimum is attained when the reparameterization functions approach a measure with all
mass at one point.

Proof. Assume that a training set of continuous curves ci(t), i = 1, . . . , ns, t ∈ [0, 1],
is given and that the reparameterization functions γi, i = 1, . . . , ns put the shapes in
correspondence,

ci(γi(s)) :=: cj(γj(s)) . (7.15)

Now, construct a reparameterization function γ such that,

γ(t) =

{

ǫ
1−ǫ

t, 0 ≤ t ≤ 1− ǫ

ǫ + 1−ǫ
ǫ

(t− (1− ǫ)), 1− ǫ ≤ t ≤ 1
. (7.16)

This function is illustrated in Figure 7.1. The correspondence of the shapes is retained, if
all curves are reparameterised with the parameterisation function γ. If now ǫ is sufficiently
small all weight will be situated close to the start of the curves. Performing Procrustes on
these shapes will result in, that in the limit ǫ → 0, all shapes coincide with the mean-
shape. This means that the covariance matrix C will be the zero matrix. Hence all
eigenvalues of C are zero and F (C) = 0, if λc > 0.
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Figure 7.1: Mutual reparameterization function. Here ǫ = 0.1.

This is not only a theoretical problem. This minimum can easily be found. As-
sume that the curves are in approximate correspondence. The optimizer can now start
to concentrate points on parts of the curve with small variation, while keeping corre-
spondence, by performing mutual reparameterizations, i.e reparameterizing all curves by
the same reparameterization function. So this is a major problem also in practice and
the minimization criterion is not well defined. A good global optimizer would find this
meaningless global minimum. Even if the global minimum is not found it is still possible
to reduce F (C) by concentrating the sampling points on parts of the curves with low
variance. This means that it is possible to reduce the MDL in two ways, both by finding
correspondences and by performing mutual reparameterization which actually give worse
solutions. Therefore algorithms for automatic correspondence localization on shapes tend
to gather sample points together (concentrate the weight).

7.4 A Parameterization Invariant Method

To improve the algorithm discussed above, the standard scalar product is replaced with
a formula which is invariant to mutual reparameterizations. We will think of the new
formula as a new scalar product. This removes the undesired way to reduce MDL and
the optimizer focuses on establishing correspondences.

7.4.1 Defining the New Formula

Definition 7.4.1. Let {ci}ns

i=1 be a training set of curves, parameterized with {γi}ns

i=1

and centered at the origin. A new scalar product type formula between ci and cj is
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defined by

ci · cj =
1

ns − 1

1

ns

ns
∑

k=1

[

∫ 1

0

(

cx
i

(

γi ◦ γ−1
k (s)

)

− 1

ns

ns
∑

m=1

cx
m(γm ◦ γ−1

k (s))

)

·

·
(

cx
j

(

γj ◦ γ−1
k (s)

)

− 1

ns

ns
∑

m=1

cx
m(γm ◦ γ−1

k (s))

)

ds +

∫ 1

0

(

c
y
i

(

γi ◦ γ−1
k (s)

)

− 1

ns

ns
∑

m=1

cy
m(γm ◦ γ−1

k (s))

)

·

·
(

c
y
j

(

γj ◦ γ−1
k (s)

)

− 1

ns

ns
∑

m=1

cy
m(γm ◦ γ−1

k (s))

)

ds] .(7.17)

Intuitively, what happens is that if the parameterization functions γi all put more
weight into one part of the shapes, the composition of γi with the inverse parameteri-
zation functions γ−1

k neutralizes this so that the curves are sampled more equally. The
result of the inverse functions for the case in Figure 7.2 is illustrated in Figure 7.3.
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Figure 7.2: In the two plots it can be seen how the sampling points, defined by equidistant
parameter values in [0,1], are mapped by two parameterization functions. The plots
show how the sampling points can cluster during optimization of the parameterisation
functions. In this example they cluster at the middle part of the curve.

This also means that it is not possible to neglect any part of the curves, since it can
be seen that there is one term that gives arc-length parameterization for ci and one term
that gives arc-length parameterization for cj .
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Figure 7.3: In the two plots it can be seen how the sampling points, defined by the set of
equidistant points, are mapped from the y-axis to the x-axis by two inverse parameteriza-
tion functions.

7.4.2 Proving Invariance

Theorem 7.4.1. The formula presented in Definition 7.4.1 is invariant to mutual reparam-
eterizations.

Proof. Let {γi}ns

i=1 be a set of parameterization functions such that

ci(γi(s)) :=: cj(γj(s)), i = 1 . . . ns, j = 1 . . . ns . (7.18)

Let γ be an arbitrary reparameterization function and let γ̃i(s) = γi ◦ γ and γ̃j(s) =
γj ◦ γ. Then the correspondence ci(γ̃i(s)) :=: cj(γ̃j(s)) still holds.

From the definition of the proposed formula we get,

ci(γ̃i(s)) · cj(γ̃j(s)) =

1

ns − 1

1

ns

ns
∑

k=1

[

∫ 1

0

(

cx
i

(

γ̃i ◦ γ̃k
−1(s)

)

− 1

ns

ns
∑

m=1

cx
m(γ̃m ◦ γ̃k

−1(s))

)

·

·
(

cx
j

(

γ̃j ◦ γ̃k
−1(s)

)

− 1

ns

ns
∑

m=1

cx
m(γ̃m ◦ γ̃k

−1(s))

)

ds +

∫ 1

0

(

c
y
i

(

γ̃i ◦ γ̃k
−1(s)

)

− 1

ns

ns
∑

m=1

cy
m(γ̃m ◦ γ̃k

−1(s))

)

·

·
(

c
y
j

(

γ̃j ◦ γ̃k
−1(s)

)

− 1

ns

ns
∑

m=1

cy
m(γ̃m ◦ γ̃k

−1(s))

)

ds] =
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[and since γ̃i(s) = γi ◦ γ and γ̃j(s) = γj ◦ γ]

=
1

ns − 1

1

ns

ns
∑

k=1

[

∫ 1

0

(
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i

(
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ns

ns
∑
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m(γm ◦ γ ◦ γ−1 ◦ γ−1

k (s))

)

·
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ds] =

[and using that γ ◦ γ−1 is the identity function]

=
1
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1
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ds] =

ci(γi(s)) · cj(γj(s)) .

The new formula would actually be invariant to mutual reparameterizations using
only one term in the sum in Definition 7.4.1. Two terms may also seem like a natural
choice and using two terms it is natural to choose the terms that parameterize ci and cj
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to arc-length respectively.

ci · cj =
1

ns − 1
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ds] . (7.19)

However, even though invariance to truly mutual reparameterizations is achieved like
this, or even by using only one term, it is still possible to find parameterizations that
decrease MDL by gathering sample points together in different ways on different curves.
For example this can be done if the curves are grouped so that sample points are clustered
in different ways in the groups.

Theoretically, clustering at some small level is still possible even when all the terms
are used as in Definition 7.4.1, but using all the terms makes it hard for the optimization
algorithm to locate such parameterizations and also, the effect would be small. Therefore
it is better to use Definition 7.4.1. However, if time is an issue, using only one or two
terms may be desirable.

To evaluate the scalar product numerically it is of course necessary to sample the
curves. These sample points are just a step in the evaluation and should not be confused
with landmarks in the traditional sense. In practice this is numerically achieved as follows.
From the set S0 = {sn : sn = n/(np − 1), n = 0, . . . , np − 1}, which is the set that
defines the sample points, the set Tk = γ−1

k (S0) is retrieved. This is shown schematically
in Figure 7.3. Tk decides what parameter values are used in term k in Definition 7.4.1. In
practice, one set of parameter values {Tk, (k = 1, . . . , ns)} can be defined and the scalar
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product can be evaluated as one term. Since all the sets Ti(i = 1, . . . , ns) are used in
Definition 7.4.1, as opposed to when using only one or two terms, corresponding points
across the entire training set are in this case used to calculate the different cij . This is
another advantage of using all the terms.

7.5 Experimental Validation

In this section the algorithm is validated on the hand-, femur- and g- data sets described
in the appendix.

Models built using the proposed formula are compared with models built using the
standard scalar product. For the standard scalar product the algorithm uses the parame-
terization function control variable cost described above and in [135] to penalize mutual
reparameterizations (control vaiable mean different from zero) in order to prevent clus-
tering of sample points.

Thodberg’s implementation of MDL [135] has been used for the comparison in these
experiments.

Seven parameterization function control variables controlling seven basis functions
have been used for each reparameterization function. To evaluate the minimum descrip-
tion length for a given parameterization the curves must be sampled. For the proposed
formula the sampling of each parameterization function γi(i = 1, . . . , ns) results in np

sample points. np was set to 65. This means that for the proposed formula the number
of sample points are npns. This results in 1105 to 2080 sample points for the three dif-
ferent datasets. To give a fair comparison, the number of sample points were set to 2048
for the standard scalar product. Other initializations and parameters for the optimization
algorithms were identical in all cases.

The resulting model quality is evaluated by looking at specificity and generality. Re-
member that by specificity is meant that shapes generated by the model using reasonable
parameter values (not more than ±3 std.) should be representative for the shape class.
The definition of specificity is given in Section 2.6.2. In Chapter 8 it is shown that the
quantitative measure of specificity is problematic. A better way to evaluate the specificity
is to simply plot shapes produced by using equal parameter values in the different models
that are to be compared. By increasing the parameter value up to 3 std. it can often be
seen which model is more specific.

The specificity evaluation is presented for the most difficult dataset, the g-shapes. In
Figure 7.4, the mean-shape and the mean-shape plus and minus three standard deviations
of the first shape mode is plotted for each model. In the figure, it can be seen that the
shapes generated by the proposed algorithm are somewhat more representative. Look at
the left plot (standard scalar product used) and note, for example, the sharp bend in mid-
dle of the dashed curve and the not sharp enough corner at the end of the first arc of the
mean shape (the solid curve). That this corner is not sharp is a sign that the correspon-
dences at this point are matching badly which results in a smoothing effect. Also, when
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Figure 7.4: The mean (solid line) and the first mode of variation (dashed and dotted lines)
of the optimized models. The model on the left is optimized and built using the standard
scalar product and the model on the right is optimized and built using the proposed new
formula.

comparing the two dotted g:s it can be seen that the one to the right (proposed formula
used) looks more natural, with less artificial bends, corners where there should be corners
and smoothness where it should be smooth. For the other datasets in this experiment the
differences in specificity of the two models are somewhat harder to distinguish.

The generalization ability of the models is measured as the mean square error in
“leave-one-out” reconstructions. This measures the ability of the model to represent un-
seen shape samples or, in other words, the models ability to generalize. The definition
using a discrete set of landmarks is given in Section 2.6.1. In this experiment, the error
between the original curve and the model approximation curve is calculated by integrat-
ing the squared distance between the curves by arc-length. The result is shown in Figure
7.5. The plots show the mean square approximation error against the number of modes
used. It can be seen that the new formula gives models that generalize better than models
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Figure 7.5: The mean square approximation error of the six models is plotted against the
number of modes used. The top figure shows the models of femurs, the middle figure
shows the models of g:s and the bottom figure shows the models of hands.

built using the standard scalar product, even if node cost penalties are used to prevent
clustering with the standard scalar product.

7.6 Summary and Conclusions

In this chapter the standard scalar product is replaced with a new formula that is invariant
to mutual reparameterizations. The optimization of the shape model becomes invariant
to mutual reparameterizations and is therefore better suited for finding correspondences,
since clustering is prevented.

