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Abstract

To calculate the parameters of a lossy transmission line a rectangular wave

guide can be applied to provide a bounding box around the area of interest.

The open region is thereby reduced to a bounded region and the �nite el-

ement method (FEM) can be applied to solve the corresponding eigenvalue

equation for the transversal electric �eld. From the results the parameters of

the transmission lines can be calculated. Special attention has to be taken to

the metallic leads, which are assumed to be lossy, to receive results of su�cient

accuracy.

1 Introduction

We discuss how transmission lines in strati�ed media can be analyzed by utilizing
commercial �nite element method programs in a simple but accurate way. Typical
geometries are depicted in Fig. 1. The wires are placed in a lossy strati�ed medium

(a) (b) (c)

Figure 1: Geometries of interest. (a) Unbalanced parallel plate transmission line.
(b) Balanced coplanar transmission line. (c) Balanced transmission lines.

above a horizontal ground plane. The wires run horizontally, parallel to the z-axis,
otherwise there are no restrictions on the location of the wires. Their cross sections
are independent of the z-coordinate but are otherwise arbitrary. The conductivity
of the wires is �nite. The simpler case, with in�nite conductivity, can of course
also be handled. The distance between the wires is much shorter than the wave-
length and the length of the transmission line. Hence the wave propagation problem
can be reduced to a two-dimensional problem. The medium is non-magnetic, in-
dependent of the z-coordinate and is characterized by the complex permittivity
ε(ρ) = εr(ρ)− jσ(ρ)/(ωε0), where ρ = (x, y), εr is the relative permittivity, and σ is
the conductivity. The wavenumber is k(ρ) = ω

√
µ0ε0ε(ρ) and kz is the z-component

of the wave vector.
The numerical simulations are indispensable in the design of passive components

on Si. The method proposed in this paper is used in the design of quarter wave
transformers on Si. It is also used in the elimination of cross-talk between lines and
in the rejection of common modes on transmission lines.
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2 Formulation of the problem

We look for waves that propagate along the wire. The electric �eld for these modes
is decomposed in a transversal part and a longitudinal part as

E±(r) = (ET(ρ)± ẑEz(ρ)) e∓γz

where the time-dependence ejωt is assumed. The e−γz (eγz) corresponds to propaga-
tion in the positive (negative) z-direction. The eigenvalue equation for the electric
�eld is derived from Maxwell's equations by standard methods, cf. [4]. In the case
of non-magnetic materials, µr = 1, it reads

∇T ×
1

µ0

∇T × et − γ2 1

µ0

(∇Tez + et) = k2
0εcet,

γ2∇T ×
[

1

µ0

(∇Tez + et)× ẑ
]

= γ2k2
0εcẑez.

(2.1)

where ∇T = ∇ − ẑ∂z, et = γET and ez = Ez. The solution of (2.1) is the vector
valued eigenfunction e = et+ẑez and the eigenvalue γ

2. The eigenvalues are denoted
γ2
n, n = 1, 2, . . . , N , and the corresponding vector valued eigenfunctions are denoted
en. The electric �eld that corresponds to a certain eigenvalue is denoted En.

In general there are N propagating modes in a system with N parallel wires
above a ground plane [2]. Thus the eigenvalue problem with two wires, as depicted
in Fig. 1, has two solutions.

Propagators are convenient to use for a system with a transmission line with a
load and generator since the S-matrix then is obtained by matrix manipulations in
an e�cient way. For a case with two wires the propagator can be de�ned as

[P(z)] :=

(
e−γ1z 0

0 e−γ2z

)
.

The inverse of the propagator is simply given by [P(z)]−1 = [P(−z)]. The total
electric �eld can then be written as the linear combination

E(r) =
2∑

n=1

αnE
+
n (r) + βnE

−
n (r)

=[α]t[P(z)][E+(ρ)] + [β]t[P(−z)][E−(ρ)]

where

[α]t =
(
α1 α2

)
,

[β]t =
(
β1 β2

)
,

[E±(ρ)] =
(
E±1 (ρ) E±2 (ρ)

)t
.

