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Abstract

The effective refractive-index as a function of vacuum wavelength is approx-
imated by Lagrange interpolation polynomials. The root-mean-square value
of the chromatic dispersion is then calculated analytically. It is demonstrated
that use of fourth degree polynomials is far more efficient than use of second
degree polynomials. The rms-value of the chromatic dispersion over the wave-
length range [1.25 µm, 1.60 µm] is calculated and minimized for step-index
fibers, triangular-index fibers, and α-power fibers. The full vector solution of
Maxwell’s equations is used. It is demonstrated that the approximate model
of the refractive-index, used in this paper and in other papers, induces an error
in the rms-value which is not negligible when designing dispersion-flattened
fibers.

1 Introduction

The predominant transmission medium in long-distance, high-capacity telecom-
munication is the single-mode optical fiber. If wavelength multiplexing is to be
used in order to further increase transmission capacity, then the chromatic disper-
sion should be kept low over a range of vacuum wavelengths [1]. The problem of how
to create such dispersion-flattened fibers is approached in this paper. The vacuum
wavelength range is chosen as [1.25 µm, 1.60 µm] which is a range of low attenuation
in pure silica glass.

The chromatic dispersion is defined in Section 2 and the relation to pulse-broad-
ening is explained. The approximate refractive-index model to be used is defined
and an efficient method of calculating the root-mean-square value of the chromatic
dispersion over a broad wavelength range is presented. The error induced by the
approximate refractive-index model is investigated in the special case of a step-index
fiber. This error has recently been analyzed by Safaai-Jazi and Lu [2].

The rms-value of the chromatic dispersion is minimized in Section 3. The analysis
is limited to step-index fibers, triangular-index fibers, and α-power fibers. The re-
fractive-index is, in the cases of triangular-index fibers and α-power fibers, assumed
to be continuous at the core-cladding boundary. These fibers are all described by
two variables: the core radius a and the relative refractive-index increase N1 in the
core center. The concept of “relative refractive-index increase” is defined in Section
2.3 . The condition that the first higher-order mode should appear at 1.25 µm
yields a curved line in the N1-a-plane. The rms-value of the chromatic dispersion
is calculated at different points on this line. The point of minimum chromatic dis-
persion is then easily located.
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2 Chromatic dispersion

2.1 Pulse broadening

The field components of a guided mode of an optical fiber include the factor

ej(ωt−βz)

where β is the propagation constant.
The group velocity vg and the group delay τg are defined as

vg =
dω

dβ
(2.1)

τg =
1

vg
(2.2)

The group velocity, and thus the group delay, varies with the vacuum wavelength.
The chromatic dispersion is defined as

C =
dτg
dλ0

(2.3)

where λ0 is the vacuum wavelength.
The chromatic dispersion is of importance when calculating the broadening an

optical pulse undergoes when travelling along an optical fiber [1]. The basic formula
in this context is [3].

σ2
out = σ2

in + (∆λ0LC)2

where

σ temporal width of light pulse
∆λ0 spectral width of light pulse
L length of fiber
C chromatic dispersion

The effective refractive-index ne is defined as

ne =
β

k0

(2.4)

where k0 is the vacuum propagation constant. A useful formula for the chromatic
dispersion in a single-mode fiber is

C = −λ0

c

d2ne
dλ2

0

(2.5)

where c is the speed of light in a vacuum and ne is the effective refractive-index of
the fundamental mode. The formula (2.5) is derived from (2.1) – (2.4).
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Figure 1: The material dispersion as a function of the vacuum wavelength.

2.2 The refractive-index of pure silica

A formula for the refractive-index of pure silica glass is [4, 5]

ns = C0 + C1λ
2
0 + C2λ

4
0 +

C3

(λ2
0 − 0.035)

+
C4

(λ2
0 − 0.035)2

+
C5

(λ2
0 − 0.035)3

(2.6)

where λ0 is in micrometer and the coefficients are given in Table 1. Examples which
can be used as check-values are

ns(λ0 = 1.25 micrometer) = 1.447825545

ns(λ0 = 1.60 micrometer) = 1.443787805

The material dispersion is defined as

Cm = −λ0

c

d2ns
dλ2

0

(2.7)

A formula for the refractive-index of 13.5 mole-percent Ge-doped silica is also given
in [4, 5]. Material dispersion curves are given in Figure 1.