The global infimum of the optimization problem using the standard scalar product
was shown to correspond to reparameterizing all the shapes to put all the weight in a
single point, a useless solution. Using the proposed formula this problem is avoided
and a more robust and stable algorithm is achieved. Even when the algorithm using the
standard scalar product does not collapse, an improvement in quality is achieved using
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the proposed formula.
The algorithm was compared to an algorithm, which uses ad hoc solutions to prevent

clustering of sample points. The comparison showed that the achieved models using the
proposed formula are more general for all the three tested datasets. The model of the most
difficult dataset turns out to be more specific. It was harder to distinguish the differences
in specificity of models of the two other datasets.

A similar approach replacing the standard scalar product using inverse parameteriza-
tion functions should be able to extend to 3D models of surfaces.
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Chapter 8

Benchmarking of Algorithms for
Correspondence Optimization

From a persons personal point of view, artifacts don’t make us smarter or make
us have better memories; they change the task. From the system point of view, the
person+artifact is more powerful than either alone.

Donald A. Norman

There are many algorithms available for automatic determination of correspondences for
the construction of Statistical Shape Models from examples. Benchmarking is needed
to rank the different algorithms. Prior work has argued that the quality of the models
produced by the algorithms can be evaluated by a specific set of measures designed to
measure compactness, generality and specificity. In this chapter severe problems with
these standard measures are discussed and analyzed both theoretically and experimentally,
both on natural and on synthetic datasets. Instead of the standard measures, a ground
truth correspondence measure (GCM) can be used for benchmarking and in this chapter
such a measure is defined and used for benchmarking of several algorithms. Minimum
Description Length (MDL) with an added curvature cost comes out as the winner of
the automatic methods. Hand marked correspondences turn out to be best when this
is feasible and a semi-automatic method is shown to lie in between the best automatic
method and the hand built models in quality.

8.1 Introduction

As described earlier in this thesis, there are many algorithms available for automatic shape
modeling. The field has matured and there is a need for benchmarking of these algo-
rithms. Similar developments have taken place in different fields, e.g. the field of stereo
[110].

In order to evaluate these algorithms, different measures of the quality of the param-
eterizations and the resulting models have been used. What should be considered as a
shape model of high quality is highly dependent on the application. For example the
model that performs best on segmentation might not be the model that performs best
on classification. If the model is to be used for a specific purpose, such as segmentation
of the brain in SPECT images, the choice of algorithm should be made using a criterion
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based on the application. For a more general evaluation of shape model quality the stan-
dard measures have been compactness, specificity and generality [31]. It is also common
to evaluate correspondences subjectively by plotting the shapes with some corresponding
points marked. These methods have become very popular since they do not require any
ground truth data, which is very time consuming to collect. As this chapter will show
however, these measures are problematic and ground truth is necessary after all.

In [111] the quality of registrations of images is evaluated both by measuring the
overlap with ground truth and by measuring model quality measures such as specificity
and generality of models constructed from the registered images. There it is claimed that
ground truth correlates with generality and specificity. This is shown by doing random
perturbations of ground truth and noting that all the measures increase monotonically
as the level of perturbation increases. However, this does not show that the measures are
minimal at the ground truth. The path to the minimum is not likely to be found by a
random perturbation. Measuring the sensitivity to perturbation of ground truth it is also
claimed that specificity is more sensitive than the other two measures. Instead of mea-
suring sensitivity to random perturbation it would be more interesting to examine which
measure is most suitable for choosing between two training sets produced by different
non-random strategies. This might be done by letting human experts choose which is the
best of the two compared training sets.

In this chapter, problems with the standard general model quality measures, namely
compactness, generality and specificity, are analyzed. It is shown that they do not succeed
in measuring what they attempt to measure. With practical experiments it is also shown
that the standard measures do not correlate well with correspondence quality.

The qualities that the standard measures attempt to measure are often, but not always,
important. However, even when they are important, as we will see, it is problematic to
actually measure them.

For most applications, high quality of the correspondences is both desirable and
highly important. A shape model built from correct correspondences is a model that
correctly describes the shape variation within the class, whereas, as will be shown, a sim-
plified model can get excellent measure of specificity, generality and compactness, but
relevant shape information may have been lost. To cope with this, here it is proposed that
a ground truth correspondence measure (GCM), measuring the quality of the correspon-
dences at important locations, is used for benchmarking. Verification using ground truth
is an established method in computer vision, see for example the CAVIAR project [50].
Ground truth has also been used for verification of segmentation, see for example [96]. In
[129] evaluation of four algorithms for 3D-correspondence is done with a simple ground
truth correspondence measure used together with the standard measures to compare the
algorithms. However, no evaluation of the evaluation measures is done. In this chapter a
close examination of the different evaluation measures is performed.

The compactness-, specificity- and generality-measures were described in Section 2.6.
In Section 8.2 theoretical weaknesses of these measures are discussed. In Section 8.3 a
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measure called Ground truth Correspondence Measure (GCM) is introduced. This new
measure makes the subjective evaluation of correspondences more objective and quanti-
tative. In Section 8.4 experiments show that all the standard measures can lead to very
wrong conclusions when used to evaluate algorithms. GCM however always corresponds
to the subjective evaluation or in synthetic examples to the known ground truth. In Sec-
tion 8.5 several algorithms for finding correspondences are bench-marked using GCM.

The three major contributions of the work in this chapter are: (i) It is shown by the-
oretical analysis and practical experiments on both natural (extracted from real images)
and synthetic datasets that the former shape model measures compactness, specificity
and generality have severe weaknesses. (ii) A correspondence quality measure (GCM) is
proposed and it is shown that GCM together with a database of ground truth correspon-
dences is well suited for benchmarking algorithms for correspondence localisation. (iii)
Benchmarking of several state of the art algorithms is presented and MDL with curvature
cost comes out as the winner of the automatic methods. (iv) Contrary to former results
handmade models are shown to be the best and a semiautomatic algorithm is proposed
that outperforms all of the automatic algorithms. One might argue that it is obvious that
a measure built on ground truth data, favors other hand built models marked by other
humans. One must then also keep in mind that our measure gives extremely low value
also for the hand built synthetic box-bump model.

8.2 Discussion of Model Quality Measures

It is important to build the model from correct correspondences. Assume that a set of
training shapes with correct correspondence, ci(γi(s)) :=: cj(γj(s)) over all the shapes
at all points, is given. For medical images this means that every anatomical point in one
shape is matched to the same anatomical points in all other shapes in the training set
(even for non-medical data, we still use the term anatomical to refer to points such as
for example the upper left corner of the right headlight on a car). A model built from
these dense correspondences will describe all the shape variation that is present in the
training set and no variation that is not present. If we perturb the correspondences, new
artificial shape modes are likely to be introduced into the model. These shape modes
describe movement of points along the shape, due to incorrect correspondences. It may
also be the case that there are real shape variations that are lost e.g. by algorithms fa-
voring closeness between corresponding points. Therefore correct correspondences are
very important for model quality. Specificity and generalization ability are also important
properties of a shape model, but as we will see, they are both difficult to measure. Also
a common situation when measuring generality, specificity and compactness is that the
curves (G(nm), S(nm) or C(nm)) for different models intersect each other and in this
case it is not possible to choose which model is of higher quality. Sometimes this problem
can be avoided since it may be enough to only examine the asymptotic value of the quality
measures, but often this is not desirable since one often wants to have few modes.
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In this section, the three standard measures will be analyzed and specific weaknesses
will be described.

8.2.1 Generality

One major problem with measuring generality defined using Equation (2.33) is that the
parameterization of the shape that has been left out is unknown. This is often handled
by letting the shape be included together with the training set in the correspondence
optimization, and removing it first before the final model is built. This produces a bias so
that the generality cost for the optimized model will always be underestimated so that it
looks better than it is. This is especially true when optimizing costs like MDL since there
is the risk of oversimplifying the shapes by optimizing the parameterizations using MDL
and similar measures. This is because incorrect correspondences that get rid of true shape
variation will give a better MDL. To avoid these problems it would be necessary to run
the optimization procedure once for each shape that is left out and then pick a suitable
parameterization for the left out shape and try to represent this shape using the model.
There is no obvious way to pick the parameterization of the left out shape. One way to
decide on this parameterization function is by solving the correspondence problem. This
means that evaluation of solutions to the correspondence problem in their turn require
solutions to the correspondence problem for the left out shape, but then we are back to
including the test shape in the optimization, resulting in the bias above.

In [111], a different version of the generalization measure is introduced using the
formula

G(nm) =
1

ns

ns
∑

j=1

||yj − y′j(nm)|| , (8.1)

where yj are the shapes in the training set and y′j is the closest shape to yj minimized
over a set of model generated shapes and nm is the number of modes used to create the
samples. Formally,

y′j = arg inf
xj∈{x1,...,xN}

||yj − xj(nm)|| . (8.2)

This version avoids the “leave one out” problem, but it does not measure general-
ization ability to shapes outside the training set. Consider the shape space Ωnd

np
of all

possible shapes with np points in nd dimensions. Let ΩM be the subspace generated
by the model. Then arg infxj∈{x1,...,xN} ||yj − xj(nm)|| is actually an approximation
of the orthogonal projection of the shape yj in the training set onto the subspace ΩM .
Therefore there is no need for approximating the distance, since the projection can be
calculated using the scalar product and the vectors generating ΩM . This is illustrated in
Figure 8.1. If the model spans the whole space spanned by the training set the projection
distance will of course be zero. Then it may be argued that we are instead interested in
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Figure 8.1: The generality measure (8.1) approximates the sum of distances from the
shapes in the training set to the shape space generated by the model.

measuring the closest distance for a bounded number of shapes in ΩM . However, this
does not measure generality. Actually, a more general model will have more spread out
sample shapes and therefore the distance to the closest one will be greater, so the measure
will be larger when it should be smaller. This is not a measure of generality, but rather of
specificity.

Another approach for handling this problem and measuring generality is the one used
in Section 7.5. In this approach the model is built as in the standard approach but no
optimized correspondences between the left-out shape and the model generated shape
are used. Instead arclength parameterization is used for the shapes when calculating the
approximation error. This makes it possible to get some measure of the generality without
including the left-out shape in the optimization. However, since in some cases arclength
will not be close to correct correspondence, this measure, while better than nothing, can
be wrong.
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8.2.2 Compactness

One problem with the compactness measure defined in Equation (2.38) is that it does not
take into consideration the value of gathering the variance in as few modes as possible.

In Figure 8.2 the compactness of two models are plotted over the number of modes
nm. The total variances of the two models are equal. For model A all variance is con-
centrated in the first shape mode. The graph for model A therefore goes up to the total
variance in the first mode. For model B the variance is distributed equally over all modes.
According to the quantitative definition of the compactness measure and the strategy for
comparing models in Section 2.6, model B is more compact than model A, whether we
include all modes or only sum up to some other nm or whether we look at which curve is
below the other. However, from the qualitative definition, by compactness is meant as lit-
tle variance as possible in as few modes as possible, so from that definition the conclusion
is that model A is more compact than model B, since they have the same total variance
but model A captures it in one mode.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

11

Compactness of model A and model B.

nr of modes

co
m

p
a

ct
n

e
ss

Model A
Model B

Figure 8.2: The compactness curve of model A is above that of model B. So model
B is therefore more compact judging from the measured quantity. However from the
qualitative definition model A is more compact than model B, since it captures all the
variation in one mode.
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This example may be even clearer if we let the total variance be very slightly (ǫ) greater
for model A and if we let the variance be distributed over 1000 modes instead of 10 in
model B. The compactness curve for model B is then strictly below the one for model A,
even when using all modes. However, this ǫ-improvement in total variance is of course
not worth using a thousand modes instead of one. Therefore we can conclude that the
compactness measure in Equation (2.38) does not capture the notion of compactness
very well.

