MULTIPOLE METHOD TO COMPUTE THE CONDUCTIVE HEAT FLOWS TO AND BETWEEN PIPES IN A COMPOSITE CYLINDER

Johan Bennet

Johan Claesson

Göran Hellström

Dep. of Building Technology and Mathematical Physics

. ·

CODEN: LUTVDG/(TVBH-7094)/1-42/(1987)

waard a start of the start of the

- .. ·

Notes on Heat Transfer 3-1987

MULTIPOLE METHOD TO COMPUTE THE CONDUCTIVE HEAT FLOWS TO AND BETWEEN PIPES IN A COMPOSITE CYLINDER

JOHAN BENNET, JOHAN CLAESSON, GÖRAN HELLSTRÖM

Lund institute of Technology January 1987

Typeset by A_MS -TEX

CONTENTS

τ

1	INTRODUCTION	3
2	THERMAL PROBLEM	4
3	LINE SOURCE FOR THE COMPOSITE REGION	5
4	MULTIPOLES FOR THE COMPOSITE REGION	8
5	GENERAL EXPRESSION FOR THE TEMPERATURE	10
6	EQUATIONS FROM THE BOUNDARY CONDITION AT THE OUTER CIRCLE	11
7	EQUATIONS FROM THE BOUNDARY CONDITION AT THE PIPES	13
8	FINAL EQUATIONS AND ITERATIVE SOLUTION	18
9 9.1 9.2 9.3 9.4	REQUIRED NUMBER OF MULTIPOLES Error on the boundary circles A three-pipe problem Test of Maxwell's reciprocity theorem An example with 15 pipes	21 21 22 23 24
10	COMPUTER MODEL. EXECUTION TIMES	25
11	MANUAL FOR THE COMPUTER CODE	26
	REFERENCES	31
	Appendix 1. LISTING OF COMPUTER CODE	32

1.INTRODUCTION

A so-called multipole method to compute the conductive heat flows to and between pipes in a cylinder is presented in [1]. The steady-state heat conduction is two-dimensional in a circular region perpendicular to the pipes. The region is homogeneous. In this paper the method is extended to the case of a composite cylinder. The pipes lie in an inner circular region, which is surrounded by an annulus of different thermal conductivity.

The applications for which the method has been developed concern so-called heat extraction boreholes and certain types of heat stores in the ground. The boreholes are used for heat extraction or as heat exchangers for heat injection/extraction. The heat carrier fluid may for example flow in a U-shaped tube in the borehole. Outside the tubes the borehole may be filled with sand. The local thermal problem in and near the borehole is quite important for the heat transfer capacity of the heat exchanger. This problem is essentially a steady-state one in the region between the fluid in the pipes and a suitably chosen cylinder around the borehole. The pipes are imbedded in a composite cylinder with an internal boundary at the borehole wall. The thermal resistance between the pipes and the outer circle is of particular interest. We are also interested in the thermal resistances between the pipes. The presented method and the computer program give a very rapid and accurate way to obtain these resistances and the complete temperature field. The method is used extensively in [2].

Figure 1.1. An example showing the temperature field for a case with 3 pipes. Data according to (8.12).

Figure 1.1 shows the computed temperature field for an example with three pipes. The fluid temperatures in the pipes and on the outer circle are indicated in the figure. One of the pipes has as indicated a thermal resistance layer. The complete set of data for the example is given by (8.12). The computer time for this case is only a few seconds on a main frame computer (Norsk Data ND-500) or about 40 seconds on an IBM-PC AT-3 (10 MHz) with a 80287 math coprocessor.

2. THERMAL PROBLEM

Figure 2.1 shows the considered thermal problem. There are N pipes $(N \ge 1)$, which lie within the inner circular region with the radius r_b (b = borehole). The inner circle is surrounded by an annular region of another material. The outer circle has the radius r_c .

Figure 2.1 Steady-state heat conduction in a composite circular region with heat flows between the N pipes and the outer circle.

The outer radius of pipe n is r_{pn} , and its center lies at (x_n, y_n) . The fluid in pipe n has the constant temperature T_{fn} , while the temperature outside the outer circle is T_c .

The annular region, $r_b < r < r_c$, is homogeneous with the thermal conductivity λ . The inner circular region outside the pipes has the thermal conductivity λ_b . The steady-state temperature T(x, y) satisfies the heat conduction equation in the annular region and in the inner circle:

$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0 \tag{2.1}$$

Cartesian, complex and polar coordinates will be used:

$$z = x + iy = re^{i\phi} \tag{2.2}$$

The center of pipe n is in complex coordinates:

$$z_n = x_n + i y_n \tag{2.3}$$

We will use the local polar coordinates ρ_n, ψ_n from the center of any pipe n. See Figure 2.2.

$$z - z_n = \rho_n e^{i\psi_n} \tag{2.4}$$

Figure 2.2. Local polar coordinates ρ_n , ψ_n from the center of pipe n.

The temperature and the radial heat flux are continuous at the inner boundary $r = r_b$:

$$T|_{r_{b}=0} = T|_{r_{b}=0}$$

$$\lambda_{b} \frac{\partial T}{\partial r}\Big|_{r_{b}=0} = \lambda \frac{\partial T}{\partial r}\Big|_{r_{b}=0}$$
(2.5)

The boundary conditions at the pipes and the outer circle $r = r_c$ are the same as in [1]. The boundary condition at pipe n is:

$$T - \beta_n r_{pn} \frac{\partial T}{\partial \rho_n} = T_{fn} \qquad \begin{array}{c} \rho_n = r_{pn} \\ 0 \le \psi_n \le 2\pi \end{array}$$
(2.6)

The boundary condition at the outer circle is:

$$T + \beta_c r_c \frac{\partial T}{\partial r} = T_c \qquad \begin{array}{c} r = r_c \\ 0 < \phi < 2\pi \end{array}$$

$$(2.7)$$

The dimensionless coefficient β_n determines the thermal resistance between the fluid in pipe n and the material just outside the pipe. This resistance is $\beta_n r_{pn}/\lambda_b$ (K/(W/m²)). The corresponding thermal resistance R_{pn} (K/(W/m)) per unit pipe length is obtained by division with the perimeter $2\pi r_{pn}$:

$$R_{pn} = \frac{\beta_n}{2\pi\lambda_b} \qquad (K/(W/m)) \tag{2.8}$$

The thermal resistance per unit length (in the axial direction) of the outer circle is:

$$R_{pc} = \frac{\beta_c}{2\pi\lambda} \qquad (K/(W/m)) \tag{2.9}$$

The thermal resistance per unit area at the outer circle is $\beta_c r_c / \lambda = 2\pi r_c R_{pc}$ (K/(W/m²)). The thermal resistance coefficients β_n and β_c may take any non-negative value: $0 \le \beta_n \le \infty, 0 \le \beta_c \le \infty$. The value $\beta_n = +\infty$ means zero heat flux, $\frac{\partial T}{\partial \rho_n} = 0$. The value of T_{fn} is then redundant.

3. LINE SOURCE FOR THE COMPOSITE REGION

The solution in the previous paper [1] for pipes in a homogeneous region is based on the line source solution in complex form. Suitable derivatives gave the multipoles, which were needed for the solution. We will here in the same way use the line source for a composite region.

The thermal problem for the basic line source solution is shown in Figure 3.1. The thermal conductivity is λ_b in the circle $0 \le r < r_b$, and λ in the infinite region outside the circle, $r_b \le r < \infty$. There is a line source with the strength $+q_n$ (W/m) at the point (x_n, y_n) , which lies within the circle $(r_n < r_b)$.

The solution to this problem is given in [2].

$$0 \leq r \leq r_b$$
:

$$T(x,y) = \frac{q_n}{2\pi\lambda_b} \left\{ ln\left(\frac{r_b}{\sqrt{(x-x_n)^2 + (y-y_n)^2}}\right) + \sigma \cdot ln\left(\frac{r_b^2/r_n}{\sqrt{(x-x_nr_b^2/r_n^2)^2 + (y-y_nr_b^2/r_n^2)^2}}\right) \right\}$$
(3.1)

 $r_b \leq r < \infty$:

$$T(x,y) = \frac{q_n}{2\pi\lambda} \left\{ (1-\sigma) ln\left(\frac{r_b}{\sqrt{(x-x_n)^2 + (y-y_n)^2}}\right) + \sigma \cdot ln\left(\frac{r_b}{\sqrt{x^2 + y^2}}\right) \right\}$$
(3.2)

We have introduced the notation:

$$\sigma = \frac{\lambda_b - \lambda}{\lambda_b + \lambda} \qquad (-1 < \sigma < 1) \tag{3.3}$$

The case $\sigma = 0$, i.e. $\lambda_b = \lambda$, is the one studied in [1].

Figure 3.1. Fundamental line source problem for the composite region.

The first term in (3.1) represents a line sink $+q_n$ at (x_n, y_n) in a material with the thermal conductivity λ_b . The second term is due to the fact that the thermal conductivity is λ for $r > r_b$. This term represents a line sink with the strength σq_n situated at the mirror point $(x_n r_b^2/r_n^2, y_n r_b^2/r_n^2)$. The mirror point lies on the same radius as (x_n, y_n) . The product of the distances to the center is $r_n \cdot r_b^2/r_n = r_b^2$. The temperature field (3.2) in the outer region $r \ge r_b$ consists of a line sink with the strength $q_n(1-\sigma)$ at (x_n, y_n) and another one with the remaining heat $q_n \cdot \sigma$ at the (0,0). It shall be observed that the thermal conductivity is λ in (3.2) and λ_b in (3.1).