In most applications one tries to obtain a balanced transmission line where the
magnitude of the currents in the two wires are the same but the directions of the
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currents are opposite, i.e., a mode with no common mode current. This mode
is referred to as the balanced mode. The other modes are referred to as parasitic
modes. In the balanced case we can transfer the electromagnetic model to traditional
transmission line theory with distributed parameters. We let mode n = 1 be the
balanced mode and de�ne the voltage and the current in the following manner:

I =

∫
Ω1

Jz dΩ,

V =
1

I∗

∫
Ω

(E+
x1H

∗+
y1 − E+

y1H
∗+
x1 ) dΩ

where Ωm is the cross-section of wire m and Ω is the entire xy-plane. The line
parameters are obtained from

R =
1

|I|2
∫

Ω1∪Ω2

J∗zEz dΩ,

C =
1

|V |2
∫

Ω

ET ·D∗t dΩ,

L =
1

|I|2
∫

Ω

BT ·H∗T dΩ,

G =

{
1

|It|2
∫

Ω\{Ω1∪Ω2}
J∗T ·ET dΩ

}−1

.

The transversal current (or leakage current) is given by

It =

∫
∂Ω1

JT · n̂ d`

where ∂Ω1 is the boundary to Ω1.
Sometimes it is not feasible to get a perfect balanced wire and then it might be

better to avoid transmission line theory and instead work with the electromagnetic
�elds.

3 Solution of the eigenvalue problem

The eigenvalue problem in Eq. (2.1) can be solved in a variety of ways. In this paper
we propose that the �nite element method is used. There are relative inexpensive
commercial softwares that solves the eigenvalue problem in an accurate and fast
manner. For the examples in Fig. 1 the electromagnetic toolbox of FEMLAB was
used [1]. The structure of interest is then placed in a rectangular waveguide with
perfectly electrically conducting (PEC) walls. The introduction of PEC walls of
course a�ect the solutions to the eigenvalue problem. To minimize the in�uence of
the PEC walls the cross sectional surface of the surrounding region has to be very
large in comparison to the cross section of the transmission line. A minimum value
is given by the area needed to assure propagating modes. As a rule of thumb one can
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use the analytical expression for the cuto� frequency for a homogenous rectangular
waveguide with inner dimensions a and b. This is given by [3]

f c
mn =

c0

2
√
εr

(
m2

a2
+
n2

b2

)1/2

.

This can be used to make a rough estimation of how large the waveguide has to be
in order to accept a propagating mode.

As numerical examples two di�erent structures are investigated: the two lead
transmission line and the four lead transmission line. The frequency of operation
has been set to 60GHz. The wavelength is then small enough to enable a quarter-
wave resonator on the chip. A small part of the total geometry is depicted in Fig. 1
where the wires and a fraction of the strati�ed medium are shown. The medium
consists of three layers: a substrate in the bottom, an oxide layer in the middle
and an air layer on the top. The width of the wave guide is 1000µm and the
thicknesses of the three layers are tsub = 737µm, tox = 20µm and tair = 500µm,
respectively. The wires are placed in the oxide layer and they have a thickness of
0.5µm and a width of 20µm. The relative permittivity in the di�erent layers are:
εsub = 11.90−j19.97, εox = 3 and εair = 1. The wires consist of copper which conveys
a relative permittivity of εCu = 1− j1.738 · 107.