Another thing to consider is that the compactness measure favors shapes parameter-
ized so that they can be described as simply as possible. This approach works well for
finding approximate correspondences but there is also the risk that these simple descrip-
tions come at the cost of loosing real information about shape variation. This should then
ideally lead to a bad generalization measure, since the model should not be able to accu-
rately describe new shapes, but as described in the generality section, the left out shape
is often included in the parameterization optimization together with the training set in
order to decide a parameterization and then this shape is also described in a simplified
manner and the loss of shape information is not detected. Actually, this can also be a
problem in general when optimizing MDL which can be understood when noticing the
similarity between the formulas for compactness (2.38) and for MDL (5.16). Of course,
this similarity also means that the specified compactness measure is biased towards MDL
and similar methods.

8.2.3 Specificity

For simplicity of illustration, assume first that the norm used for specificity is ||f(x)|| =
∫

|f(x)|dx (or ||f(x)|| =
∑ |f(x)|) , i.e. the L1-norm (or l1). Assume two models

built from a training set consisting of rectangles as shape A and shape B in Figure 8.3.
Also assume that Model 1 generates samples as shape C and model 2 generates samples
as shape D. These models will have equal specificity measure, since C and D have equal
distance to the closest shape in the training set. However, shape C belongs to the shape
class, but shape D does not. The conclusion is that disturbances with zero mean will not
be detected by the specificity measure.

To explain the above in a more precise way, consider the training set

T = {y1, . . . ,yns
} (8.3)

consisting of rectangles with equal width w and varying height h ∈ {h1, . . . , hns
}. For

simplicity, assume w = 1. Assume that model 1 can generate all rectangles with width
w and height h ∈ (0,∞). Call this space Ω1 and call its probability distribution µ1.
We can identify Ω1 with R

+. Assume that model 2 can generate the same rectangles and
also any shape that can be constructed by adding functions with mean zero and bounded
amplitude to the top side of the rectangle (in the example in Figure 8.3 the added function
is sin). Call this space of shapes, generated by model 2, Ω2 with probability distribution
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Figure 8.3: Shape A and shape B are in the training set. One model generates examples
like shape C and another model generates shapes like D. These models are equal with
regard to the given formula for specificity.

µ2. In order to describe top side functions for model 2, let F = C0([0, 1], R), i.e. the
space of continuous functions from [0, 1] to R. Let suitable functions be

Bm,a = {f ∈ F : sup
x∈[0,1]

|f(x)−m| ≤ a,

∫ 1

0

fdx = m}. (8.4)

In order to keep track of the distance to the closest rectangle, define

a(h) = inf
hi∈{h1,...,hns}

|h− hi|. (8.5)

We denote Ωh = Bh,a(h) and note that

Ωh1

⋂

Ωh2 = ∅ (8.6)

96



8.2. DISCUSSION OF MODEL QUALITY MEASURES

for all h1, h2 ∈ Ω1, h1 6= h2. Now, let

Ω2 =
⋃

h∈Ω1

Ωh. (8.7)

The shape space generated by model 2 is an extension of the shape space generated by
model 1, Ω1 ⊂ Ω2. Model 2 therefore clearly is less specific than model 1.

Let π : Ω2 → Ω1 be determined by the mapping defined on the topside functions as

π : f 7→
∫ 1

0

fdx . (8.8)

These definitions are illustrated in Figure 8.4.
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h

Figure 8.4: The space Ω2.

Now, assume that, loosely speaking (thinking for example of Ω2 as a subset of Rn and
assuming probability density functions p1 and p2 corresponding to µ1 and µ2), we want

∫

Ωh

p2(z)dµ0(z) = p1(h) , (8.9)

where Ωh is the space consisting of shapes generated from the shape h, which is a rectangle
with height h, i.e. Ωh are rectangles where the top side has been replaced with some
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continuous function so that the mean is still at h. This can be stated as demanding that
µ2 is normalized such that

∫

Ω2

φ̃ ◦ π(z)dµ2(z) =

∫

Ω1

φ̃(h)dµ1(h) , (8.10)

for all functions φ̃ ∈ C0(Ω1, R).
Let’s now evaluate the specificity measure for model 2 using the general definition

(2.37). This gives the specificity measure as

∫

Ω2

inf
yj∈T

||yj − z||dµ2(z) . (8.11)

Define φ(z) = infyj∈T ||yj − z|| and note that because of how Ω2 is constructed

φ(z) = φ̃ ◦ π(z) where φ̃(h) = infhj
|hj − h|.

Then use (8.10) to show that (8.11) is equal to

∫

Ω1

inf
hj

|hj − h|dµ1(h) . (8.12)

and this is the specificity measure for model 1.
So the specificity measures for model 1 and model 2 are equal but as explained above,

model 2 is clearly less specific than model 1. In the calculations above the shapes clearly
do not have to be rectangles. Actually Ω1 can be any shape space and Ω2 can be any
extension formed by adding integrable functions with mean zero and suitably bounded
amplitude to some part of the shape.

Using the standard L2-norm the above proof is not quite as intuitive as above and the
space Ωh gets more complicated, but still we get the same specificity for the space Ω1 as
for Ω2.

To illustrate the problem with the specificity measure further another example is given
in Figure 8.5, where a number of shapes are shown. For shape A, B and C landmark 40
is at the left corner of the bump and landmark 50 is at the right corner of the bump.
Landmark 10, 20, 30 and 60 are at the corners of the rectangle in clockwise order. Be-
tween these landmarks the landmarks are placed by arc length parameterization. Shape
D is constructed by taking shape B and projecting down the bump onto the rectangle.
Assume now that two different models of box-bumps are built in some way from shape A
and shape B. Shape C also belongs to the class of box-bumps but shape D does not. Say
that model 1 generates shapes like Shape C and model 2 generates shapes like shape D.
Look at the terms in the specificity definition (2.34). The term for model 2 that comes
from shape D will be less than the term for model 1 that comes from shape C. This im-
plies according to (2.34) that model 2 is more specific than model 1, but this is clearly
wrong.
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Figure 8.5: Two models are built from shape A and shape B. It turns out that the model
that generates shapes like shape D has a better specificity than the model that generates
shapes like shape C, but shape D does not belong to the shape class whereas shape C does.

So we can conclude that it is difficult to design a specificity measure that takes into
consideration in what way shapes are similar to each other and that the quantitative mea-
sure defined in Equation (2.34) does not succeed. The measure (2.34) is based on the
idea that the model should only be able to represent shapes that look like the ones in
the training set. This might be a reasonable approach if the training set is very large but
in practice it is often rather small. The model must then be able to represent not only
shapes that look like the ones in the training set but also shapes that deviate from the
training shapes, but do so in a way that means that they still belong to the shape class.
The standard specificity measure can easily give worse error for shapes that belong to the
shape class than it does for shapes that do not belong to the shape class.

8.2.4 Conclusions

We have illustrated serious problems with the standard measures. As an extreme example
it is possible to get perfect compactness, specificity and generality (zero) by sampling in
approximately one point on all shapes, but this of course is a useless set of correspon-
dences. Some problems with compactness were noted already in [31]. The commonly
used measures for specificity, compactness and generality can give a rough idea about
the quality of a model in some cases, but in other cases, the conclusions drawn from
these measures can be wrong. Later in this chapter, this will be further illustrated with
experiments.
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8.3 Ground Truth Correspondence Measure (GCM)

If ground truth correspondences are known for a training set it is possible to measure the
quality of the automatically established correspondences (used for building the model) by
measuring how well the produced correspondences agree with the known ground truth.
Since ground truth is required, this measure can of course not be used to locate corre-
spondences, but instead to evaluate algorithms for establishing such correspondences.

Note that it is often necessary to use some apriori ground truth information to evalu-
ate correspondences since the correspondence problem in general is not solvable without
it. The geometric information in the shape object may not be enough, other types of
knowledge about the objects are often needed. Then automatic algorithms based only on
geometric information may be differently good at estimating true correspondences from
the geometric information alone. Benchmarking with ground truth correspondences is
then necessary in order to evaluate the algorithms. The following example illustrates this.

In Figure 8.6 three shapes are shown. Assume that shape A and Shape B belong to the
training set. A reasonable assumption would be that there is one shape variation mode
corresponding to the position of the bump. Now, assume shape C is also in the train-
ing set. It is now reasonable to assume two shape modes, one for each bump telling the
height of each bump. The conclusion is that for the training set consisting of shape A
and shape B the correspondence problem is not solvable without ground truth informa-
tion. Therefore in order to be able to measure the correctness of correspondences located
automatically a database of ground truth correspondences is necessary.

8.3.1 Basic Definition

In order to measure the quality of the correspondences produced by an algorithm for
automatic correspondence determination, datasets with manually located landmarks and
synthetic datasets with known corresponding points is used. For synthetic examples these
marks are exact but for manually placed marks there is of course a subjective element and
also the introduction of a small error is inevitable.

Let the parameterizations γi of the shapes xi (i = 1, . . . , ns) be optimized by the
algorithm that is to be evaluated. Then, for every shape xi together with its ground truth
points gij (j = 1, . . . , ng), find tij so that

xi(γi(tij)) = gij , i = 1, . . . , ns, j = 1, . . . , ng . (8.13)

This means that the parameter values that correspond to the ground truth points on
the shape are calculated. Formally tij = γ−1

i (x−1
i (gij)). Now, keeping i fixed for a

moment, for every shape xk (1 ≤ k ≤ ns, k 6= i) use the same parameter values tij
computed for xi. The points produced should be close to the corresponding ground
truth points of xk , if the parameterization functions represent correspondences of high
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Shape A

Shape C

Shape B

Figure 8.6: An illustration of one difficulty with the correspondence problem showing
that ground truth is needed to evaluate the correctness of correspondences. If only shape
A and shape B are taken into account, it is reasonable to assume one shape mode, namely
the bump position. If also shape C is in the training set, it is natural to assume two shape
modes, namely the height of the bumps.

quality. That is, xk(γk(tij)) should be close to gkj . The deviation is measured by

eijk = d
(

xk(γk(γ−1
i (x−1

i (gij)))) , gkj

)

, (8.14)

where d is some suitable metric. Finally we do this starting from every shape in the set,
using each of its ground truth points and measure correspondence to each other shape in
the set and take the mean error so we get

GCM =
1

ns(ns − 1)ng

ns
∑

i=1

ng
∑

j=1

∑

k∈K

d (xk(γk(tij)) , gkj) , (8.15)

K = {1, . . . , i− 1, i + 1, . . . , ns} .

where tij is the parameterization parameter value for the ground truth point j on shape
i, i.e.

tij = γ−1
i (x−1

i (gij)) . (8.16)

The constant ns is the number of shapes and ng is the number of ground truth points
on each shape. Any metric d could be used, but here d(a, b) is the length of the shortest
path between the point a and the point b along the shape, which has been normalized
to have area one. Locally (usually also globally) the shortest path is a geodesic. Apart
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from the advantage of measuring the error along the shape, this approach also gives scale
invariance. On curves, the metric d corresponds to the arc-length distance on curves
normalized to length one. The procedure described above is illustrated in Figure 8.7.

In [94] a somewhat similar measure is used to evaluate correspondences on registered
surfaces. However, there the distance between the corresponding points is measured as the
Euclidean distance. Also, the distance is measured between points on a deformed template
and points on the target surface whereas here we focus on group-wise correspondence.

8.3.2 GCM Measure with Mahalanobis Distance

For synthetic examples ground truth marks are exact but for manually placed ground
truth points on natural shapes there is of course a subjective element and also the intro-
duction of a small error is inevitable.

Therefore, for natural shapes, statistics about the ground truth points could be taken
into account.

Let a number of people mark corresponding ground truth points on the same dataset.
One example, which has been marked by 18 people, from the database can be seen in
Figure 8.8.