The solution (3.1-2) is rewritten in the complex form using the following expressions:

$$ln\left(\frac{r_b}{\sqrt{(x-x_n)^2+(y-y_n)^2}}\right) = Re\left[ln\left(\frac{r_b}{z-z_n}\right)\right]$$
(3.4)
$$ln\left(\frac{r_b}{\sqrt{x^2+y^2}}\right) = Re\left[ln\left(\frac{r_b}{z}\right)\right]$$
(3.5)

$$ln\left(\frac{r_{b}^{2}/r_{n}}{\sqrt{(x-x_{n}r_{b}^{2}/r_{n}^{2})^{2}+(y-y_{n}r_{b}^{2}/r_{n}^{2})^{2}}}\right)$$

$$=ln\left(\frac{r_{b}^{2}/|z_{n}|}{|z-z_{n}r_{b}^{2}/r_{n}^{2}|}\right)=ln\left(\frac{r_{b}^{2}}{|\bar{z}_{n}|\cdot|z-z_{n}r_{b}^{2}/(z_{n}\bar{z}_{n})|}\right)$$

$$=ln\left(\frac{r_{b}^{2}}{|r_{b}^{2}-\bar{z}_{n}z|}\right)=ln\left(\frac{r_{b}^{2}}{|r_{b}^{2}-\bar{z}z_{n}|}\right)=Re\left[ln\left(\frac{r_{b}^{2}}{|r_{b}^{2}-\bar{z}z_{n}}\right)\right]$$
(3.6)

In the last two lines we used that $r_n^2 = |z_n|^2 = z_n \bar{z}_n$ and $|w| = |\bar{w}|$ for any complex number w and its conjugate \bar{w} .

The temperature (3.1-2) may now be written in the following form:

$$T(x,y) = \frac{q_n}{2\pi\lambda_b} \cdot Re[W_{no}]$$
(3.7)

The complex-valued function W_{no} is from (3.1-7) defined by:

$$\begin{cases} W_{no} = ln\left(\frac{r_b}{z - z_n}\right) + \sigma \cdot ln\left(\frac{r_b^2}{r_b^2 - \bar{z}z_n}\right) & r \leq r_b \\ W_{no} = (1 + \sigma)ln\left(\frac{r_b}{z - z_n}\right) + \frac{\lambda_b}{\lambda}\sigma \cdot ln\left(\frac{r_b}{z}\right) & r \geq r_b \end{cases}$$
(3.8-9)

The factor $1+\sigma$ in (3.9) is in accordance with (3.3) equal to $\lambda_b(1-\sigma)/\lambda$. The simplicity of the expressions (3.7-9) is noteworthy.

Let us verify that (3.7-9) is indeed the solution to the fundamental line source problem for the composite region shown in Figure 3.1. The expression (3.9) is a regular (analytic) function in the region $r > r_b$, since the sources lie within the circle. Its real part $Re[W_{no}]$ satisfies the heat conduction equation $\nabla^2 T = 0$. The expression (3.8) is also a regular function in $r < r_b$ except at the point $z = z_n$. It remains to verify that the boundary conditions (2.5) at $r = r_b$ are satisfied. We have at the circle $z = r_b \cdot e^{i\phi}$:

$$W_{no}|_{r_b-0} = ln\left(\frac{r_b}{r_b \cdot e^{i\phi} - z_n}\right) + \sigma \cdot ln\left(\frac{r_b^2}{r_b^2 - r_b e^{-i\phi} \cdot z_n}\right)$$
$$= ln\left(\frac{r_b}{r_b \cdot e^{i\phi} - z_n}\right) + \sigma \cdot ln\left(\frac{r_b \cdot e^{i\phi}}{r_b e^{i\phi} - z_n}\right)$$
(3.10)

$$W_{no}|_{r_b+0} = (1+\sigma) ln \left(\frac{r_b}{r_b \cdot e^{i\phi} - z_n}\right) + \frac{\lambda_b}{\lambda} \sigma \cdot ln \left(e^{-i\phi}\right)$$
(3.11)

The difference is

,or

$$W_{no}|_{r_{b}=0} - W_{no}|_{r_{b}=0} = \sigma \cdot i\phi - \frac{\lambda_{b}}{\lambda}\sigma \cdot (-i\phi)$$
$$W_{no}|_{r_{b}=0} - W_{no}|_{r_{b}=0} = \frac{\lambda_{b}-\lambda}{\lambda} \cdot i\phi$$
(3.12)

This difference contains only an imaginary part. The temperature, which is given by the real part, is therefore continuous at $r = r_b$.

For the radial heat flux at $r = r_b$ we have:

$$\lambda_b \left. \frac{\partial W_{no}}{\partial r} \right|_{r_b = 0} = \lambda_b \left\{ \frac{-e^{i\phi}}{r_b e^{i\phi} - z_n} + \sigma \cdot \frac{(-)(-z_n)e^{-i\phi}}{r_b^2 - r_b e^{-i\phi} z_n} \right\}$$
$$= -\frac{\lambda_b}{r_b} \cdot \frac{r_b e^{i\phi} - \sigma z_n}{r_b e^{i\phi} - z_n}$$
(3.13)

$$\lambda \left. \frac{\partial W_{no}}{\partial r} \right|_{r_b + 0} = \lambda \left\{ (1 + \sigma) \cdot \frac{-e^{i\phi}}{r_b e^{i\phi} - z_n} + \frac{\lambda_b}{\lambda} \sigma \cdot \frac{-e^{i\phi}}{r_b e^{i\phi}} \right\}$$
$$= \dots = -\frac{\lambda_b}{r_b} \cdot \frac{r_b e^{i\phi} - \sigma z_n}{r_b e^{i\phi} - z_n}$$
(3.14)

The heat flux, i.e. the real parts of (3.13-14), is therefore continuous at $r = r_b$. This is in fact true also for the imaginary part of W_{no} :

$$\lambda_b \left. \frac{\partial W_{no}}{\partial r} \right|_{r_b = 0} = \lambda \left. \frac{\partial W_{no}}{\partial r} \right|_{r_b = 0}$$
(3.15)

4. MULTIPOLES FOR THE COMPOSITE REGION

The multipoles of order j were in complex form given by $(z - z_n)^{-j}$ in the case of a single region, [1]. They were obtained by derivatives of the complex logarithm $ln(z - z_n)$. Let W_{n1} be the derivative of W_{n0} , (3.8-9), with respect to the complex variable z_n :

$$W_{n1} = \frac{\partial}{\partial z_n} \left(W_{no} \right) \tag{4.1}$$

We get from (3.8) and (3.9):

$$W_{n1} = \frac{1}{z - z_n} + \sigma \cdot \frac{\bar{z}}{r_b^2 - \bar{z}z_n} \qquad r \le r_b \tag{4.2}$$

$$W_{n1} = (1+\sigma) \cdot \frac{1}{z-z_n} \qquad r \ge r_b \qquad (4.3)$$

The function W_{n1} is regular. Thus, the real and imaginary parts, $Re(W_{n1})$ and $Im(W_{n1})$, both satisfy $\nabla^2 T = 0$, except at the point $z - z_n$. At the boundary $r = r_b$ the function W_{no} satisfies (3.12) and (3.15). The identities are valid for any z_n , and hence for the derivative with respect to z_n . But the derivative of ϕ (= arctan(y/x)) in (3.12) with respect to z_n is zero. Therefore we have:

$$W_{n1}|_{r_b=0} = W_{n1}|_{r_b=0} \tag{4.4}$$

$$\lambda_b \left. \frac{\partial W_{n1}}{\partial r} \right|_{r_b = 0} = \lambda \left. \frac{\partial W_{n1}}{\partial r} \right|_{r_b = 0} \tag{4.5}$$

This means that W_{n1} and the radial heat flux are continuous at $r = r_b$. This is true both for $Re(W_{n1})$ and $Im(W_{n1})$.