2.3 An approximate refractive-index model

The actual refractive-index profile n(r, λ0) of an optical fiber is a function of the
radial coordinate r and of the vacuum wavelength λ0. The actual refractive-index
profile n(r, λ0) can be written

n(r, λ0) = N(r, λ0)ns(λ0)
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C0 = + 1.4508554
C1 = − 0.0031268
C2 = − 0.0000381
C3 = + 0.0030270
C4 = − 0.0000779
C5 = + 0.0000018

Table 1: The coefficients in the approximation formula for the refractive-index of
pure silica glass [4, 5].

where ns(λ0) is the refractive-index of pure silica and N(r, λ0) is “the normalized
refractive-index” or “the relative refractive-index increase”.

An approximation, applied by e.g. Yip and Jiang [6], is to assume that the
normalized refractive-index N is a function of the radial coordinate only, i.e.

n(r, λ0) = N(r)ns(λ0) (2.8)

The necessity of resorting to an approximate refractive-index model is stated and
discussed in Ref. [2]. A more accurate refractive-index model must probably be
based on some interpolation technique. A linear interpolation technique is used by
Garth [7].

2.4 The rms-value f of the chromatic dispersion

A computer program has been implemented which computes the root-mean-square
value f of the chromatic dispersion of the fundamental mode over a wavelength
range.

f =

(
1

λ2 − λ1

λ2∫
λ1

C2(λ0) dλ0

)1/2

(2.9)

This rms-value is the function f which is to be minimized.
The computer program applies the power-series expansion method developed in

Ref. [8]. This method yields the full vector solution of Maxwell’s equations, see
Appendix A.

The computer program calculates the effective refractive-index for a number
of equidistant vacuum wavelengths. This is done by solving the characteristic
equation by a secant root-searching method. The material dispersion is included
through (2.8). The effective refractive-index as a function of the vacuum wave-
length is represented by Lagrange interpolation polynomials [9]. The rms-value f is
then calculated analytically using (2.5) and (2.9), see Appendix B.

The rms-value f of the material dispersion between λ1 = 1.25 µm and λ2 =
1.60 µm was calculated to 14.6 ps/(km nm) using the formula for the refractive-
index of pure silica (2.6) and the described interpolation technique. The calculation
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Figure 2: The number of significant figures in the rms-value f of the material
dispersion as a function of the number of quadrature points, i.e. as a function of
the number of refractive-index evaluations.

of (2.9) was performed for different numbers of quadrature points, i.e. for different
numbers of vacuum wavelengths, and the use of repeated second and fourth degree
polynomials was compared, see Figure 2. The result clearly demonstrates that
use of fourth degree polynomials is far more efficient than use of second degree
polynomials. The cost in terms of computer time to evaluate the rms-value f of
the chromatic dispersion for a given refractive-index profile is proportional to the
number of effective refractive-index evaluations. Hence, the old effective refractive-
index evaluations are re-used when the number of quadrature points is increased
and the sequence of numbers on the abscissa in Figure 2 is

5, 9, . . . , n, n+ n− 1, . . .

2.5 Error induced by approximate refractive-index model

In order to investigate the magnitude of the error induced by the approxima-
tion (2.8), the chromatic dispersion of a step-index fiber is calculated. The core
of this step-index fiber is assumed to be 13.5 mole-percent Ge-doped silica and the
cladding is assumed to be pure silica. The core radius of the step-index fiber was
determined by the condition that the cut-off wavelength should be equal to 1.25 µm.
The relative refractive-index increase N1 in the core varies from 1.0144 at 1.25 µm to
1.0147 at 1.60 µm. When computing the waveguide dispersion, the refractive-indices
are held constant at their 1.25 µm-values. When applying the approximation (2.8)
the relative refractive-index increase N1 in the core is held constant at the 1.25 µm
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Figure 3: Four different calculations of the chromatic dispersion in a step-index
fiber in which the core is 13.5 mole-percent Ge-doped silica and the cladding is
pure silica. The solid line is the exact chromatic dispersion. The dotted line is
obtained when approximation (2.8) is used. The dashed line is the sum of waveguide
dispersion and pure silica material dispersion. The dashed-dotted line is the sum of
waveguide dispersion and doped silica material dispersion.

value, i.e. N1 = 1.0144 . It is seen in Figure 3 that applying (2.8) is only slightly
better than simply adding the waveguide and the material dispersion. However,
in the absence of a better alternative, the approximation (2.8) will be used in this
paper.