Means and variances can then be calculated and the norm used to calculate GCM can
then be the Mahalanobis normalized distance,

GCM =
1

ns(ns − 1)ng

ns
∑

i=1

ng
∑

j=1

∑

k∈K

d
(

xk(γk(tij)) , gkj

)

σkj

, (8.17)

K = {1, . . . , i− 1, i + 1, . . . , ns} ,

where gkj is the mean and σkj is the standard deviation for landmark j on shape k.

8.3.3 Comments

Note that it is not the case that we optimize the positions of a set of landmarks like the
centers of the eyes of a face that then can be compared to ground truth. There are no
such landmarks during optimization. The optimization works directly on the param-
eterization functions to establish dense correspondence. The ground truth points are
used to evaluate the established parameterization functions but the optimization does not
move around landmarks trying to place them at the ground truth points. The correspon-
dence is completely described by the parameterization functions. By mapping the ground
truth points from one shape via the parameterization functions to another shape we can
measure the quality of the correspondence. Note that there are infinitely many sets of
parameterization functions describing the same correspondences. This is the reason why
it is necessary to map ground truth points between shapes.

Although the GCM measure is based on a finite set of points on the shape, if these
points are chosen carefully they will represent most of the valuable information of the
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Figure 8.7: Illustration of GCM calculation: (1) The optimiser determines the param-
eterisation functions γi, i = 1 . . . ns, (2) Given ground truth point j on shape i, (3)
calculate the corresponding parameter tij . (4) Use tij on shape k. (5) Calculate the
distance eijk from xk(γk(tij)) to ground truth point j on shape k.
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Figure 8.8: One example of the rat shapes with ground truth points set by 18 people.
Note that there is different variance for different ground truth points.

shape. In handwriting recognition such points are called core points, see [127]. Typically
the ground truth points would be chosen at points where the shape is characteristic for
all shapes in the shape class.

This ground truth correspondence measure measures the precision of the established
correspondences, and thereby the extent to which the shape model represents the true
shapes. Using similar techniques other ground truth measures can be defined. For ex-
ample, using ground truth segmented images a ground truth segmentation measure can
be defined. In medical applications the diagnose could be used to define a ground truth
classification measure.

8.4 Experimental Validation of GCM

8.4.1 Setup

In this section, GCM, generality, compactness and specificity are evaluated experimen-
tally. The experiments show that GCM together with its database of ground truth land-
marks is a better measure than the standard evaluation methods. The experiments in this
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section treat two datasets.
Silhouettes: The silhouette dataset consists of 22 contours of silhouettes. 22 persons
were photographed using a digital camera. The silhouettes were then extracted using an
edge detector.
Box-bumps: A synthetic shape consisting of a box with a bump.
In Figure 8.18 one example of a silhouette shape and one example of a box-bump shape
can be seen. For the optimization, seven parameterization parameters (controlling seven
basis functions) and 128 sampling points were used for each shape.

8.4.2 Box-bump Experiment

The first experiment was to start from correct correspondences and then optimize the
parameterizations so as to minimize MDL. Synthetic box-bump shapes, consisting of a
rectangle with a bump on different positions on the top side, were used for this test, since
we know the true correspondence here. The value of the minimum description length
(MDL) (5.16) and the ground truth correspondence measure (GCM) (8.15) over the
number of iterations is plotted in Figure 8.9.

It is interesting to note here that the GCM increases (gets worse) as MDL decreases
(gets better). The minimum, when the parameterization is optimized with MDL as cost
function, does not correspond to true correspondences in this case. This is illustrated
in Figure 8.10, where it can be seen that optimizing MDL, starting from true corre-
spondences has resulted in worse correspondences. The plot shows 4 box-bump shapes
zoomed in on the bump. Since the plot does not show the actual curve of the shape
but instead straight lines between the sample points on the shapes there appears to have
been shape changes at the corners. In an attempt to ensure that the algorithm consid-
ers the original shapes properly the number of sampling points could be increased but
the sample points will still not be exactly at the corners. Also, the main problem with
ensuring that the entire shape is taken into consideration is not the number of sample
points but instead the relative weight given to different parts of the shape depending on
the parameterization function, independent of the number of sample points.

In Figure 8.11 the compactness and specificity measures indicate that the MDL op-
timized model has higher quality. In this case we started from ground truth and as can
be seen in Figure 8.10 the correspondences are worse for the optimized model. So we
can conclude that compactness as defined in Equation (2.38) and specificity as defined in
Equation (2.34) do not correlate with correct correspondences.

In Figure 8.12 the specificity is evaluated visually. The upper model is built from
ground truth correspondences and the lower model is built from MDL-optimized corre-
spondences. The plots show the mean-shape plus three standard deviations of the first two
shape modes. Since the data in this case only has one shape mode it is enough to examine
the first two modes as in this plot. The model built from ground truth correspondences
(Model 1) is clearly more specific than the MDL-optimized model (Model 2). The slight
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Figure 8.9: The ground truth correspondence measure (GCM) and the minimum de-
scription length (MDL) plotted over number of iterations.

distortion in model 1 is due to the alignment of the shapes. The Procrustes alignment in-
troduces some nonlinearities in the shape modes. From Figure 8.12 it can be concluded
that the model built from better correspondences has better specificity, contrary to the
conclusion of the plot of (2.34) in Figure 8.11. So also in practice the specificity measure
defined by (2.34) does not work. The problem with the specificity measure is that if the
training set is limited (which is often the case) it can not be assumed that all shapes of a
class are close to one of the shapes in the training set.

Summing up this experiment, it is concluded that the compactness and specificity
measures defined in Equations (2.38) and (2.34) do not correlate well with the quality of
the correspondences in general and the specificity measure in particular contradicts visual
inspection of specificity and fails to measure the desired property.
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Figure 8.10: To the left the true correspondences for the box bumps can be seen. To the
right the correspondences established by minimizing MDL are shown. The figure shows
the bump part of the shapes. Compare for example the location of samplepoint 51.

In Chapter 10 of Davies’ thesis [31] a somewhat similar experiment indicates that
MDL does succeed in finding close to optimal correspondences on the synthetic box-
bump data set resulting in good specific shape modes. However, in that experiment the
shapes are not aligned using Procrustes to minimize Euclidean distances like they are in
this one. MDL near ground truth was also examined in [31] (Figure 6.5) by showing that
MDL increases monotonously in mean when applying random perturbations of Gaussian
noise with increasing magnitude. However this does not show that the optimum of MDL
is located at ground truth, since it does not show that there is no path that leads to lower
MDL than that at ground truth correspondences. In fact, it is unlikely that the path to
the optimum would be found by random perturbations. So these experiments do not
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Figure 8.11: Generalization, compactness and specificity of the ground truth box-bump
model and the MDL-optimized box-bump model.

contradict each other. The point with the experiment presented in this section is not to
evaluate whether MDL succeeds or fails, but rather to examine the evaluation measures.

8.4.3 Silhouette Experiment

In the second experiment silhouette shapes initialized with arc-length parameterization
were used. The parameterizations were optimized with respect to MDL [35] until con-
vergence. Then the optimization was continued with respect to MDL plus a curvature
cost [136] until convergence.

Figure 8.13 shows the resulting correspondences on the part of the shapes correspond-
ing to the eye. The plots show sample point 25 to 40. Anatomically this shows the end
of the forehead and the beginning of the nose of a person looking to the left. The nose
begins approximately at sample point 34 in the bottom row. The correspondences are
clearly better when using curvature. Other parts of the curves are similar.

The top plot in Figure 8.14 shows how GCM first goes down and converges while
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Shape mode 1 Shape mode 2

Model 1

Model 2

Figure 8.12: Mean-shape plus three standard deviations of the first two shape modes
for models built from ground truth correspondences (Model 1) and MDL-optimized
correspondences (Model 2).

optimizing MDL and then when curvature cost is added GCM clearly decreases and con-
verges at a lower level. The middle plot shows how MDL first decreases as it is minimized,
but then when MDL + curvature cost is minimized in the second part MDL increases. So
GCM captures an improvement in correspondences that MDL misses. In Figure 8.15 it
can be seen how the measures of generality, compactness and specificity all indicate that
the model without curvature cost has higher quality. So the standard measures can not be
used to measure correspondence quality. This experiment shows that GCM captures an
improvement in correspondences that generality, compactness, specificity and MDL all
miss.

The above experiment on silhouettes was performed on 4 shapes. A similar experi-
ment using all the 22 silhouette shapes was also done and the results were similar, as can
be seen in Figure 8.16 and Figure 8.17.

To conclude, both in theory and in practice the standard measures have severe prob-
lems.
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Figure 8.13: Corresponding sample points on parts of silhouettes optimized with MDL
and MDL plus curvature cost. To the left the part zoomed in on is marked bold on a
whole silhouette.

8.5 Benchmarking using GCM

8.5.1 Database

First a database of eight shape classes (one synthetic dataset and seven natural datasets of
curves extracted from real images) was collected. The first five shape classes (sharks, birds,
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Figure 8.14: Optimization of MDL and MDL + curvature cost.

flight birds, rats, forks) are curves generated from images in the LEMS database from
Brown University and each of these shape classes consists of 13-23 shapes [114, 117].
The sixth and eighth shape classes are the silhouette, and box-bump shapes from the
previous section. The seventh dataset consists of 23 contours of hands.

Figure 8.18 illustrates the shape classes. All the natural examples have been marked
with ground truth points by 18-25 people. In total the database consist of 28518 (not
including the synthetic dataset) ground truth landmarks manually set. The box-bumps
are synthetic with a total of 1464 ground truth points on 24 shapes.

8.5.2 Bench-marked Algorithms

The following algorithms have here been bench-marked using GCM:
arc-length: All the curves are sampled using arc-length parameterization.
MDL: As we have seen in previous chapters, one popular way to solve the correspondence
problem in shape modeling is to apply the MDL-technique [33, 34]. See Chapter 5 and
for example [35].
MDL+Cur: In [136] it was shown that a curvature cost can be added to the description
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Figure 8.15: Generalization, compactness and specificity of the MDL silhouette model
and the MDL + curvature cost silhouette model.

length to improve the correspondences produced by the optimization (named MDL+Cur
here). The curvature cost is a measure of the variation in the set of curvature functions
at corresponding points along the shapes. With good correspondences the curvature at
corresponding points will be similar and so the variance and thereby the curvature cost
will be low. The total cost function is then E = EMDL + KEcc, where EMDL is the
description length, K is a constant and Ecc is the curvature cost.
MDL+me: One of the shapes is used as a master example. Its parameterization function
is held fixed during optimization. This is a technique aimed at avoiding clustering of the
sampling points [35].
MDL+nodecost: Another technique for avoiding clustering of sample points. A node
cost is introduced to ensure that parameterization node parameters should in mean be
close to zero for each parameterization node. [136]
MDL+Par: In [76] and Chapter 7 MDL is used with a parameterization invariant scalar
product and this gives better results (called MDL+Par in this chapter).
AIAS+MDL: In [43] a technique that formerly was used in stereo for finding corre-
spondences is shown to work for shape models. This is called Affine Invariant Active
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Figure 8.16: Optimization of MDL and MDL + curvature cost for 22 silhouettes.

Shape, AIAS. In this chapter an algorithm that minimizes MDL for an AIAS model
(AIAS+MDL) is bench-marked.
AIAS+MDL+Cur: MDL is minimized for an Affine Invariant Active Shape model [43]
with an added curvature cost.
Eucl: The parameterizations are optimized to minimize the Euclidean distance between
corresponding points on all the shapes.
Eucl+Cur: The parameterizations are optimized to minimize a distance that is defined
as the Euclidean distance plus a distance in curvature variation between corresponding
points on all the shapes.
Cur: The curvature cost used in the algorithms above is here used by itself as a cost func-
tion to be minimized.
Handmade: Handmade models of all the datasets were built by a different person than
the ones marking ground truth. This was done without knowing which anatomical points
were used as ground truth. Parameterizations are determined by placing some correspond-
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Figure 8.18: One example from each class of shapes in the database.

ing points on the shapes and using arc-length between these points.