The multipole of any order j is given by the j:th derivative of W_{no} with respect to z_n . We define W_{nj} by:

$$W_{nj} = \frac{1}{(j-1)!} \cdot \frac{\partial^j}{\partial z_n^j} (W_{no})$$
(4.6)

From (3.8) and (3.9) we get the neat expressions:

$$\begin{cases} W_{nj} = \frac{1}{(z - z_n)^j} + \sigma \cdot \left(\frac{\bar{z}}{r_b^2 - \bar{z}z_n}\right)^j & r \le r_b \\ W_{nj} = (1 + \sigma) \frac{1}{(z - z_n)^j} & r \ge r_b \end{cases}$$
(4.7-8)

The expressions (4.7-8) are regular functions, which implies that the real and imaginary parts satisfy $\nabla^2 T = 0$, except at $z = z_n$. The boundary conditions (4.4) and (4.5) may be derived with respect to z_n any number of times. This means that W_{nj} and the radial heat flux are continuous at $r = r_b$ for any j:

$$W_{nj}|_{r_b=0} = W_{nj}|_{r_b=0}$$
(4.9)

$$\lambda_{b} \left. \frac{\partial W_{nj}}{\partial r} \right|_{r_{b}=0} = \lambda \left. \frac{\partial W_{nj}}{\partial r} \right|_{r_{b}=0}$$

$$(4.10)$$

The multipole (4.7) expressed in local polar coordinates around $z = z_n$ becomes:

$$W_{nj} = \frac{1}{(\rho_n e^{i\psi_n})^j} + \sigma \cdot \left(\frac{\bar{z}_n + \rho_n e^{-i\psi_n}}{r_b^2 - r_n^2 - \rho_n e^{-i\psi_n} \cdot z_n}\right)^j$$
(4.11)

,or

$$W_{nj} = \left(\cos(j\psi_n) - i \cdot \sin(j\psi_n)\right) \cdot \rho_n^{-j} + \sigma \cdot \left(\frac{\bar{z}_n + \rho_n e^{-i\psi_n}}{r_b^2 - r_n^2 - \rho_n e^{-i\psi_n} \cdot z_n}\right)^j \qquad (\rho_n < r_b - r_n) \qquad (4.12)$$

The first part represents a pure multipole behaviour, while the second part is a correction to account for the effect of the different thermal conductivity λ for $r > r_b$. The real part of W_{nj} , $Re(W_{nj})$, gives a variation $cos(j\psi_n)$ around the point $z = z_n$, and the imaginary part, $Im(W_{nj})$, gives a variation $sin(j\psi_n)$. The temperature field from the general multipole of order j at $z = z_n$ is:

$$T = \operatorname{Re}\left(P_{nj} \cdot W_{nj}\right) = \operatorname{Re}\left(\left(c_{nj} + i \cdot s_{nj}\right)W_{nj}\right)\right) = c_{nj} \cdot \operatorname{Re}(W_{nj}) - s_{nj} \cdot \operatorname{Im}(W_{nj})$$
(4.13)

Here P_{nj} is an arbitrary complex number.

The line sink and multipoles at z_n can be used to represent an arbitrary temperature solution outside pipe *n*. We need a corresponding representation for the outer boundary circle $r = r_c$. Here we need a solution in the composite region inside $r = r_c$. The solution in complex form shall vary as $e^{i \cdot j\phi}$ on $r = r_c$. We have the corresponding solutions to $\nabla^2 T = 0$ in polar coordinates in $r_b < r < r_c$:

$$r^{j} \cdot e^{i \cdot j\phi} = z^{j} \qquad r^{-j} e^{i \cdot j\phi} = \frac{1}{\bar{z}^{j}}$$

$$(4.14)$$

In the inner region $0 \le r < r_b$ we can use only the first solution z^j , since the second one is infinite at r = 0 or z = 0.

Therefore we start with the following expressions:

$$W_{cj} = A \cdot z^{j} \qquad 0 \le r \le r_{b}$$

$$W_{cj} = z^{j} + B/\bar{z}^{j} \qquad r_{b} \le r \le r_{c} \qquad (4.15)$$

Continuity at $z = r_b \cdot e^{i\phi}$ requires:

$$Ar_b^j = r_b^j + B/r_b^j \tag{4.16}$$

The radial heat flux is also continuous at $z = r_b e^{i\phi}$:

$$\lambda_{b} \cdot \frac{\partial W_{cj}}{\partial r} \bigg|_{r_{b}=0} = \lambda_{b} A \cdot j r_{b}^{j-1} \cdot e^{i \cdot j \phi} = \lambda \left. \frac{\partial W_{cj}}{\partial r} \right|_{r_{b}=0}$$
$$= \lambda \cdot j \cdot e^{i \cdot j \phi} \left(r_{b}^{j-1} - B / r_{b}^{j+1} \right)$$
(4.17)

The constants A and B are determined by (4.16-17). This gives the following basic expressions:

$$\begin{cases} W_{cj} = (1 - \sigma) z^{j} & r \leq r_{b} \\ W_{cj} = z^{j} - \sigma \cdot \left(r_{b}^{2}/\bar{z}\right)^{j} & r \geq r_{b} \end{cases}$$

$$\tag{4.18}$$

We will call these solutions W_{cj} multipoles at infinity. The index c refers to the fact that they are needed at the outer boundary $r = r_c$. The multipole of order j can represent the variation $e^{i \cdot j\phi}$ or in real form any combination of $cos(j\phi)$ and $sin(j\phi)$ at $r = r_c$.

5. GENERAL EXPRESSION FOR THE TEMPERATURE

The general expression for the temperature field uses all the line sinks and the multipoles of all orders at the pipes and at infinity. We have the following general expression:

$$T = T_o + Re \left[\sum_{n=1}^{N} P_n \cdot W_{no} + \sum_{n=1}^{N} \sum_j P_{nj} \cdot r_{pn}^j \cdot W_{nj} + \sum_j P_{cj} r_c^{-j} W_{cj} \right]$$
(5.1)

Here W_{no} is given by (3.8-9), W_{nj} by (4.7-8) and W_{cj} by (4.18). The factors r_{pn}^{j} and r_{c}^{-j} are introduced for dimensional reasons. The dimension of P_{n} , P_{nj} , and P_{cj} is that of a temperature.

The strength of the line source q_n is in accordance with (3.7) related to P_n by:

$$P_n = \frac{q_n}{2\pi\lambda_b} \tag{5.2}$$

The multipole factors P_{nj} and P_{cj} are complex numbers, while P_n of course is real. The temperature T_o is an arbitrary constant. The summation in j runs from 1 to infinity for an exact solution, and from 1 to J in the truncated approximate solution. The multipoles are not used in the case J = 0.

The general temperature (5.1) becomes with the explicit formulas (3.8-9), (4.7-8) and (4.18):

$$r \leq r_b$$
:

$$T = T_o + Re\left[\sum_{n=1}^{N} P_n \left\{ ln\left(\frac{r_b}{z - z_n}\right) + \sigma \cdot ln\left(\frac{r_b^2}{r_b^2 - \bar{z}z_n}\right) \right\} + \sum_{n=1}^{N} \sum_{j=1}^{N} P_{nj} \left\{ \left(\frac{r_{pn}}{z - z_n}\right)^j + \sigma \left(\frac{r_{pn}\bar{z}}{r_b^2 - z_n\bar{z}}\right)^j \right\} + \sum_{j=1}^{N} P_{cj}(1 - \sigma) \left(\frac{z}{r_c}\right)^j \right]$$

$$(5.3)$$

 $r_b \leq r \leq r_c$:

$$T = T_{o} + Re \left[\sum_{n=1}^{N} P_{n} \left\{ (1+\sigma) \cdot ln \left(\frac{r_{b}}{z-z_{n}} \right) + \frac{\lambda_{b}}{\lambda} \sigma \cdot ln \left(\frac{r_{b}}{z} \right) \right\} + \sum_{n=1}^{N} \sum_{j=1}^{N} P_{nj} (1+\sigma) \left(\frac{r_{pn}}{z-z_{n}} \right)^{j} + \sum_{j=1}^{N} P_{cj} \left\{ \left(\frac{z}{r_{c}} \right)^{j} - \sigma \cdot \left(\frac{r_{b}^{2}}{r_{c}\bar{z}} \right)^{j} \right\} \right]$$

$$(5.4)$$

The general expressions (5.1) or (5.3-4) satisfy the heat conduction equation (2.1) everywhere except at the points $z = z_n$ for any choice of the real constants T_o , P_n and of the complex ones, P_{nj} and P_{cj} . Each term satisfies the boundary conditions (2.5) at $r = r_b$. The constants T_o and P_{cj} are chosen so that the boundary condition (2.7) at the outer circle is fulfilled. This is done in the next chapter, while Chapter 7 deals with the boundary conditions at the pipes. We will get a set of equations for T_o , P_n , P_{nj} and P_{cj} .

The method of solution presented in this paper and in [1] is essentially to use Fourier series expansions; one for each pipe and one for the outer circle. The problem is to transform the coordinates of the different components into polar coordinates for each pipe and for the outer circle. A basic idea in the present method is to use the complex form, which greatly facilitates the derivation of the equation system for the boundary conditions.

6. EQUATIONS FROM THE BOUNDARY CONDITION AT THE OUTER CIRCLE

The expressions (5.3) and (5.4) shall satisfy the boundary conditions (2.6-7). In the previous study [1], each type of term was analysed separately (in Chapter 5 of [1]). We will here use a slightly different approach. The temperature (5.3) is first expressed directly in the local polar coordinates of the considered pipe. Then the expression is inserted in the boundary condition (2.6), and we get an equation system that determines the line sinks P_n and the multipoles P_{nj} . This is done in the next chapter.

In this chapter we consider the boundary condition (2.7) at the outer circle $r = r_c$. Our first goal is to express the temperature (5.4) for the outer region $r_b \leq r \leq r_c$ in polar coordinates: $T = T(r, \phi)$. This is achieved by putting $z = re^{i\phi}$ in (5.4). We will need to distinguish between different powers $(e^{i\phi})^k$ or z^k in the subsequent analysis. The functions of z in (5.4) are therefore expanded in Taylor series.