The rms-value f of the exact chromatic dispersion between λ1 = 1.25 µm and
λ2 = 1.60 µm is calculated to 10.7 ps/(km nm). When N1 is held constant, the rms-
value f is calculated to 7.3 ps/(km nm). Thus, the error induced by the approximate
refractive-index model (2.8) is, in this special case, 3.4 ps/(km nm).

3 Minimization

3.1 Step-index profiles

A normalized step-index profile is

N(r) =

{
N1 0 ≤ r < a

1 r > a

where a is the core radius and the corresponding actual refractive-index profile is

n(r, λ0) =

{
N1ns(λ0) 0 ≤ r < a

ns(λ0) r > a
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step-index fiber (λcut-off = 1.25 µm) as a function of the relative refractive-index
increase N1 in the core.

The minimization problem can now be stated. Seek the parameters N1 and
a of the step-index profile which minimize the rms-value f of the chromatic dis-
persion over the vacuum wavelength range [λ1, λ2] where λ1 = 1.25 10−6 m and
λ2 = 1.60 10−6 m subject to the constraint

λc = 1.25 10−6 m (3.1)

where λc is the vacuum cut-off wavelength for the first higher-order mode.
The fundamental mode in a step-index fiber is HE11 and the first higher-order

modes to appear are TM01 and TE01. The mode HE21 appears at a slightly shorter
wavelength, see Figure 4.

The exact cut-off condition for the TM01 and TE01 modes is

V = j01 = 2.405 (3.2)

where j01 is the first zero of the Bessel function J0 and the normalized frequency V
is

V =
2π

λ0

a
√
N2

1 − 1 ns (3.3)

Substitute (3.1), (2.6), and (3.2) into (3.3) and the cut-off condition can be written
as

a
√
N2

1 − 1 =
j01λc

2πns(λc)
= 3.30 10−7 m

This constraint turns the rms-value f into a function of only one parameter, i.e.
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Figure 5: The root-mean-square value f of the chromatic dispersion over the vac-
uum wavelength range [1.25 µm, 1.60 µm] for a step-index fiber as a function of the
relative refractive-index increase N1 in the core.

f = f(N1). The graph of f(N1) is given in Figure 5. The minimum is


fmin = 4.79 ps/(km nm)

N1 = 1.0103

a = 2.29 10−6 m

where a is the core radius.
The normalized refractive-index profile and the chromatic dispersion of this “op-

timal” step-index profile are given in Figure 6 and Figure 7, respectively. A relative
refractive-index increase as high as N1 = 1.0103 would give high attenuation. If,
somewhat arbitrarily, it is assumed that the maximum relative refractive index-
increase allowed is N1 = 1.005, then it is evident from Figure 5 that the minimum
rms-value of the chromatic dispersion is f(1.005) which is equal to 8.59 ps/(km nm).

3.2 Triangular-index profiles

A normalized triangular-index profile is

N(r) =

{
N1 + (1−N1)

r
a

0 ≤ r ≤ a

1 r ≥ a

The minimization problem is to determine the parametersN1 and a of the triangular-
index profile which minimize the rms-value f of the chromatic dispersion. The
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index increase N1 in the core center.

fundamental mode in a triangular-index fiber is Hyb11 and the first higher-order
modes are, in order of appearance as the wavelength is decreased, TM01 TE01 and
Hyb21 see Figure 8. The hybrid mode notation is after Morishita [10]. The rms-
value f , as a function of N1 , when the TM01 cut-off is held at 1.25 µm, is given in
Figure 9. The minimum is


fmin = 6.71 ps/(km nm)

N1 = 1.0110

a = 4.05 10−6 m

Notice that this “optimal” triangular-index profile gives a higher rms-value f than
the corresponding “optimal” step-index profile in Section 3.1.