8.5.3 Benchmarking

All tests were performed with 40 iterations in each algorithm and with 128 sampling
points and 7 reparameterization function control variables for each shape.

Table 8.1 shows the remaining percentage of GCM (with Mahalanobis) after opti-
mizing from arc-length (100% means GCM is equal to when using arc-length parame-
terization and 0% means perfect correspondences according to GCM).

AIAS+MDL+Cur is the algorithm that is best in mean. This algorithm succeeds
especially well on the bird dataset (along with AIAS+MDL). MDL+Cur has the lowest
median result. Since the median is a more stable measure and since MDL+Cur is the
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Algorithm sharks birds flightbirds rats forks silhouettes hands mean median boxbumps∗

arc-length (GCM) 15.55 22.88 7.12 13.37 19.11 8.93 14.00 14.42 14.00 –
MDL (%) 27.217 65.176 56.336 29.037 19.413 46.236 17.608 37.286 29.037 29.203

MDL+Cur (%) 21.511 79.938 45.021 27.021 23.266 22.542 14.804 33.443 23.261 17.421

MDL+me (%) 29.269 91.679 61.8010 30.108 19.834 47.768 16.817 42.468 30.108 50.205

MDL+nodecost (%) 26.136 66.717 56.347 28.906 19.212 47.377 16.246 37.275 28.906 30.974

MDL+Par (%) 24.405 62.405 47.944 27.803 18.281 39.885 14.172 33.554 27.804 85.807

AIAS+MDL 21.933 23.381 57.698 28.375 20.375 38.814 14.573 29.302 23.382 75.936

AIAS+MDL+Cur (%) 21.612 23.732 47.733 27.422 23.927 26.123 14.171 26.381 23.923 111.008

Eucl (%) 43.7610 60.024 58.859 36.9210 27.328 129.7410 26.3910 54.7110 43.7610 116.829

Eucl+Cur (%) 28.848 55.183 53.545 35.039 28.599 103.579 18.269 46.149 35.039 118.8810

Cur (%) 22.014 111.1610 45.822 27.964 31.1910 21.121 15.845 39.307 27.965 17.602

Semiauto (%) 20.31 20.40 47.68 24.58 14.32 16.67 9.27 21.89 20.31 16.52
Handmade (%) 17.94 8.84 14.24 10.44 7.33 9.53 6.67 10.71 9.53 0.00

Table 8.1: The second row in the table shows the GCM (Mahalanobis normalized) for arclength parameterization of the different
datasets. The following rows shows the percentage of GCM error (Mahalanobis normalized) left after optimizing from arclength
parameterization. The upper index indicates the rank of this algorithm on this dataset. The winning algorithm on each dataset is
bold. Since the box-bumps (*) are so easy to mark, only one person has marked this dataset and the GCM without Mahalanobis
has been used.

11
6



8.6. SUMMARY AND CONCLUSIONS

best algorithm on three natural datasets and also performs best on the synthetic dataset,
MDL+Cur is selected as the winning algorithm. There is no algorithm that is best on all
datasets and no algorithm gives as good correspondences as the correspondences manually
annotated.

In Figure 8.19 the correspondences on the legs of the birds (the most difficult dataset)
are shown. Four birds out of fourteen were picked to illustrate the results. The differences
are most easily seen on the legs. It is interesting to visually compare the results of the
different algorithms on this dataset. In the columns of Figure 8.19, starting with the
left column, are the results of the MDL+Cur algorithm, the Eucl+Cur algorithm, the
AIAS+MDL algorithm and in the right column the handmade correspondences. Note
that only a few points were placed by hand. The points in the figure are sample points
based on the parameterization functions. MDL+Cur is the best overall algorithm, but as
can be seen in Table 8.1, it is not good on the birds dataset. The Euclidean algorithm is
a simple algorithm, but as can be seen in the table it gets decent results on this dataset.
The AIAS+MDL algorithm is the best automatic algorithm on the birds dataset. It can
easily be seen that MDL+Cur does not perform well on this dataset. Eucl+Cur also has
problems that can be seen most easily on the first shape. AIAS+MDL is quite good and
the handmade correspondences are even better. So the visual inspection confirms the
results of the GCM-benchmarking.

For the winning algorithm, GCM was then used to pick optimal parameter values,
such as number of sampling points, number of parameterization control variables and
paramaters specific to the winning algorithm by evaluating GCM on the shark dataset.
The algorithm was then run with these parameters on all datasets, which resulted in an
even better algorithm.

8.5.4 Semi-Automatic Algorithm

Since handmade models turn out to be best, a semi-automatic algorithm was tested. Five
shapes were manually marked to decide corresponding parameterizations and these were
then kept fixed, while the rest of the shapes in the dataset were optimized one by one
using MDL with curvature cost to fit the five fixed shapes. This resulted in an algorithm
better than all the automatic algorithms, see Table 8.1.

8.6 Summary and Conclusions

For evaluation of the quality of shape models built from correspondences located auto-
matically there exist a number of standard measures. These measures can give a rough idea
about the quality of a model in some cases, but in other cases the conclusions drawn from
these measures can be wrong. It is shown in this chapter that there is reason to question
the ability of these measures to capture model quality. In this chapter these measures are
analyzed both theoretically and experimentally on natural and synthetic data. Problems
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Figure 8.19: Correspondences on the bird dataset (the most difficult dataset) for four
different algorithms zoomed in on the legs.

with these measures are discussed and it is shown that they do not succeed in measuring
the desired properties (sometimes referred to as failing with respect to validity) and also
they do not capture the quality of the correspondences.

Since the standard general model quality measures do not work, instead a Ground
Truth Correspondence Measure (GCM) is proposed for the evaluation of correspondence
quality to be used in benchmarking. It is shown in experiments on different datasets
(both natural and synthetic) that this measure corresponds well to subjective evaluation
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of correspondence quality, whereas the standard measures do not.
In this chapter several algorithms are bench-marked using GCM. In Table 8.1 it can

be seen that MDL+Cur is the best algorithm. There is no algorithm that is best on all
datasets and no algorithm gives as good correspondences as the correspondences manually
marked. The semi-automatic algorithm is better than the automatic algorithms on all
datasets but the flightbird dataset.

In previous work it is often claimed that automatic algorithms give better correspon-
dences than models built by hand. These claims are often supported by measures like
generality, specificity and compactness but we have shown that these measures have se-
vere problems and should not be used for evaluation. Measuring GCM, it is concluded
that models carefully built by hand are actually very good. In some cases it may not be
reasonable to manually mark the full dataset but, as seen, a semi-automatic approach,
where only a small number of shapes need to be manually marked, works very well.

Of course it would be desirable to have a measure that does not rely on having ground
truth, but as we have shown here, the measures available all have severe problems and can
not be used for benchmarking. It is our view that ground truth based measures must be
used for evaluation of correspondence algorithms used for automatic model building.

The measure GCM can also be used to evaluate algorithms for finding correspon-
dences on shapes of any dimension, e.g. surfaces. A simple examination is performed
in [129] but a more thorough examination along the lines in this chapter remains to be
done.

It would be very interesting to examine a ground truth segmentation measure using
a database of segmented images and measuring how well the shape model is able to seg-
ment them. This could be done using for example the methods used in [96]. Also in
for example medical decision support it would be interesting to evaluate a ground truth
diagnose measure.
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Chapter 9

Fully Automatic Construction Without
Object Outlines

Everything is complicated; if that were not so, life and poetry and everything else
would be a bore.

Wallace Stevens

One successful measure for establishing correspondences of high quality is minimum
description length (MDL). In other approaches it has been shown that parts+geometry
models which model the appearance of parts of the object and the geometric relation
between the parts have been successful for automatic model building. In this chapter it
is shown how to fuse the above approaches and use MDL to fully automatically build
optimal parts+geometry models from unlabeled (i.e. different images in the training set
can be of objects from different object classes) images. The algorithm handles object
classification, outliers, missing data, model complexity selection and correspondence op-
timization, all as natural integrated parts of the process. The resulting MDL objective
function is optimized over both discrete and continuous decision variables. The algo-
rithm has been implemented and tested for establishing patch correspondences for model
building from unlabeled images with occlusions.

9.1 Introduction

9.1.1 Background

MDL [7, 35, 104] has been applied both to establishing corresponding parameterizations
of manually pre-segmented object outlines in order to build active shape models and in
order to group-wise register the entire training images while building active appearance
models [138]. In other approaches parts+geometry models have been successful for fully
automatic model building ([10, 37, 47, 48]). In this chapter it is shown how to fuse
the above approaches and use MDL to fully automatically build optimal parts+geometry
models from unlabeled (i.e. different images in the training set can be of objects from
different object classes) images with occlusions. Another line of research that is related to
our work is the area of non-rigid factorization methods, e.g. [18]. In addition to recon-
structing a model for the point set, they also try to estimate the camera motion. However,
they assume that feature correspondences are given or obtained by some heuristics. Sim-
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ilarly, outliers and missing data are handled with ad-hoc techniques. Our framework is
well-suited to be applied to these problems as well.

In this chapter, MDL is used as a framework for a number of decisions, not only to
determine correspondences. We include decisions about what object class the object in
each image belongs to, what to include in the modeling and what to consider as outliers
explicitly in calculating the minimum description length. The algorithm therefore clas-
sifies the images and decides what in the images to build the model from and what to
consider as irrelevant background data. Decisions about classification (what object class
the object in each image belongs to), model complexity selection (e.g. number of parts),
what to include in the modeling and what to consider as outliers and missing data are
done using an expanded version of MDL (a somewhat similar but more limited approach
is used in [84]). In this way it is possible to build MDL optimal models fully automat-
ically from unlabeled images in the presence of outliers and missing data. This chapter
focuses mainly on showing that this process can be used to establish correspondences to
be used in order to build models. The uses of the resulting models can be various and
explorations of this is future work.

9.1.2 Setup

A set of images are normalized to have approximately the same size and image intensities
are normalized by dividing each pixel be the mean value in a neighborhood of the pixel
so that only local information remains and global illumination differences for example
are removed (we will use a scale space framework as described in Section 9.4 so what
is meant by local will depend on the scale space level). Next a histogram equalization
is performed on the images to enhance contrast. From the set of images a number of
parts are extracted by calculating corners/edge-points and sampling patches around these
points on a number of scales. The mean of each patch is then subtracted. so that the
intensities in each patch have mean zero.

This gives an unordered set of parts for each image and some of these parts are to be
said to be in correspondence and used to build a model. For unordered sets, as opposed to
what is usually assumed for example for curves or surfaces used to build shape models, it
is often the case that points are frequently missing and that there are outliers. Traditional
methods for shape analysis have problem with missing data and outliers. Here outliers
are detected using MDL and instead we get missing data. Methods for Procrustes analysis
and principal component analysis for missing data must then be used ([17, 70]).

9.1.3 Problem Formulation

To begin with, assume that all the images are of objects from the same object class. and
we will describe how to build a model. After this, we will show how this process can be
expanded to handle unlabeled images resulting in a set of models, one for each object
class. So for now, assume that there is only one object class. The main problem is
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formulated as follows. Assume that a dataset of examples D = {S1, . . . , Sns
} are given,

where each example Si is a set of unordered feature points zi,j (with surrounding patches)
Si = {zi,1, . . . , zi,ki

}, from image i and each point zi,j lies in Rp for some dimension
p, typically p = 2. An example of such sets is the output of a feature point detector, e.g.
[64], with patches extracted around the points. Now there are several questions.

(i) How should one determine which points in each set is to be considered as outliers
and clutter and which should be included in the model building?

(ii) How should one determine the correspondences of feature points across the exam-
ples?