For the logarithm of (5.4) we have:

$$ln\left(\frac{r_b}{z-z_n}\right) = ln\left(\frac{r_b}{z}\right) + ln\left(\frac{1}{1-z_n/z}\right)$$
(6.1)

We need the Taylor series:

$$ln\left(\frac{1}{1-s}\right) = \sum_{k=1}^{\infty} \frac{1}{k} s^k \qquad |s| < 1 \tag{6.2}$$

Then we have:

$$ln\left(\frac{r_b}{z-z_n}\right) = ln\left(\frac{r_b}{z}\right) + \sum_{k=1}^{\infty} \frac{1}{k} \left(\frac{z_n}{z}\right)^k \qquad |z_n| < |z|$$
(6.3)

We also need a Taylor expansion of the multipole term $(r_{pn}/(z-z_n))^j$ in (5.4). We have:

$$\left(\frac{r_{pn}}{z-z_n}\right)^j = \left(\frac{r_{pn}}{z}\right)^j \cdot \sum_{k'=0}^{\infty} \binom{j+k'-1}{j-1} \left(\frac{z_n}{z}\right)^{k'} \qquad |z_n| < |z| \tag{6.4}$$

Here we have used a Taylor series given in [1]:

$$\frac{1}{(1-s)^j} = \sum_{k=0}^{\infty} \binom{j+k-1}{j-1} s^k \qquad |s| < 1$$
(6.5)

The multipoles (6.4) are summed over j in (5.4). We need to rearrange the double sum in the following way:

$$\sum_{j=1}^{\infty} P_{nj} \left(\frac{r_{pn}}{z - z_n} \right)^j = \sum_{j=1}^{\infty} \sum_{k'=0}^{\infty} P_{nj} \left(\frac{r_{pn}}{z} \right)^j \binom{j+k'-1}{j-1} \left(\frac{z_n}{z} \right)^{k'} = [j+k'=k] = \sum_{k=1}^{\infty} \sum_{j=1}^k P_{nj} \binom{k-1}{j-1} \frac{r_{pn}^j z_n^{k-j}}{z^k}$$
(6.6)

The change of summation from j, k' to k, j means that j varies between 1 and k for k = 1, 2...

We insert (6.3) and (6.6) in (5.4) and put $z = re^{i\phi}$. Consider first the terms containing ln(z). For these we have from (5.4) and (6.3):

$$Re\left[\sum_{n=1}^{N} P_n\left\{(1+\sigma) \cdot \ln\left(\frac{r_b}{re^{i\phi}}\right) + \frac{\lambda_b}{\lambda}\sigma \cdot \ln\left(\frac{r_b}{re^{i\phi}}\right)\right\}\right]$$

$$= \sum_{n=1}^{N} P_n\left(1+\sigma + \frac{\lambda_b}{\lambda}\sigma\right) \cdot \ln\left(\frac{r_b}{r}\right) = \sum_{n=1}^{N} P_n\frac{\lambda_b}{\lambda} \cdot \ln\left(\frac{r_b}{r}\right)$$
(6.7)

In the last line we used the definition (3.3) for σ . The temperature as a function of r and ϕ is now using (5.4), (6.3), (6.6) and (6.7) with z equal to $re^{i\phi}$:

$$T(r,\phi) = T_o + \sum_{n=1}^{N} P_n \frac{\lambda_b}{\lambda} \cdot \ln\left(\frac{r_b}{r}\right) + Re\left[\sum_{n=1}^{N} \sum_{k=1}^{\infty} P_n(1+\sigma) \frac{1}{k} \left(\frac{z_n}{r}\right)^k e^{-i \cdot k\phi} + \sum_{n=1}^{N} \sum_{k=1}^{\infty} \sum_{j=1}^{k} P_{nj}(1+\sigma) \binom{k-1}{j-1} \frac{r_{jn}^j z_n^{k-j}}{r^k} \cdot e^{-i \cdot k\phi} + \sum_{k=1}^{\infty} P_{ck}\left\{\left(\frac{r}{r_c}\right)^k - \sigma \cdot \left(\frac{r_b^2}{r_cr}\right)^k\right\} e^{i \cdot k\phi}\right] \qquad (6.8)$$

The summation index is in the last line changed from j to k.

The temperature (6.8) shall satisfy the boundary condition (2.7). For the radial derivative of any power of r we have:

$$\beta_{c}r_{c}\frac{\partial}{\partial r}(r^{k})\big|_{r=r_{c}} = \beta_{c}r_{c}\cdot k\cdot r_{c}^{k-1} = k\beta_{c}\cdot r_{c}^{k}$$
$$\beta_{c}r_{c}\frac{\partial}{\partial r}(r^{-k})\big|_{r=r_{c}} = -k\beta_{c}\cdot r_{c}^{-k}$$
(6.9)

We will separate different k, i.e. different orders in $e^{-i \cdot k\phi}$. The last line of (6.8) has a positive exponent, which is changed by complex conjugation:

$$Re\left[P_{ck}\cdot e^{i\cdot k\phi}\right] = Re\left[\bar{P}_{ck}\cdot e^{-i\cdot k\phi}\right]$$
(6.10)

The boundary condition (2.7) may now be written:

$$T_{c} = \left(T + \beta_{c} \frac{\partial T}{\partial r}\right) \bigg|_{r=r_{c}} = T_{o} + \sum_{n=1}^{N} P_{n} \frac{\lambda_{b}}{\lambda} \left\{ ln\left(\frac{r_{b}}{r_{c}}\right) + \beta_{c} r_{c} \cdot \frac{-1}{r_{c}} \right\}$$

$$+ \sum_{k=1}^{\infty} Re \left[e^{-i \cdot k\phi} \cdot \left\{ \sum_{n=1}^{N} P_{n} (1+\sigma) \frac{1}{k} (1-k\beta_{c}) \left(\frac{z_{n}}{r_{c}}\right)^{k} \right.$$

$$+ \sum_{n=1}^{N} \sum_{j=1}^{k} P_{nj} (1+\sigma) \binom{k-1}{j-1} (1-k\beta_{c}) \frac{r_{jn}^{j} z_{n}^{k-j}}{r_{c}^{k}}$$

$$+ \left. \bar{P}_{ck} \left((1+k\beta_{c}) \cdot \left(\frac{r_{c}}{r_{c}}\right)^{k} - \sigma (1-k\beta_{c}) \left(\frac{r_{b}^{2}}{r_{c} \cdot r_{c}}\right)^{k} \right) \right\} \right] \qquad 0 \le \phi \le 2\pi$$

$$(6.11)$$

Equation (6.11) is valid for $0 \le \phi \le 2\pi$. The constant part (independent of ϕ) must vanish. This determines T_o :

$$T_o = T_c + \sum_{n=1}^{N} P_n \frac{\lambda_b}{\lambda} \left(ln \left(\frac{r_c}{r_b} \right) + \beta_c \right)$$
(6.12)

This equation relates the temperature level T_o to the temperature T_c at the outer circle and the line sources P_n .

The remaining part of (6.11) is an equation of the following type:

$$0 = \sum_{k=1}^{\infty} Re \left[e^{-i \cdot k\phi} \cdot Z_k \right]$$

=
$$\sum_{k=1}^{\infty} \left\{ \cos(k\phi) \cdot Re(Z_k) + \sin(k\phi) \cdot Im(Z_k) \right\} \qquad 0 \le \phi \le 2\pi$$
(6.13)

All coefficients before $cos(k\phi)$ and $sin(k\phi)$ must vanish. This means that the complex factor Z_k is zero for all k. We have the following equations:

k = 1, 2, ...:

This equation relates the value of a multipole P_{ck} at infinity to the values of line sources P_n and the multipoles P_{nj} at the pipes up to order j = k.

7. EQUATIONS FROM THE BOUNDARY CONDITION AT THE PIPES

The boundary condition at pipe m is from (2.6):

$$T_{fm} = \left(T - \beta_m r_{pm} \frac{\partial T}{\partial \rho_m}\right) \Big|_{\rho_m = r_{pm}} \qquad 0 \le \psi_m \le 2\pi$$
(7.1)

The temperature is given by (5.3). We will first express this temperature in the local polar coordinates ρ_m, ψ_m of pipe *m*, which are given by (2.4):

$$z - z_m = \rho_m e^{i\psi_m} \tag{7.2}$$

We want to separate different powers $(z - z_m)^k$ or $(e^{i\psi_m})^k$. We therefore expand the various terms of (5.3) in Taylor series in $z - z_m$.

We will use the following expressions.

A. $n \neq m$

$$ln\left(\frac{r_b}{z-z_n}\right) = ln\left(\frac{r_b}{z-z_m+z_m-z_n}\right)$$
$$= ln\left(\frac{r_b}{z_m-z_n}\right) + ln\left(\frac{1}{1-\frac{z-z_m}{z_n-z_m}}\right)$$
(7.3)

The second logarithm is expanded in the Taylor series (6.2).