3.1 Two lead transmission line

Two cases are investigated: the parallel plate transmission line and the coplanar
transmission line. The transmission lines are placed in the center of the oxide layer.
The distance between the lower wire of the parallel plate line and the substrate
is 5µm and between the upper wire and the substrate it is 10µm. The coplanar
transmission line is placed at a distance of 10µm above the substrate with a spacing
of 40µm between the centers of the wires. The eigenvalue problem is solved for
the two cases and the results are presented in Fig. 2 where the modes belonging
to the two largest eigenvalues are plotted. The two largest eigenvalues correspond
to the modes for which the electromagnetic �elds are bounded to the structure.
These modes correspond to the modes that would exist if the structures were placed
in an open region without PEC walls. The wave numbers for the parallel plate
transmission line are γ1 = 84.7 + j2235.1 and γ2 = 1125.2 + j3425.9 and the wave
numbers for the coplanar transmission line are γ1 = 158.4 + j2462.0 and γ2 =
1087.7 + j3295.6. Numerical values of the currents in the parallel plate transmission
line are given in Table 1. The current in the upper and lower wire is denoted I1 and
I2, respectively. The currents in the coplanar transmission line are given in Table 2.
The current in the left and right wire is denoted I1 and I2, respectively.

The coplanar structure corresponds to a balanced transmission line. For the
balanced mode, n = 1, the transmission line parameters are straightforward to
calculate. Their values are R = 7112 Ω/m, L = 78.8µH/m, G = 60.4 S/m and
C = 54.3 pF/m.
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(a) Parallel plate, n = 1. (b) Parallel plate, n = 2. (c) Coplanar, n = 1.

(d) Coplanar, n = 2.

Figure 2: The propagating modes, ETn, of the parallel plate transmission line and
the coplanar transmission line. (a) corresponds to the more balanced mode and (b)
to the parasitic mode of the parallel plate transmission line. (c) and (d) are the
balanced and parasitic modes of the coplanar transmission line.

n I1 I2

1 −0.10− j0.73 0.11 + j0.66

2 −0.13 + j0.13 −0.91 + j0.38

Table 1: Normalized lead currents in the parallel plate t-line.

n I1 I2

1 0.65− j0.29 −0.65 + j0.29

2 0.45 + j0.54 0.45 + j0.54

Table 2: Normalized lead currents in the coplanar t-line.

3.2 Four lead transmission line

The four wires are placed in the center of the oxide layer which is illustrated in
Fig. 1. The distance between the upper wires and the substrate is 15µm and the
distance between the lower wires and the substrate is 7µm. The wires are placed
symmetrically with a spacing of 20µm between the wires on the left and right hand
side. The eigenvalue problem is solved and the results are presented in Fig. 3. The
four modes plotted belong to the four largest eigenvalues and correspond to the
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(a) n = 1. (b) n = 2. (c) n = 3.

(d) n = 4.

Figure 3: The propagating modes, ETn, of the four lead transmission line. (a)
corresponds to the balanced mode and (b), (c) and (d) to parasitic modes.

modes from the open structure without PEC walls. The wave numbers are γ1 =
53.6 + j2088.6, γ2 = 61.1 + j2181.6, γ3 = 231.4 + j2673.0 and γ4 = 1322.2 + j3483.2.
The currents in the four wires are calculated and presented in Table 3. The current
in the upper left and upper right wire is denoted I1 and I2 and the current in the
lower left and lower right wire is denoted I3 and I4, respectively. In a di�erential
structure the n = 1 mode should be used.

n I1 I2 I3 I4

1 −0.62 + j0.08 0.62− j0.08 0.33− j0.06 −0.33 + j0.06

2 0.45 + j0.26 0.45 + j0.26 −0.42− j0.23 −0.42− j0.23

3 0.02− j0.07 −0.02 + j0.07 0.13 + j0.69 −0.13− j0.69

4 −0.10− j0.05 −0.10− j0.05 −0.42− j0.56 −0.42− j0.56

Table 3: Normalized lead currents in the four lead t-line.

4 Concluding remarks

The purpose of the paper is to emphasize that today, with fast computers and
large RAM, the problem is solved fast with high accuracy by standard commercial
programs. Since the problem is reduced to a two-dimensional problem which is a pre-
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requisite for resolving the �nite conductivity of the wires. The method can be used
for the design of balanced transmission lines, to design quarter wave transformers,
and to study the e�ects of cross-talk between transmission lines.
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