(iii) What is a suitable shape/appearance (parts+geometry) variation model for the in-
liers?

The solution is useful for un-supervised learning of shape variation in image sequences
or unordered image sets. The resulting models could then be useful for a number of
applications, including tracking, recognition, object pose etc.

The idea here is to transfer ideas from shape variation estimation for curves and sur-
faces, [135, 36], where the correspondence problem is a crucial problem, to the concept
investigated here. As opposed to the theory for curves and surfaces, however, we do not
here have the problem of how to weight different parts of the curves relative to the other.
On the other hand we will here allow outliers and missing data. We will use the minimum
description length paradigm, [7], to select a suitable model.

We pose the problem as that of selecting: (i) inliers, (ii) correspondences and (iii)
model complexity, so that MDL is minimized. As we shall see this becomes a mixed
combinatorial and continuous optimization problem, where for each of a discrete set of
possible inliers and correspondences, there is a continuous optimization problem which
has to be solved. These continuous optimization problems involve both the problem of
missing data Procrustes and missing data principal component analysis.

Assuming for the moment that the model contains N points with patches, an order-
ing of the parts can be represented as a matrix O (for order) of size ns ×N . The entries
in O are either 0 - representing that a model point is not visible (missing) in an image or
an identity number between 1 and ki signifying which image point is to be considered as
a representative of the model point, i.e. Oi,j = 0 if model point j is not visible (missing)
in image i or Oi,j = k if model point j in image i is represented by zi,k. Also introduce
the set I consisting of pairs of indices (i, j) such that model point j is visible in image i,
i.e.

I = {(i, j) |Oi,j 6= 0} . (9.1)

The matrix O then settles both questions about outliers/inliers, missing data and corre-
spondences. Outliers/clutter are all image points not represented in O. Missing data are
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signified by zeros. Image points who’s indices are in the same column of O are corre-
sponding.

Given an ordering matrix O the data can be reordered, possibly with missing data
into a structure T of N points in ns images, i.e.

Ti,j =

{

zi,Oi,j
if (i, j) ∈ I,

undefined if (i, j) 6∈ I.
(9.2)

9.1.4 Modeling

For such a ordered set T with missing data one can align the shapes from the different
images with a Procrustes analysis with respect to a transformation group G giving a mean
shape m and a number of transformations {gi}i=1...ns

with gi ∈ G such that gi(m) ≈
Ti or rather g−1

i (Ti) ≈ m. More specifically, typically the sum
∑ns

i=1 ||g−1
i (Ti)−m|| of

the norms of the differences between the aligned shapes g−1
i (Ti) and the mean shape m

is minimized. The norm used must be able to handle missing data. After this a Principal
Component Analysis handling missing data can be performed on the residuals between
g−1

i (Ti) and m. From this, d shape variational modes, denoted {vl}l=1...d, and mode-
parameters {λli}l=1...d,i=1...ns

can be determined. New shapes can then be synthesized
as g(m +

∑d
l=1 λlvl), where λl are scalar coordinates and g ∈ G.

This takes care of the geometry variation, i.e. the shape variation as defined by the
corresponding points. Next, the appearance of the parts as defined by the corresponding
patches is dealt with in a similar fashion. For each N model points all the patches belong-
ing to that model point are also analyzed with a PCA. Note that for these PCA’s there is
no missing data but the number of patches differ if some points are missing. These PCA’s
then result in mean patches {mp

i }i=1...N , numbers of modes used {dp
i }i=1...N , patch-

modes {vp
ij}i=1...N,j=1...d

p
i

and patch-mode-parameters {λp
ijk}i=1...N,j=1...d

p
i ,k=1...ns

.
We need to assess a number of different choices: the number of model points N , the

ordering O, the mean shape m, the transformation group G, the transformations {gi},
the number of shape variation modes d, the shape variation modes {vl}, the shape coor-
dinates {λli}, mean patches {mp

i }, numbers of patch-modes {dp
i }, patch-modes {vp

ij}
and the patch-mode-parameters {λp

ijk}. The idea here is that a common framework
such as the minimum description length framework could be used to determine all of
these choices. This would put the whole chain of difficult modeling choices on an equal
footing and would make it possible to use simple heuristics for making reasonable choices,
while at the same time have a common criterion for evaluating different alternatives.

The whole process can thus be seen as an optimization problem

min
M

dl(D,M), (9.3)

over the unknowns

M = (O, m, {gi}, d, {vl}, {λli}, {mp
i }, {dp

i }, {vp
ij}, {λp

ijk})
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given data D.
In principle, all these variables could now be optimized simultaneously using MDL.

In practice however, this becomes impossibly cumbersome. Also for some of the pa-
rameters to be determined, more easy methods not using MDL will give very close
to the same result. This includes for example the Procrustes analysis and the PCA’s.
Therefore these parameters are determined without MDL and we focus the use of MDL
where it really makes a difference, namely in determining number of model points,
inliers/outliers/missing data, model complexity (e.g. number of parts and numbers of
modes) and for establishing correspondences.

9.2 Calculating MDL

9.2.1 Introduction

A number of sets of points with surrounding patches are given. In order to determine a
model that explains points that can be seen in many of the images, the goal is to minimize
the minimum description length that is needed to transmit all the interesting points of
all images, in hope that a model will be able to make a cheaper description than simply
sending the data bit by bit. Here we will present the minimum description length for
the data and the model. For the outliers, one must simply send the information bit by
bit. For the points and patches that are included as inliers in the model, the idea is that
it is cheaper to send the model with parameters and residuals etc. to explain the data.
For the modeled points and patches one must send: the model, the model parameters,
information if a certain point is missing, the transformation and the residuals.

Figure 9.1 shows a simple illustration of outliers/inliers and missing data. In the figure
a shape model is explaining most of the data. The points marked with ’x’ are in the model
and visible in that particular image. A point marked with ’o’ is in the model but missing
in the current image. The points marked with ’+’ are outliers.

9.2.2 Coding Data with Uniform Distribution

Assume α is uniformly distributed and quantified to

αmin ≤ α̂ ≤ αmax, α̂ = mδ, m ∈ Z . (9.4)

Then α̂ can take

αmax − αmin

δ
(9.5)

different values. Since uniform distribution is assumed, the probability for a certain value
of α̂ is

P(α̂) =
δ

αmax − αmin

. (9.6)
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Set 1 Set 2 Set 3 

 
model point

missing model point

outlier

Figure 9.1: A schematic figure of three sets of points. Each set consists of a number
of interesting points. These points are either considered to be outliers or modeled by a
statistical shape model.

Shannon’s codeword length for α̂, is

−log(P(α̂)) = −log(
δ

αmax − αmin

) . (9.7)

If the parameters αmin, αmax and δ are unknown to the receiver, these need to be coded
as well.

9.2.3 Coding Data with Assumed Gaussian Distribution

The derivation for the description length Lguassian of a one-dimensional dataset from
a Gaussian 1-parameter distribution described via a PCA giving a number of normally
distributed 1 dimensional variables for each object was done in [32] and later modified
by different authors. The version used here is described in chapter 5 and more details can
be found for example in [41].
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9.2.4 The Total Minimum Description Length

Modeling Unknowns

For unknown points and patches we assume uniform distribution. The minimum de-
scription length for a point x̂ uniformly distributed over the image is

dlrect = −log(P(x̂)) = −2log(
dx

X
) , (9.8)

(rect being short for the rectangular shape of the distribution). Here X is the possible
coordinate range, and dx is the resolution. The factor 2 comes from that an image point
is two-dimensional. Similarly, the description length for a general patch p̂ with uniformly
distributed intensities is

dlprect = −log(P(p̂)) = −npatchlog(
dy

Y
) . (9.9)

Here npatch is the number of pixels in the patch, Y is the possible intensity range, and
dy is the resolution.

Outliers

Corner-points not selected to represent a model point are considered as outlier points.
The outlier points are assumed to be uniformly distributed over the image, so with
npoints

o number of outlier points, MDL for the set of them is

dlpoints
outliers = npoints

o · dlrect . (9.10)

Image pixels that are not covered by an inlier patch representing a non-missing part
are considered as outliers and coded with an outlier id (from 1 to idmax) and an intensity.
The intensities of outlier pixels are assumed to be uniformly distributed so with npixels

o

number of outlier pixels, MDL for the set of them is

dlpixels
outliers = npixels

o (log(
dy

Y
) + log(idmax)) . (9.11)

The total outlier cost then becomes

dloutliers = dlpoints
outliers + dlpixels

outliers . (9.12)

Missing Data

For each model point we need to know if the point is missing in an image or not. This
means one bit for each np model points in all ns images. Conversion to nats gives

dlindex = log(2)nsnp , (9.13)

where np is the number of landmarks in the model and ns is the number of images.
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Transformations

For each image the transformation g of the model has to be encoded. Translations are
assumed equally distributed within the size of the image and other transformation param-
eters are coded with equal accuracy. This gives the following expression for the MDL for
the set of transformations:

dltrans = nsndofdlrect/2 , (9.14)

where ns is the number of images and ndof is the degrees of freedom in the transforma-
tion group.

The Model

The coordinates of the mean-shape and the coordinates of the shape-modes are also as-
sumed uniformly distributed within the size of the image. Thus the cost is

dlmeanshape = npdlrect , (9.15)

dlshapemodes = npnmdlrect , (9.16)

where nm is the number of shape modes used by the model. Similarly, for each model
point i, the cost for the mean-patch and the patch-modes is

dlmeanpatch = dlprect , (9.17)

dlipatchmodes = ni
mdlprect , (9.18)

where ni
m is the number of patch appearance modes used by the model for model-point

i. We put these together as

dlmodel = dlmeanshape + dlshapemodes +

npdlmeanpatch +

np
∑

i=1

dlipatchmodes . (9.19)

Gaussian Parameters and Residuals

Parameters for shape modes and patch appearance modes as well as residuals for point
coordinates and patch intensities are assumed Gaussian. Different possible range och dif-
ferent accuracy for point coordinates and for patch intensities gives two different costs for
Gaussians, Lpoint

guassian and Lpatch
guassian . In both cases, MDL is a function of the standard

deviation s and the number of data-points n. The total cost for these becomes

dlcoordinates =

nm
∑

k=1

Lpoint
guassian(sk, ns) +

np
∑

i=1

ni
m
∑

k=1

Lpatch
guassian(sik, ni

s) ,
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dlresiduals = Lpoint
guassian(s, 2

np
∑

i=1

ni
s) +

np
∑

i=1

Lpatch
guassian(si, n

i
snpatch) ,

dlG = dlcoordinates + dlresiduals , (9.20)

where ni
s is the number of images that model point i is not missing in.

Total MDL

So the full cost for sending the data is

MDLtot = dltrans + dlindex + dlG + dlmodel + dloutliers . (9.21)

where we note that dltrans actually does not depend on any decisions once the transfor-
mation group is decided, so it may not need to be included.

9.2.5 Note on Total MDL

Often when using MDL to establish correspondence, the formula for the total MDL is
simplified further by always using all the available modes. Since we want to simultane-
ously make decisions about model complexity and about correspondence that is not done
here. The gain in reduced residuals is weighed against the cost of more modes.

9.3 Optimizing MDL

9.3.1 Evaluating the Objective Function

Given a current set of parameters M as in Equation (9.3), a model of global shape and
part appearance can be built and MDL for the model and for the data described using the
model can be calculated. For each suggested model one needs to calculate the minimum
description length for sending all the outliers and all the data modeled with that particular
model. The number of shape modes can vary between zero and ns−1 and all these models
must be evaluated in order to pick the best one. Note here that since the modes calculated
when using missing data PCA depends on the number of modes used, the model needs
to be calculated over and over again as the different numbers of modes are tested. In the
optimization procedure the tested model with least MDL is then compared to previous
best solution.