В.

$$ln\left(\frac{r_b^2}{r_b^2 - z_n \bar{z}}\right) = ln\left(\frac{r_b^2}{r_b^2 - z_n \bar{z}_m - z_n (\bar{z} - \bar{z}_m)}\right)$$
$$= ln\left(\frac{r_b^2}{r_b^2 - z_n \bar{z}_m}\right) + ln\left(\frac{1}{1 - \frac{z_n (\bar{z} - \bar{z}_m)}{r_b^2 - z_n \bar{z}_m}}\right)$$
(7.4)

The second logarithm is expanded in the Taylor series (6.2).

C. $n \neq m$

$$\left(\frac{r_{pn}}{z-z_n}\right)^j = \left(\frac{r_{pn}}{z_m-z_n}\right)^j \cdot \frac{1}{\left(1-\frac{z-z_m}{z_n-z_m}\right)^j}$$
(7.5)

The second factor is expanded with the Taylor series (6.5).

D.

$$\left(\frac{r_{pn}\bar{z}}{r_b^2 - z_n\bar{z}}\right)^j = \left(\frac{r_{pn}(\bar{z}_m + \bar{z} - \bar{z}_m)}{r_b^2 - z_n\bar{z}_m - z_n(\bar{z} - \bar{z}_m)}\right)^j \\
= \left(\frac{r_{pn}}{r_b^2 - z_n\bar{z}_m}\right)^j \cdot (\bar{z}_m + \bar{z} - \bar{z}_m)^j \cdot \frac{1}{\left(1 - \frac{z_n(\bar{z} - \bar{z}_m)}{r_b^2 - z_n\bar{z}_m}\right)^j}$$
(7.6)

The second factor in expanded as a binominal. The third factor is expanded in the series (6.5):

$$(\bar{z}_m + \bar{z} - \bar{z}_m)^j = \sum_{j'=0}^j \binom{j}{j'} (\bar{z} - \bar{z}_m)^{j'} \cdot \bar{z}_m^{j-j'}$$
(7.7)

$$\frac{1}{\left(1 - \frac{z_n(\bar{z} - \bar{z}_m)}{r_b^2 - z_n \bar{z}_m}\right)^j} = \sum_{k'=0}^{\infty} \binom{j+k'-1}{j-1} \left(\frac{z_n(\bar{z} - \bar{z}_m)}{r_b^2 - z_n \bar{z}_m}\right)^{k'}$$
(7.8)

The product of (7.7) and (7.8) is a double sum containing the powers $(\bar{z} - \bar{z}_m)^{k'+j'}$. We change the summation from k' and j' to k = k' + j' and j'. The index k will vary from 0 to infinity. The values of j' run from 0 to min (j, k). We have the expansion:

$$\left(\frac{r_{pn}\bar{z}}{r_b^2 - z_n\bar{z}}\right)^j = \sum_{k=0}^{\infty} \sum_{j'=0}^{\min(j,k)} \binom{j}{j'} \binom{j+k-j'-1}{j-1} \\
\cdot \frac{r_{pn}^j \bar{z}_m^{j-j'} z_n^{k-j'}}{\left(r_b^2 - z_n\bar{z}_m\right)^{j+k-j'}} \cdot (\bar{z} - \bar{z}_m)^k$$
(7.9)

E.

$$\sum_{j=1}^{\infty} P_{cj}(1-\sigma) \left(\frac{z}{r_c}\right)^j = \sum_{j=1}^{\infty} P_{cj}(1-\sigma) \left(\frac{z_m + z - z_m}{r_c}\right)^j$$
$$= \sum_{j=1}^{\infty} \sum_{k=0}^{j} P_{cj}(1-\sigma) \binom{j}{k} \frac{z_m^{j-k} \cdot (z - z_m)^k}{r_c^j}$$
(7.10)

The summation order is changed. Then we have:

$$\sum_{j=1}^{\infty} \sum_{k=0}^{j} \dots = \sum_{k=0}^{\infty} \sum_{j=max(1,k)}^{\infty} \dots$$
(7.11)

The temperature (5.3) may now with the use of (7.2-11) be written in the following way:

$$T = T_{o} + P_{m} ln\left(\frac{r_{b}}{\rho_{m}}\right)$$

$$+ Re\left[\sum_{\substack{n=1\\n\neq m}}^{N} P_{n}\left\{ln\left(\frac{r_{b}}{z_{m}-z_{n}}\right) + \sum_{k=1}^{\infty}\frac{1}{k}\left(\frac{\rho_{m}}{z_{n}-z_{m}}\right)^{k} \cdot e^{i\cdot k\psi_{m}}\right\}$$

$$+ \sum_{\substack{n=1\\n\neq m}}^{N} P_{n}\sigma\left\{ln\left(\frac{r_{b}}{r_{b}^{2}-\bar{z}_{m}z_{n}}\right) + \sum_{k=1}^{\infty}\frac{1}{k}\left(\frac{z_{n}\rho_{m}}{r_{b}^{2}-\bar{z}_{m}z_{n}}\right)^{k} \cdot e^{-i\cdot k\psi_{m}}\right\}$$

$$+ \sum_{\substack{j=1\\n\neq m}}^{\infty} P_{mj}\left(\frac{r_{pm}}{\rho_{m}}\right)^{j} \cdot e^{-i\cdot j\psi_{m}}$$

$$+ \sum_{\substack{n=1\\n\neq m}}^{N} \sum_{j=1}^{\infty} \sum_{k=0}^{\infty} P_{nj}\left(\frac{r_{pn}}{z_{m}-z_{n}}\right)^{j}\left(\frac{j+k-1}{j-1}\right)\left(\frac{\rho_{m}}{z_{n}-z_{m}}\right)^{k} \cdot e^{i\cdot k\psi_{m}}$$

$$+ \sum_{\substack{n=1\\n\neq m}}^{N} \sum_{j'=0}^{\infty} \sum_{j'=0}^{\infty} P_{nj}\sigma\binom{j}{j'}\left(\frac{j+k-j'-1}{j-1}\right) \cdot \frac{r_{pn}^{j}\bar{z}_{m}^{j-j'}z_{n}^{k-j'} \cdot \rho_{m}^{k}}{(r_{b}^{2}-z_{n}\bar{z}_{m})^{j+k-j'}} \cdot e^{-i\cdot k\psi_{m}}$$

$$+ \sum_{k=0}^{\infty} \sum_{j=max(1,k)}^{\infty} P_{cj}(1-\sigma)\binom{j}{k}\frac{z_{m}^{j-k} \cdot \rho_{m}^{k}}{r_{c}^{j}}e^{i\cdot k\psi_{m}}\right]$$

$$(7.12)$$

The summation index on the fourth line (concerning P_{mj}) is changed to k. The dependence on ψ_m lies in the exponents $e^{i \cdot k \psi_m}$ and $e^{-i \cdot k \psi_m}$. The latter terms may be changed to the positive exponent $e^{i \cdot k \psi_m}$ by taking the complex conjugate as in (6.10). Expression (7.12) is with these modifications inserted in the boundary condition (7.1) for pipe *m*. The derivatives of powers of ρ_m are simple. We have as in (6.9):

$$-\beta_m r_{pm} \frac{\partial}{\partial \rho_m} \left(\rho_m^k \right) \Big|_{\rho_m = r_{pm}} = -k\beta_m r_{pm}^k$$
$$-\beta_m r_{pm} \frac{\partial}{\partial \rho_m} \left(\rho_m^{-k} \right) \Big|_{\rho_m = r_{pm}} = k\beta_m r_{pm}^{-k}$$
(7.13)

We finally get the following expression for the boundary condition at pipe m:

$$T_{fm} = \left(T - \beta_m r_{pm} \frac{\partial T}{\partial \rho_m}\right) \Big|_{\rho_m = r_{pm}}$$

$$= T_o + P_m \left\{ ln\left(\frac{r_b}{r_{pm}}\right) - \beta_m r_{pm} \cdot \frac{-1}{r_{pm}} \right\}$$

$$+ \sum_{\substack{n=1 \ n \neq m}}^N P_n ln\left(\frac{r_b}{r_{mn}}\right) + \sum_{n=1}^N P_n \sigma \cdot ln\left(\frac{r_b}{|r_b^2 - \bar{z}_m z_n|}\right)$$

$$+ Re \left[\sum_{\substack{n=1 \ n \neq m}}^\infty P_{nj}\left(\frac{r_{pn}}{z_m - z_n}\right)^j + \sum_{n=1}^N \sum_{j=1}^\infty P_{nj}\sigma\left(\frac{r_{pn}\bar{z}_m}{r_b^2 - z_n \bar{z}_m}\right)^j$$

$$+ \frac{\sum_{j=1}^\infty P_{cj}(1 - \sigma)\left(\frac{z_m}{r_c}\right)^j \right]$$

$$+ Re \left[\sum_{k=1}^\infty e^{i \cdot k\psi_m} \left\{ \sum_{\substack{n=1 \ n \neq m}}^N P_n(1 - k\beta_m) \frac{1}{k} \left(\frac{r_{pm}}{z_n - z_m}\right)^k \right.$$

$$+ \sum_{n=1}^N P_n \sigma(1 - k\beta_m) \frac{1}{k} \left(\frac{\bar{z}_n r_{pm}}{r_b^2 - z_m \bar{z}_n}\right)^k$$

$$+ \frac{N}{n = 1} \sum_{j=1}^\infty P_{nj}(1 - k\beta_m) \left(\frac{j + k - 1}{j - 1}\right) \left(\frac{r_{pn}}{z_m - z_n}\right)^j \left(\frac{r_{pm}}{z_n - z_m}\right)^k$$

$$+ \sum_{n=1}^N \sum_{j=1}^\infty P_{nj}(1 - k\beta_m) \left(\frac{j + k - 1}{j - 1}\right) \left(\frac{r_{pn}}{r_j - z_m}\right)^j \left(\frac{r_{pm}r_{pm}z_m^{j-j'} \bar{z}_n^{k-j'}}{(r_b^2 - \bar{z}_n z_m)^{j+k-j'}} \right)$$

$$+ \sum_{n=1}^\infty P_{cj}(1 - \sigma)(1 - k\beta_m) \left(\frac{j}{k}\right) \frac{z_m^{j-k}r_p^{km}}{r_c^k} \right\} \right] \qquad 0 \le \psi_m \le 2\pi$$