3.3 α-power profiles

A normalized α-power profile is, cf. [11], and see Figure 10

N(r) =

{ √
N2

1 − (N2
1 − 1) ( r

a
)α 0 ≤ r ≤ a

1 r ≥ a

Notice that α = 1 almost, but not exactly, corresponds to a triangular-index profile
and that α = ∞ exactly corresponds to a step-index profile. Some exact normal-
ized frequencies for the TE01 cut-off in α-power profiles are given by Oyamada and
Okoshi [12]. The tabulated data in Ref. [12] are calculated by scalar analysis, but in
the special case of TE-modes scalar and exact analyzes coincide. The fundamental
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Figure 9: The root-mean-square value f of the chromatic dispersion over the vac-
uum wavelength range [1.25 µm, 1.60 µm] for a triangle-index fiber as a function of
the relative refractive-index increase N1 in the core center.

mode in an α-power fiber is Hyb11 and the first higher-order mode to appear is
TM01. The condition that the TM01 cut-off is 1.25 µm yields a curved line in the
N1-a-plane, see Figure 11. The TE01 cut-off is given in Figure 12. The step-index
fiber provides the lowest root-mean-square chromatic dispersion, see Figure 13.

4 Conclusion

The rms-value of the chromatic dispersion can be efficiently evaluated by Lagrange
interpolation followed by analytical differentiation and integration. The error in
this rms-value, induced by the approximate model (2.8) of the refractive-index, is
calculated to as much as 3.4 ps/(km nm) for a strongly doped, step-index fiber. It
has been demonstrated that with this approximate model of the refractive-index and
within the class of α-power profiles, the step-index fiber provides the lowest rms-
value of the chromatic dispersion over the wavelength range [1.25 µm, 1.60 µm],
namely 4.79 ps/(km nm).

Appendix A A power-series expansion method

The method in Ref. [8] is developed for a cylindrical dielectric waveguide with a
piece-wise polynomial permittivity profile in the radial direction. The relative per-
mittivity is equal to the square of the refractive-index. A system of four ordinary
differential equations is derived from Maxwell’s equations. This system has two
bounded solutions in the core. These solutions are constructed by a sequence of
power-series expansions. The two bounded solutions in the cladding are expressed in
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modified Bessel functions. The characteristic equation is obtained from the bound-
ary conditions at the core-cladding interface. The propagation constant, and thus
the effective refractive-index ne, is obtained as a root of the characteristic equation.
One detail, not explicitly mentioned in Ref. [8], is that when the azimuthal mode
number is equal to zero, the characteristic equation splits into a TM-case and a TE-
case. These cases should, of course, be treated separately, otherwise double-roots
and closely spaced roots appear when solving the characteristic equation.

Appendix B Calculation of chromatic dispersion

The relevant mathematical problem in the evaluation of the rms-value of the chro-
matic dispersion (2.9) is to calculate the integral∫ b

a

x2

(
d2f

dx2

)2

dx

in which x stands for wavelength and f stands for effective refractive-index. The
function f is approximated by the fourth-degree polynomial passing through the
following five points [9]

xp =
a+ b

2
+ p

b− a
4

p = −2,−1, 0, 1, 2

This polynomial is differentiated twice.

d2f

dx2
=

(
4

b− a

)2
d2f

dp2

where

d2f

dp2
=
−f−2 + 16f−1 − 30f0 + 16f1 − f2

12
+

+
−f−2 + 2f−1 − 2f1 + f2

2
p+

+
f−2 − 4f−1 + 6f0 − 4f1 + 6f2

2
p2

The three coefficients in this polynomial in p should be calculated numerically.∫ b

a

x2

(
d2f

dx2

)2

dx =

(
a+ b

2

)2 (
4

b− a

)3 ∫ 2

−2

(
d2f

dp2

)2

dp+

+

(
a+ b

2

) (
4

b− a

)2 ∫ 2

−2

2p

(
d2f

dp2

)2

dp+

+

(
4

b− a

) ∫ 2

−2

p2

(
d2f

dp2

)2

dp

Integration gives the final expression which is used as a quadrature rule.
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