9.3.2 Optimization Strategy

The whole optimization process over all unknowns to find

min
M

dl(D,M) , (9.22)
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where D is the data, can be divided into three parts: (1.) Optimization over the discrete
ordering matrix O, (2.) optimization over the transformations {gi} and (3.) optimization
over the remaining parameters

M̃ = (m, d, {vl}, {λli}, {mp
i }, {dp

i }, {vp
ij}, {λp

ijk}) . (9.23)

It is possible to include the choice of G as an unknown parameter and determine it
as well using MDL. You may simply try some different groups and see which one gives
the lowest MDL. This would mean weighing the higher cost of coding transformations
with more degrees of freedom against the gain of smaller residuals left to encode using the
model. However, it is just as likely that you want to choose G based on the application,
before starting the optimization. In the experiments in this thesis, G was chosen to be the
group of similarity transformations.

Assume that an ordering O is given. Then it is straightforward to reorder the in-
lier points into the data structure T as described above. Each ordering O determines
the number of model points, the ninlier inliers, the noutlier outliers and the correspon-
dences. The minimum description length for the outliers is independent of {gi} and
M̃.

Alignment Transformations

Given O, {gi} is to be determined using some version of Procrustes analysis that can han-
dle missing data. Ideally, {gi} should be evaluated using MDL. However, this consider-
ably increases time complexity and the results of alignments based on Euclidean distance
is normally very close to the same as alignments based on MDL (although sometimes
the difference can be significant) , cf. [42]. Therefore MDL is not used to determine
{gi}. Instead the alignments are based on minimizing Euclidean distances. If there are
no missing data this can be done optimally without iteration, but this requires a singular
value decomposition which with missing data is itself an iterative procedure. So instead
this is done in a number of steps where the process can be terminated without doing all
the steps if precision is less important than speed. By a shape will here be meant the
set of points from one image corresponding to the points in the model. First all shapes
are translated to the origin and scaled so that the mean distance of points in the shape
from the origin is 1. Either this is simply done using all inliers, or the quality can usually
be improved by only using inliers that are present in most of the images. Calculate the
number of images that each model point is nonmissing in. We want to use model points
with high results. Pick the cutoff such that all images use at least the minimum number
of points needed to determine the transformation. Next all shapes are aligned to the first
shape shape1. If the shapes are represented as complex column vectors this alignment is
achieved by multiplying with

shape∗i shape1/(shape∗i shapei) ,
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as described in for example [38]. When calculating the alignment parameters, if there are
missing points in one of the shapes, those points are excluded from both shapes so that
the alignment is done based on the non-missing points. Next follows a loop of estimating
a mean-shape and aligning all shapes to it, estimating a new mean-shape etc. Finally the
error remaining is minimized to find

min
m,{gi}

∑

(i,j)∈I

|Ti,j − gi(mj)|2 (9.24)

using Gauss-Newton while keeping the size of the mean-shape fixed to avoid shrinking
everything.

PCA

Assume next also that the number of shape modes d and the numbers of part appearance
modes {dp

i } are given. What remains to determine are the modes and the parameters for
the data in those modes. As for the alignments this should ideally be done using MDL
but again more direct approaches will give very close to the same result at less cost. For
{vp

ij} and {λp
ijk} there are no problems with missing data since if a point is missing that

only means that the number of examples of that part is smaller. So {vp
ij} and {λp

ijk} are
simply determined by the standard procedure of doing a singular value decomposition.
For the shape modes the missing data is a problem and we must use a PCA that can
handle missing data. What is needed then is a principal component analysis (via a singular
value decomposition X = USV T ) of the residuals X after subtracting the mean-shape
from all the aligned shapes and this PCA must handle missing data. There exist different
approaches for this but since if we could afford very time consuming approaches we would
use MDL anyway, here a relatively simple (but not too simple) approach is used. Since
the typical value of the residuals is zero, first all missing entries are set to zero. Then a
standard PCA is performed via X = USV T . Next the missing entries in X are updated
with the corresponding values of the rank d approximation UdSdV

T
d of X . Here Ud is

the first d columns of U , Sd is top left d× d part of S and Vd is the first d columns of V .
Then a new PCA is done and the missing entries are updated etc. The number of loops
are chosen as deemed fit.

Resulting Approach

To sum up, given O, (m, {mp
i }, {gi}) are determined as described above. Then each

valid value of the number of nodes d and {dp
i } are examined. For each value of d, missing

value PCA is performed and then the part of the total MDL depending on d is calculated
in order to pick the d that gives the lowest MDL. For the patch appearance models only
one PCA per part is needed, not one for every value of dp

i . For each value, the part of the
total description length depending on dp

i is calculated in order to pick the dp
i that gives
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the lowest MDL. Thus, the minimal description length can be seen as a function of the
ordering O.

9.3.3 Optimization of O

Optimizing minimum description length with respect to O is a combinatorial optimiza-
tion problem. We suggest the following algorithm that (1) finds a reasonable initial guess
and (2) searches for a local minima in a combinatorial optimization sense by attempting
the following six types of changes and evaluating using MDL. The optimization termi-
nates when none of the operations below give an improvement in minimum description
length.

1. Addition of a model part. In each image either the new point is set as missing or as
corresponding to one of the points from the image.

2. Deletion of a model part. In each image the points corresponding to this model
part are set as outliers.

3. Change of a point from outlier to inlier belonging to one of the model parts.

4. Change of a point from inlier to outlier.

5. Changing correspondence by moving an inlier to a neighboring point, i.e. setting
the old point as an outlier and changing the new one from being an outlier to
representing the same model point that the old point represented.

6. Using the current model to restart the process for the points from one image by
fitting the model to the points, thereby defining a row of O. The alignment of
the model to the image can either be tried in a few different versions or it can
be determined in RANSAC fashion by using minimal sets of current inliers. The
matching is then done as for the initial guess described below.

The final algorithm for determining minimal description length is then

I Make an initial guess on point ordering O.

II Calculate optimal MDL for that ordering.

III See if any of the perturbations above lowers MDL.

IV • If it does, make those changes and continue with step III.

• If not, then we are at a local minima, stop.
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9.3.4 Initial Guess

The initial guess is made by using the (for example 5 or a random number) strongest
corner points (for example Harris-corners) and their surrounding patches in one image as
a model m0. For each of the other images {imagei} this model m0 is fitted to the set of
available parts from the image. Matching is done as follows. Given n points in the model
and m points extracted in imagei, form an n + 1×m + 1 cost matrix C whose top left
n × m elements are Cij = dE + w · dP , where dE is the Euclidean distance between
model point i and feature point j, dP is the Euclidean difference in patch appearance
(between the mean-patch from the model and the patch from the image) and w is a
weight parameter which is needed since point coordinates and image intensities have
different ranges. The last row Cn+1,j is set to a constant representing the cost of not
associating a feature point j with a model point. Similarly the last column Ci,m+1 is set
to a constant representing the cost of not associating a model point j to any of the feature
points. These positive constants can be chosen large or small depending on whether
we prefer to get a strong matches or many matches. In this chapter we set both these
constants to the same high value, thus enforcing many matches. The matching is then
done by solving the transport problem with supply of s = [1, . . . , 1, m] and demand
t = [1, . . . , 1, n]. Here we used standard algorithms for solving the transport problem
[92]. A number of images from the training set can be tested for giving initial models m0

in this way and MDL can be used to pick the best initial guess.

9.4 Scale Space

The process is performed in a scale space framework, and the resulting model also has
patch-information from several scales.

The original images are smoothed and down-sampled to create scale space represen-
tatives. Next, the intensities are normalized as described in section 9.1.2. The local
neighborhood used for this covers larger parts of the image at coarser scale space levels,
so that at coarse levels global structures are stressed and at finer levels local structures are
stressed. Also the coordinates of the extracted feature points (extracted at the original
level) are scaled to fit the down-sampled images and also rounded off to integers. In this
way both gray level intensities (parts) and point coordinates (geometry) are represented
with different detail at different scales. Next 7×7 patches are sampled around each point
so that the same size patch (as measured in pixels) covers different relative amounts of the
images at different scale.

In usual fashion the optimization is first run till convergence at the coarsest level
and then the result is used as an initial estimate for the next level. As we move to the
next level, point coordinates are simply scaled to the appropriate range. For the patches
however the patches from the new level do not simply replace the patches from the old
level, but instead the coarse patches are kept so that the new patch represents the local
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information at greater detail as well as the wider appearance information with less detail.
Since the patch description becomes richer, this of course means that the description
length increases, so before starting the optimization at the new level, a new best MDL is
calculated using the richer descriptions. For the point coordinates there is no such effect,
since before calculating MDL, the shapes are temporarily scaled so that they have mean
distance 1 from the points to the center of the shape.

The resulting models then describe the geometry at the detail of the finest level and
the parts at several levels of locality and detail.

9.5 Unlabeled Images

Assume now that not all the images are of objects from the same object class, but instead
there are images of objects from different object classes mixed together and we want to
automatically get a model for each object class.

Introduce a label for each image, denoting which object class it is currently assumed
to belong to. Given such labels for all the images we get a set of problems as described in
the previous sections, one for each object class. The total MDL is simply the sum of the
minimum description lengths for the individual object classes.

9.5.1 Initial Guess

Instead of just picking one random image to give the initial model, as described in section
9.3.4 above, we can pick nclasses random images to give nclasses initial models. For
each image, every initial model is tried and the initial label is set corresponding to the
model giving the smallest cost in the transport problem solution. As above, we can try a
number of sets of initial models and use MDL to pick the best initial guess.

9.5.2 Optimization

After the initial guess, the optimization terminates when none of the available operations
give an improvement in MDL. The available operations are the six described in section
9.3.3 above and also

7. Change the object class label for an image and fit the model for the new class to
the image.

We can now use MDL to also get an automatic classification of the images as a natural
part of the process.

9.5.3 Unknown Number of Classes

Finally, we can also let the number of classes be unknown. For the initial guess then pick
nclasses at random for each attempt and for the optimization add the perturbations:
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8. Add an object class and assign images to it.

9. Remove an object class and assign the images to other classes.

9.6 Experimental Validation

First we test the algorithm on images from only one object class.

9.6.1 Points Only

In the first experiment we only work with the points them self, i.e. not with the patches.
We took a digital film recording of a persons face as it moves in the scene. A sequence of
100 frames was captured and a standard interest point detector [64], was run on all of the
frames. In each frame a face detector was run and those interest points that were within
the rectangular frame of a face detector [45], was kept.

This gave roughly 880 feature points (between 5 and 13 points in each frame ). Three
such frames are shown in Figure 9.2 together with the extracted feature point shown as
small rectangular points.

The initial guess ordering resulted in 584 of the 880 feature points being associated
with any of the 9 model points.

After local optimization to lower MDL we got a model with 12 model points. Here
740 of the 880 points were associated to a model point. In Figure 9.3 is shown three
frames out of the 100 overlayed with feature points and best fit of the 12 model points
obtained after optimizing MDL. Notice that certain points in Figure 9.2 are classified as
outliers and are not shown in Figure 9.3.

9.6.2 One Object Class with Patches

After these initial experiments we move on to using the patches as well as the points.
The training set consists of head shots of different persons and no face detector is used.
Feature points and surrounding patches are extracted and the optimization is performed
as described in the previous sections. As can be seen in Figure 9.4 relevant model points
are selected and correspondences are established.

9.6.3 Occlusions

Next the algorithm was tested on images with synthetic occlusions. For every image in
the training set there was a 50% chance of putting in a random occlusion. The occlusions
were rectangles with random proportions, size, location and gray level intensity. As can be
seen in Figure 9.5 the algorithm handles the occlusions well. Occluded points are set as
missing and the correspondences of remaining points are not destroyed by the occlusions.
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Figure 9.2: Three out of 100 frames used for testing. Detected feature points are shown
as white squares

Figure 9.3: Three out of 100 frames used for testing. For measured points (in white)
the fitted model points are shown in black. For missing data the fitted model points are
shown in gray.