é

The first four lines on the right-hand side give the constant part; i.e. the part independent of ψ_m . The length r_{mn} denotes the distance between the centers of pipes m and n:

$$r_{mn} = |z_m - z_n| = \sqrt{(x_m - x_n)^2 + (y_m - y_n)^2}$$
(7.15)

Equation (7.14) is valid for all ψ_m around the pipe. The last six lines of (7.14) contain the part that depends on ψ_m . It must be equal to zero. The expression is of the same type as (6.13). The complex factor for each component $e^{i \cdot k \psi_m}$ must vanish. We get the following equations, which determine the multipoles P_{nj} :

m = 1, ...N ; k = 1, 2, ...

$$\bar{P}_{mk} + \frac{1 - k\beta_m}{1 + k\beta_m} \left\{ \sum_{\substack{n=1\\n \neq m}}^{N} P_n \frac{1}{k} \left(\frac{r_{pm}}{z_n - z_m} \right)^k + \sum_{n=1}^{N} P_n \sigma \frac{1}{k} \left(\frac{r_{pm} \bar{z}_n}{r_b^2 - z_m \bar{z}_n} \right)^k + \sum_{\substack{n=1\\n \neq m}}^{N} \sum_{j=1}^{\infty} P_{nj} \binom{j+k-1}{j-1} \left(\frac{r_{pn}}{z_m - z_n} \right)^j \left(\frac{r_{pm}}{z_n - z_m} \right)^k + \sum_{\substack{n=1\\n \neq m}}^{N} \sum_{j=1}^{\infty} \sum_{j'=0}^{\min(j,k)} \bar{P}_{nj} \sigma \binom{j}{j'} \binom{j+k-j'-1}{j-1} \cdot \frac{r_{pn}^j r_{pm}^k z_m^{j-j'} \bar{z}_n^{k-j'}}{(r_b^2 - \bar{z}_n z_m)^{j+k-j'}} + \sum_{\substack{j=k\\j=k}}^{\infty} P_{cj} (1-\sigma) \binom{j}{k} \frac{z_m^{j-k} r_{pm}^k}{r_c^j} \right\} = 0$$
(7.16)

The constant part of (7.14) must also vanish. This means that the first four lines on the right-hand side are equal to T_{fm} . We can eliminate T_o from (6.12). Then we get the following equations:

m = 1, ...N:

$$T_{fm} - T_c = \sum_{n=1}^{N} q_n \cdot R_{mn}^{\circ}$$

$$+ Re \left[\sum_{\substack{n=1\\n \neq m}}^{N} \sum_{j=1}^{\infty} P_{nj} \left(\frac{r_{pn}}{z_m - z_n} \right)^j + \sum_{n=1}^{N} \sum_{j=1}^{\infty} P_{nj} \sigma \left(\frac{r_{pn} \bar{z}_m}{r_b^2 - z_n \bar{z}_m} \right)^j \right]$$

$$+ \sum_{j=1}^{\infty} P_{cj} (1 - \sigma) \left(\frac{z_m}{r_c} \right)^j \right]$$

$$(7.17)$$

The first line involves on the right-hand side the line sources P_n . We have returned to q_n via (5.2). The coefficients R_{mn}^o are given by:

$$R_{mm}^{o} = \frac{1}{2\pi\lambda_{b}} \left\{ \beta_{m} + \ln\left(\frac{r_{b}}{r_{pm}}\right) + \sigma \cdot \ln\left(\frac{r_{b}^{2}}{r_{b}^{2} - r_{m}^{2}}\right) \right\} + \frac{1}{2\pi\lambda} \left\{ \ln\left(\frac{r_{c}}{r_{b}}\right) + \beta_{c} \right\} \quad m = 1, \dots N$$

$$R_{mn}^{o} = \frac{1}{2\pi\lambda_{b}} \left\{ \ln\left(\frac{r_{b}}{r_{mn}}\right) + \sigma \cdot \ln\left(\frac{r_{b}^{2}}{|r_{b}^{2} - z_{n}\bar{z}_{m}|}\right) \right\} + \frac{1}{2\pi\lambda} \left\{ \ln\left(\frac{r_{c}}{r_{b}}\right) + \beta_{c} \right\} \quad m \neq n \quad (7.18)$$

$$m, n = 1, \dots N$$

8. FINAL EQUATIONS AND ITERATIVE SOLUTION

The final equations for q_n (or P_n), P_{nj} and P_{cj} are (7.17-18), (7.16) and (6.14). Multipoles of all orders are needed in an exact solution. In the numerical one we truncate the equation system and consider multipoles up to order J at each pipe and at infinity. The sine- and cosinevariation around the pipes and around the outer circle can then be satisfied up to order J only. The truncation error is discussed in the next chapter.

We have from (7.17), (7.16), (5.2) and (6.14) the following final equations: m = 1, ..., N:

$$T_{fm} - T_{c} = \sum_{n=1}^{N} q_{n} \cdot R_{mn}^{o} + Re \left[\sum_{\substack{n=1\\n \neq m}}^{N} \sum_{j=1}^{J} P_{nj} \left(\frac{r_{pn}}{z_{m} - z_{n}} \right)^{j} + \sum_{n=1}^{N} \sum_{j=1}^{J} P_{nj} \sigma \left(\frac{r_{pn} \bar{z}_{m}}{r_{b}^{2} - z_{n} \bar{z}_{m}} \right)^{j} + \sum_{j=1}^{J} P_{cj} (1 - \sigma) \left(\frac{z_{m}}{r_{c}} \right)^{j} \right]$$
(8.1)

m = 1, ...N; k = 1, ...

.J:

$$\bar{P}_{mk} + \frac{1 - k\beta_m}{1 + k\beta_m} \left\{ \sum_{\substack{n=1\\n \neq m}}^{N} \frac{q_n}{2\pi\lambda_b} \frac{1}{k} \left(\frac{r_{pm}}{z_n - z_m} \right)^k + \sum_{\substack{n=1\\n \neq m}}^{N} \frac{q_n}{2\pi\lambda_b} \sigma \frac{1}{k} \left(\frac{r_{pm}\bar{z}_n}{r_b^2 - z_m\bar{z}_n} \right)^k \right. \\
\left. + \sum_{\substack{n=1\\n \neq m}}^{N} \sum_{j=1}^{J} P_{nj} \binom{j+k-1}{j-1} \left(\frac{r_{pn}}{z_m - z_n} \right)^j \left(\frac{r_{pm}}{z_n - z_m} \right)^k \\
\left. + \sum_{\substack{n=1\\n \neq m}}^{N} \sum_{j'=0}^{J} \frac{\min(j,k)}{p_{nj}\sigma \binom{j}{j'}} \binom{j+k-j'-1}{j-1} \cdot \frac{r_{pn}^j r_{pm}^k z_m^{j-j'} \bar{z}_n^{k-j'}}{(r_b^2 - \bar{z}_n z_m)^{j+k-j'}} \\
\left. + \sum_{\substack{j=k\\j=k}}^{J} P_{cj}(1-\sigma) \binom{j}{k} \frac{z_m^{j-k} r_{pm}^k}{r_c^j} \right\} = 0$$
(8.2)

k = 1, ... J:

$$\bar{P}_{ck} \cdot \left\{ 1 - \sigma \frac{1 - k\beta_c}{1 + k\beta_c} \left(\frac{r_b}{r_c} \right)^{2k} \right\} + (1 + \sigma) \frac{1 - k\beta_c}{1 + k\beta_c} \cdot \left\{ \sum_{n=1}^N \frac{q_n}{2\pi\lambda_b} \frac{1}{k} \left(\frac{z_n}{r_c} \right)^k + \sum_{n=1}^N \sum_{j=1}^k P_{nj} \binom{k-1}{j-1} \frac{r_{pn}^j z_n^{k-j}}{r_c^k} \right\} = 0$$
(8.3)

The thermal resistances R_{mn}^{o} are given by (7.18):

$$R_{mm}^{o} = \frac{1}{2\pi\lambda_{b}} \left\{ \beta_{m} + \ln\left(\frac{r_{b}}{r_{pm}}\right) + \sigma \cdot \ln\left(\frac{r_{b}^{2}}{r_{b}^{2} - r_{m}^{2}}\right) \right\} + \frac{1}{2\pi\lambda} \left\{ \ln\left(\frac{r_{c}}{r_{b}}\right) + \beta_{c} \right\} \quad m = 1, \dots N$$

$$R_{mn}^{o} = \frac{1}{2\pi\lambda_{b}} \left\{ \ln\left(\frac{r_{b}}{r_{mn}}\right) + \sigma \cdot \ln\left(\frac{r_{b}^{2}}{|r_{b}^{2} - z_{n}\bar{z}_{m}|}\right) \right\} + \frac{1}{2\pi\lambda} \left\{ \ln\left(\frac{r_{c}}{r_{b}}\right) + \beta_{c} \right\} \quad m \neq n \qquad (8.4)$$

$$m, n = 1, \dots N$$

There are N real-valued equations (8.1) and $N \cdot J + J$ complex-valued ones (8.2-3). This corresponds to the N line sources q_n and the $N \cdot J + J$ complex-valued multipoles P_{nj} and P_{cj} .

The equation system (8.1-4) is solved iteratively as in [1]. Let K_{mn}^{o} be the elements of the inverse matrix of the resistance matrix with the elements R_{mn}^{o} :

$$(K_{mn}^{o}) = (R_{mn}^{o})^{-1}$$
(8.5)

Inversion of (8.1) gives the heat fluxes:

$$q_{m'} = \sum_{m=1}^{N} K_{m'm}^{o} \left\{ T_{fm} - T_{c} - Re \left[\sum_{\substack{n=1\\n \neq m}}^{N} \sum_{j=1}^{J} P_{nj} \left(\frac{r_{pn}}{z_{m} - z_{n}} \right)^{j} + \sum_{n=1}^{N} \sum_{j=1}^{J} P_{nj} \sigma \left(\frac{r_{pn} \tilde{z}_{m}}{r_{b}^{2} - z_{n} \tilde{z}_{m}} \right)^{j} + \sum_{j=1}^{J} P_{cj} (1 - \sigma) \left(\frac{z_{m}}{r_{c}} \right)^{j} \right] \right\}$$

$$(8.6)$$

Let q_n^{ν} , P_{nj}^{ν} and P_{cj}^{ν} denote the values of our variables for iteration step ν . We start for $\nu = 0$ with the values:

$$P_{nj}^{o} = 0 \qquad P_{cj}^{0} = 0$$

$$q_{m'}^{o} = \sum_{m=1}^{N} K_{m'm}^{o} \left(T_{fm} - T_{c} \right) \qquad (8.7)$$

This means that we start without multipoles and compute the heat fluxes with (8.6).

For $\nu = 1, 2...$ we use the following recursive formulas in accordance with (8.2), (8.3) and (8.6):

 $m = 1, ...N \quad ; \quad k = 1, ...J :$ $P_{mk}^{\nu+1} = -\frac{1-k\beta_m}{1+k\beta_m} \left\{ \sum_{\substack{n=1\\n\neq m}}^{N} \frac{q_n^{\nu}}{2\pi\lambda_b} \frac{1}{k} \left(\frac{r_{pm}}{z_n - z_m} \right)^k + \sum_{n=1}^{N} \frac{q_n^{\nu}}{2\pi\lambda_b} \sigma \frac{1}{k} \left(\frac{r_{pm}\bar{z}_n}{r_b^2 - z_m\bar{z}_n} \right)^k \right.$ $+ \sum_{\substack{n=1\\n\neq m}}^{N} \sum_{\substack{j=1\\j=1}}^{J} P_{nj}^{\nu} \binom{j+k-1}{j-1} \left(\frac{r_{pn}}{z_m - z_n} \right)^j \left(\frac{r_{pm}}{z_n - z_m} \right)^k$ $+ \sum_{\substack{n=1\\j=1}}^{N} \sum_{\substack{j'=0\\j'=0}}^{J} \frac{min(j,k)}{p_{nj}^{\nu}\sigma \binom{j}{j'} \binom{j+k-j'-1}{j-1}}{\frac{j'-1}{j-1}} \cdot \frac{r_{pn}^j r_{pm}^k z_m^{j-j'} \bar{z}_n^{k-j'}}{(r_b^2 - \bar{z}_n z_m)^{j+k-j'}}$ $+ \sum_{\substack{j=k\\j=k}}^{J} P_{cj}^{\nu} (1-\sigma) \binom{j}{k} \frac{z_m^{j-k} r_{pm}^k}{r_c^j} \right\}$ (8.8)

$$k = 1, ... J$$
:

$$\bar{P}_{ck}^{\nu+1} \cdot \left\{ 1 - \sigma \frac{1 - k\beta_c}{1 + k\beta_c} \left(\frac{r_b}{r_c} \right)^{2k} \right\} = -(1 + \sigma) \frac{1 - k\beta_c}{1 + k\beta_c} \cdot \left\{ \sum_{n=1}^{N} \frac{q_n^{\nu}}{2\pi\lambda_b} \frac{1}{k} \left(\frac{z_n}{r_c} \right)^k + \sum_{n=1}^{N} \sum_{j=1}^{k} P_{nj}^{\nu+1} \binom{k-1}{j-1} \frac{r_{jn}^j z_n^{k-j}}{r_c^k} \right\}$$
(8.9)

m' = 1, ... N:

$$q_{m'}^{\nu+1} = \sum_{m=1}^{N} K_{m'm}^{o} \left\{ T_{fm} - T_{c} - Re \left[\sum_{\substack{n=1\\n \neq m}}^{N} \sum_{j=1}^{J} P_{nj}^{\nu+1} \left(\frac{r_{pn}}{z_{m} - z_{n}} \right)^{j} + \sum_{n=1}^{N} \sum_{j=1}^{J} P_{nj}^{\nu+1} \sigma \left(\frac{r_{pn} \bar{z}_{m}}{r_{b}^{2} - z_{n} \bar{z}_{m}} \right)^{j} + \sum_{j=1}^{J} P_{cj}^{\nu+1} (1 - \sigma) \left(\frac{z_{m}}{r_{c}} \right)^{j} \right] \right\}$$

$$(8.10)$$

The iterative solution (8.7-10) is physically reasonable. Consider an iteration step ν . There is an approximate solution with line sinks and multipoles. The equations (8.1-3) are not satisfied exactly. The equations (8.8) and (8.9) mean that we change the multipoles so that the variation vanishes exactly (up to order J) at the considered boundary circle. But the difference $P_{mk}^{\nu+1} - P_{mk}^{\nu}$ will induce a multipole behaviour at the other pipes. These secondary disturbances are however damped with factors of the type:

$$\left(\frac{z_n}{r_c}\right)^k$$
; $\left(\frac{r_{pm}}{r_c}\right)^{k'}$; $\left(\frac{r_{pm}}{z_n-z_m}\right)^{k''}$

The convergence of the iterative procedure is therefore rapid.

The iteration procedure is quite robust. It has worked without any problems for all cases that we have tested. An example is given below.

The iterations are performed until the following criterion is satisfied.

$$\frac{\left|P_{nj}^{\nu+1} - P_{nj}^{\nu}\right|}{\max_{1 \le k \le j} \left|P_{nk}\right|} < \epsilon \quad \text{for all } n \text{ and all } j (j \le J) \text{ with } \left|P_{nj}\right| \neq 0$$

$$\frac{\left|P_{cj}^{\nu+1} - P_{cj}^{\nu}\right|}{\max_{1 \le k \le j} \left|P_{cj}\right|} < \epsilon \quad \text{for all } j (j \le J) \text{ with } \left|P_{cj}\right| \neq 0$$

$$(8.11)$$

Here ϵ is a measure of the iteration accuracy. The multipole differences are divided by the largest multipole up to the same order j according to the expression in the denominators. Normally, this is the multipole of first order. This will mean that ϵ gives the accuracy relative to the magnitude of the strongest multipole.

Example 8.1. Three pipes with different temperatures. We take the following data:

$$\begin{array}{ll} N = 3 & \lambda_b = 0.6 & \lambda = 3.6 \\ r_b = 2 & r_c = 4 & \beta_c = 0 & T_c = 0 \\ x_1 = 1 & y_1 = 0 & \beta_1 = 0 & T_{f1} = 1 & r_{p1} = 0.5 \\ x_2 = 0 & y_2 = 1.5 & \beta_2 = 0 & T_{f2} = -3 & r_{p2} = 0.25 \\ x_3 = -1 & y_3 = -0.5 & \beta_3 = 0.5 & T_{f3} = 2 & r_{p3} = 0.5 \end{array}$$

$$\begin{array}{l} (8.12) \end{array}$$

The temperature field of this case is shown in Figure 1.1 (and on the cover).

The number of iterations in order to obtain the required accuracy ϵ is given in Table 8.1 for different J and ϵ .

	$\epsilon = 10^{-4}$	10^{-5}	10^{-6}
J=1	6	7	8
2	6	7	8
3	6	8	9
5	6	8	9
10	6	8	9
15	6	8	9
20	6	8	9

Table 8.1. Required number of iterations in example 8.1.

We have found as in [1] that the value of ϵ is not critical. One may use $\epsilon = 10^{-4}$ or 10^{-5} .