9.6.4 Unlabeled Images

Next we test the algorithm on unlabeled images. We use the head shots from the above
experiments together with some images of star fish from the Caltech101 database [46].
The images are mixed together in random order before they are fed to the algorithm. The
result is that all images are classified correctly and we get two separate sets of correspon-
dences and models as illustrated in Figure 9.6.

Then we also test the algorithm on unlabeled images with occlusions. The images are
as in the previous experiment but for every image there was a 40% chance of putting in a
random occlusion. All images are still classified correctly and the occlusions are handled
well, see Figure 9.7.

We now also let the number of classes be unknown, first without occlusions. The
algorithm correctly selects two classes and works as before, see Figure 9.8. Note also that
the algorithm automatically selects to model the face but not the shirt in the head shot
images. Figure 9.9 is an illustration of the parts of the images covered by the patches at
different scale space levels. Remember that the final model contains patches from all the
scale space levels.
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Figure 9.4: The selected model points on a subset of the images.

Figure 9.5: The selected model points on a subset of the images in the presence of occlu-
sions in the training images.

Finally, unknown number of classes also works with occlusions, see Figure 9.10.

9.7 Conclusions

In this chapter we have solved the problem of automatic construction (i.e. no manual
annotation of training data) of parts+geometry models (giving robustness as compared
to modeling the entire image) from unlabeled images (i.e. mixed object classes) with
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Figure 9.6: The selected model points on a subset of the images. Stars/dots denote that
the image is classified as belonging to class 1 / class 2.

occlusions, using MDL (proven to be successful at establishing correspondence for model
building).

The result is an algorithm that given a set of unlabeled images of objects from different
object classes extracts points and patches as different scales and from this determines
among other things (i) the number of object classes, (ii) clustering/classification of images
according to object class, (iii) the number of model parts for each class, (iv) which image
points are outliers/clutter and which are inliers, (v) correspondences, (vi) the mean shape
and shape variational modes of the models (geometry) and (vii) for each model part the
mean patch and patch appearance variational modes.

The resulting models can be used for many different applications including for exam-
ple recognition, pose determination, tracking and shape/appearance analysis.

An extension to three dimensional images, common for example in medical image
analysis, should be fairly straight forward. The only reason it has not been explored in
this thesis is lack of time. Interest points can of course be detected similarly in 3D, and
the patches can be replaced with boxes around the points. Alignments can still be done
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Figure 9.7: The selected model points on a subset of the images. Stars/dots denote that
the image is classified as belonging to class 1 / class 2.

Figure 9.8: Unknown number of classes. The selected model points on a subset of the
images. Stars/dots denote that the image is classified as belonging to class 1 / class 2.
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Figure 9.9: The same result as in Figure 9.8. Here is an illustration of the parts of the
images covered by the patches at the different scale space levels all included in the final
model.
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Figure 9.10: Unknown number of classes. Stars/dots denote that the image is classified as
belonging to class 1 / class 2.

using translations (with three parameters instead of two), scale and rotations (with three
parameters instead of one). The rest should be the same as with two dimensional images.
Note that time and memory complexity need not increase significantly in some major
aspects, since the number of model points/boxes in 3D may not need to be significantly
larger than the number of model points/patches in 2D. However, in one aspect complex-
ity will increase significantly. Using 7× 7× 7 boxes instead of 7× 7 patches will have an
impact on memory consumption as well as time.
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Chapter 10

Conclusions

Shape models and the automatic building of such models have proven over the last
decades to be powerful tools in image segmentation and analysis. This thesis makes
contributions to this field.

The segmentation algorithm typically uses an objective function summing up contri-
butions from each sample point. In Chapter 4 this is replaced by the approximation of a
surface integral which improves the segmentation results.

Before building a model the shapes in the training set have to be aligned. This is nor-
mally done using Procrustes analysis. In Chapter 6, an alignment method based on MDL
is examined and MDL is optimized using the gradient which is derived in that chapter.
This alignment is shown to be superior to standard Procrustes alignment, sometimes a
little, sometimes a lot.

When trying to build optimal models by optimizing the parameterizations of the
shapes in the training set to get a low MDL there is a tendency for the parameterizations to
put most of their weight on small parts of the shapes by doing a mutual reparameterization
since this gives a low MDL, but this is because of a flaw in the objective function and these
parameterizations do not result in a good model. This has formerly been addressed using
ad hoc methods. In Chapter 7, this problem is solved by replacing the standard scalar
product with a formula that is invariant to mutual reparameterizations and this is shown
to result in better models.

To evaluate the quality of shape models the standard measures have been generality,
specificity and compactness as defined in [31]. In Chapter 8, these measures are shown
to have severe weaknesses. An alternative measure called Ground Truth Correspondence
Measure is presented and this measure is shown to perform better. This measure is then
used to benchmark a number of algorithms for automatic model building.

Typically, shape modeling, both earlier work and the work in this thesis, assumes
that the training set consists of images where the shape has been segmented as a curve
or a surface as a preprocessing step. There are methods for building models without this
information by modeling the whole images after registration, but sometimes there are
other things in the image than the object to be modeled and sometimes not the whole
object is visible. In object recognition, techniques for dealing with non-preprocessed
data are available, but these give weaker models that are less useful for segmentation and
analysis. In Chapter 9, a method is introduced that does not need preprocessed manually
segmented data, automatically handles outliers/background and missing data, and still
produces strong models. The training set is here just a set of images. The algorithm picks
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a set of feature points with patches around them in each image and makes all the decisions
about what to include in the model and what to consider as background and about what
points in the different images are to be considered to be corresponding. This results in
patch-based shape and appearance models generated fully automatically.

I believe that the future of this field is in this fully automatic generation of shape and
appearance models. As this thesis shows, it is possible to build strong generative models,
with interpretable parameters, fully automatically from unlabeled images with occlusions.
However, it is not proven (and not likely) that this first attempt in this fashion is the
best procedure for doing this. More research is needed about alternative fully automatic
approaches.
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Datasets
Here the data sets used for the experiments in the thesis are briefly presented.

LEMS-database A number of shape classes used in this thesis (sharks, birds, flight birds,
rats, forks) are curves generated from images in the LEMS database from Brown Univer-
sity [113, 114, 117]. Each of these shape classes consists of 13-23 shapes.

Hands 23 contours of a hand segmented semi-automatically from a video stream. To
simplify the segmentation the hand was filmed against a dark background. The hands
were segmented by manually placing some points and between those points Dijkstra’s
algorithm, [2], was used to find the most suitable edge. These shapes consist of 1522-
1747 landmarks defining the curve.
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Femurs 32 contours of femurs in the hip taken from X-rays. They consists of 89-217
landmarks defining the curve.

Metacarpal 24 contours of metacarpals (a bone in the hand) extracted from standard
projection radiographs of the hand in the posterior-anterior projection. They consists of
281 landmarks defining the curve.

Silhouettes The silhouette data set consists of 22 contours of silhouettes of faces. 22
persons were photographed using a digital camera. The silhouettes were then extracted
using an edge detector. They consists of 448-801 landmarks defining the curve.
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The letter g A data set of 17 curves of the letter g. The curves of the letter g were pro-
duced using a device for handwriting recognition. Each g is built up from 64 landmarks
defining the curve.

The letter p A data set of 90 curves of the letter p. This letter was taken from the MIT
database of Latin letters, initially collected by Rob Kassel at MIT
(ftp://lightning.ls.mit.edu/pub/handwriting/mit.tar.Z).Each p is built
up from 32 landmarks defining the curve.

Box-bumps A dataset of 24 synthetic box-bump shapes each consisting of 61 land-
marks defining the curve.
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The digit 3 A dataset of 29 shapes of the digit 3. Each digit is built up from 13
landmarks defining the curve.

Knees 3D volumetric Magnetic Resonance Images of knees. Several different contrasts
were available but only one type was used in the experiments. 2D-slices of images of this
type looks like this with the segmented shape in white.

Brains 3D volumetric SPECT images of brains. 2D-slices of these look like this with
the segmented shape in white.
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Faces These are 30 head shots of mathematicians (so in a sense they are all outliers). A
subset of this dataset consisting of contributors to this thesis is shown here.

Stars These are images of starfish from the Caltech101 database [46]. That database
was constructed primarily for object recognition experiments. For the purposes in this
thesis the dataset as given in that database is not ideal so a subset is selected for the
experiments in this thesis. The images in the selected subset look typically as shown here.
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Appendix B

Notations
(·)∗ denotes the transpose of the complex conjugate of (·).
:=: denotes correspondence.

1np
is a np × 1 vector in Cnp with all elements equal to 1.

α̂ is the quantization of α.
{γi}ns

i=1 are parameterization functions.
δ is quantization accuracy.
Φ =

[

Φ1, . . . ,Φnm

]

is the shape mode matrix.
λi is the variance of the data in the direction of Φi.
{λp

ijk} are patch-mode-parameters.
{λli} are shape-mode-parameters.
µp is the probability measure for the shapes y′j .
Ω is the shape space.
ΩM is the subspace generated by the model.
Ωnd

np
is the space of all shapes with np points in nd dimensions.

σ is a standard deviation.
θj is a rotation angle.

Ai is a small part of the surface with area ∆Ai.
b is the parameter vector for the model.
c̄(s) is a continuous mean shape curve.
ci(s) is a continuous shape curve.
cx

i (s) is a function describing the x-coordinate for a shape curve.
c

y
i (s) is a function describing the y-coordinate for a shape curve.

cij is the element on row i and column j of C.
C is the shape covariance matrix.
C(nm) Compactness.
{dp

i }i=1...N are numbers of modes used.
dA is an area-measure.
dL is a length-measure.
D = {S1, . . . , Sns

} is a set of training data examples.
{gi}i=1...ns

are transformations.
{gi} are profiles describing appearance around each landmark.
ḡ is the mean profile.
gij is ground truth point j on shape i.
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G is a group of transformations.
G(nm) Generality.
Li is a small part of the curve with length ∆Li.
L is the total description length of the set of all bj

i .
Lj is the description length of Y = {bj

1, . . . , b
j
ns
}.

m is a mean shape.
{mp

i }i=1...N are mean patches.
M is the model.
M(b) is a shape generated by the model.
nclasses is the number of object classes.
nd is the dimension.
ndof is the degrees of freedom in the transformation group.
ng is the number of ground truth points for each object.
nkl are the variables controlling the basis functions.
nm is the number of shape modes used by the model.
ni

m is the numbers of patch appearance modes.
npoints

o is the number of outlier points.
npixels

o is the number of outlier pixels.
np is the number of landmarks or temporary sample points.
ns is the number of training examples.
ni

s is the number of images that part i is not missing in.
O is the ordering matrix.
p(y′j) is the probability that the model generates the shape y′j .
pkl(t) are parameterization function basis functions.
P is a probability density.
S is a similarity transform.
Sg is the covariance for the profiles.
S is a geometric object.
S0 is a set of parameter values.
Si = {zi,1, . . . , zi,ki

} is a set of unordered points zi,j with surrounding patches.
S(nm) Specificity.
tij is the parameterization parameter value giving gij .
{vl}l=1...d are shape-modes.
{vp

ij}i=1...N,j=1...d
p
i

are patch-modes.
x̄ is a mean-shape.
xi = [l1i ; . . . ; l

np

i ] is a shape vector.
x′j(nm) is the model approximation of x using nm modes.
X = {l1, . . . , lnp

} is a set of points on a geometric object.
X0 = [x1, . . . ,xns

] is a matrix with training set shape vectors as columns.
X contains the Procrustes residuals.
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