9. REQUIRED NUMBER OF MULTIPOLES

The boundary conditions at the pipes and the outer circle are satisfied up to the order J in Fourier terms i.e. up to the order $cos(J\psi_m)$ and $sin(J\psi_m)$. The approximation becomes better, when J is increased, but the computational effort and the execution time also increase. It is an important question what value of J to choose in any particular case. One can always increase J, until the solution does not change.

The accuracy as a function of J will be studied and illustrated in this chapter with a few examples.

9.1 ERROR ON THE BOUNDARY CIRCLES

The example shown in Figure 9.1.1. is used to illustrate the error on the boundary circles.

Figure 9.1.1. Example with two pipes.

The following data are used:

 $N = 2 \qquad \lambda_b = 1 \qquad \lambda = 5 \qquad \epsilon = 10^{-5}$ $r_b = 2 \qquad r_c = 10 \qquad \beta_c = 0 \qquad T_c = 1$ $x_1 = 1 \qquad y_1 = 0 \qquad \beta_1 = 0 \qquad T_{f1} = 0 \qquad r_{p1} = 1$ $x_2 = -1 \qquad y_2 = 0 \qquad \beta_2 = 0 \qquad T_{f2} = 0 \qquad r_{p2} = 1$ (9.1.1)

The heat fluxes q_1 and q_2 are equal. The computed values for different J are given in Table 9.1.1. The computer model described in the following chapters is used. We see that J = 1 gives an error for q_1 of 2

%, and it is 0.3% for J = 3. The first order, J = 1, is sufficient in this case in order to calculate the heat fluxes.

J	0	1	2	3	4	5	10
q_1	-4.8560	-6.4986	-6.5596	-6.6044	-6.6174	-6.6206	-6.6247
$q_1(J)/q_1(10)$	0.73	0.981	0.990	0.997	0.9989	0.9994	1

Table 9.1.1. Calculated heat fluxes for example (9.1.1) for different J.

The polar coordinates of pipe 1 are ρ_1 , ψ_1 . The temperature on the uninsulated pipe is $T(1, \psi_1)$. In an exact solution $T(1, \psi_1)$ is equal to $T_{f1} = 0$, but for a finite J there will be a certain error or variation around the pipe. This boundary temperature is shown in Figure 9.1.2 for J = 10. The calculations are made with the computer program described in Chapters 10-11. The temperature $T(1, \psi_1)$ is obtained from the general formula (5.1) with summation in j up to J = 10.

Figure 9.1.2. Temperature variation on pipe 1. Data according to (9.1.1) with J = 10.

The largest deviation from $T_{f1} = 0$ is 0.002. The largest error of boundary temperature is therefore 0.2% (of the temperature difference $T_c - T_{f1}$).

9.2 A THREE-PIPE PROBLEM

As a second example we take the three-pipe problem of example 8.1. The data are given by (8.12). The temperature field of this case is shown in Figure 1.1. Table 9.2 gives the calculated heat fluxes and the temperatures in a few points for different J.

J	0	1	2	3	5	10	15
q_1	3.702	3.747	3.775	3.776	3.776	3.776	3.776
q_2	-8.121	-8.644	-8.685	-8.688	-8.689	-8.689	-8.689
q 3	4.570	4.766	4.792	4.792	4.792	4.792	4.792
T(0.5,1)	-1.7209	-0.8213	-0.8090	-0.8080	-0.8079	-0.8079	-0.8079
T(0,0)	0.7851	0.7343	0.7267	0.7245	0.7243	0.7243	0.7243
T(0,-2)	1.2410	0.1452	0.1724	0.1704	0.1706	0.1706	0.1706

Table 9.2.1. Heat flows and temperatures in a few points for different J. Data according to (8.12).

The table shows that the error in heat fluxes is at most 7% for J = 0 and 0.8% for J = 1. The temperatures differ with up to a factor 2 for J = 0, while the largest error is 0.03 temperature units for J = 1. This difference decreases to 0.0024 for J = 2. The value J = 1 should be sufficient in this example.

9.3 TEST OF MAXWELL'S RECIPROCITY THEOREM

We do not have analytical solutions to compare with in more complicated cases. We will therefore use a general theorem due to J.C. Maxwell (and others). Consider a steady-state heat conduction problem. The region is bounded by a number of boundary surfaces S_1 , S_2 , S_3 The temperature is zero on all surfaces except one. Two cases are considered:

$$A:$$
 $T = 1$ on S_1
 $T = 0$ on S_2 (and $S_3, ...$)

 $B:$
 $T = 1$ on S_2
 $T = 0$ on S_1 (and $S_3, ...$)

Let q_2^A be the heat flux from surface 2 in case A, and q_1^B the heat flux from surface 1 in case B. The reciprocity theorem states that these two fluxes are equal:

$$q_2^A = q_1^B \tag{9.3.2}$$

We have found that the reciprocity theorem is valid for our truncated problem (8.1-3) as well. (We have not taken the trouble to try to prove this).

In a test of the reciprocity theorem we use example (8.1). The data (8.12) are valid except for the boundary temperatures. We use:

$$T_c = 0$$
 $T_{f1} = 0$ $J = 5$ (9.3.3)

and

case
$$A: T_{f2} = 1 \quad T_{f3} = 0$$
 (9.3.3A)

case
$$B: T_{f2} = 0 T_{f3} = 1$$
 (9.3.3B)

The calculated heat fluxes became equal with seven digits:

$$q_3^A = -0.1752401$$

$$q_2^B = -0.1752401 \tag{9.3.4}$$

Another example concerns a case with a single region $(\lambda_b = \lambda)$. The first five pipes of the example in section 9.3 in [1] are used. The following data are valid:

N = 5	$\lambda = \lambda_b = 1$	J=5			
$T_c = 0$	$r_c = 10$	$eta_c=0$			
$x_1 = 1$	$y_1 = 0$	$r_{p1} = 0.5$	$eta_1=0$	x	
$x_2 = 2$	$y_2 = 1$	$r_{p2} = 0.5$	$eta_2=0$	$T_{f2} = 0$	
$x_3 = 1$	$y_3 = 2$	$r_{p3}=0.5$	$\beta_3 = 0$	$T_{f3}=0$	
$x_4 = 0$	$y_4 = 2$	$r_{p4} = 0.5$	$eta_4=0$	$T_{f4} = 0$	
$x_5 = 2$	$y_5 = -1$	$r_{p5} = 0.5$	$\beta_5 = 0.3$		
case A :	$T_{f1} = 1$	$T_{f5} = 0$			
case B:	$T_{f1}=0$	$T_{f5} = 1$			(9.3.5)

The computed reciprocal heat fluxes became again equal with 7 digits:

$$q_5^A = -1.890565$$

 $q_1^B = -1.890565$ (9.3.6)

9.4 AN EXAMPLE WITH 15 PIPES

We use the example with 15 pipes in [1], section 9.3. The data according to (9.3.1) in [1] are valid. The corresponding temperature field is shown on the cover of [1]. The outer radius r_c is equal to 10. We take r_b equal to this value and add an outer region out to $r_c = 20$. The thermal conductivity is taken to be ten times higher than in the inner region. The data of (9.3.1) in [1] are supplemented with:

$$r_b = 10 \qquad \lambda_b = 1 \qquad r_c = 20 \qquad \lambda = 10 \tag{9.4.1}$$

Table 9.4.1 gives the computed heat fluxes $q_n, 1 \le n \le 15$, for different J. The values do not differ much from those in [1], (Table 9.3.1). We see that J = 1 is not acceptable, while J = 5 is quite sufficient.

	J=0	1	5	10
q_1	1.1330	2.3566	2.0842	2.0843
q_2	-0.51959	-5.4018	-4.9154	-4.9020
q_3	5.1286	6.1679	6.2540	6.2540
q_4	-11.816	-10.516	-11.340	-11.353
q_5	-2.7569	-1.0451	-1.0552	-1.0552
q_6	11.743	12.983	12.116	12.116
q_7	-6.1510	-6.7283	-6.6958	-6.6958
q_8	-5.8188	-9.0225	-9.247	-9.247
q_9	10.321	17.765	20.958	20.988
q_{10}	20.065	24.527	24.925	24.926
q_{11}	10.803	12.387	12.632	12.632
q_{12}	-13.252	-14.507	-14.727	-14.727
q_{13}	1.0835	1.7532	1.7310	1.7310
q_{14}	-7.3037	-14.710	-15.793	-15.813
q_{15}	-9.8105	-12.163	-14.086	-14.098

Table 9.4.1. Computed heat fluxes q_n for different J for a case with 15 pipes.

10. COMPUTER MODEL. EXECUTION TIMES

The computer model calculates the line sources and the multipoles up to the given order J, and it gives the corresponding temperature field. The next chapter is a manual for the computer program. The source code is given in appendix 1.

The input data of the model are:

$$\lambda, \quad \lambda_b, \quad N, \quad J$$

$$r_b, \quad r_c, \quad \beta_c, \quad T_c$$

$$x_n, \quad y_n, \quad r_{pn}, \quad \beta_n, \quad T_{fn} \quad \text{for} \quad n = 1, \dots N \quad (10.1)$$

There are the following restrictions on the input variables:

$$\begin{split} \lambda > 0 & \lambda_b > 0 & N = 1, 2, \dots & J = 0, 1, \dots \\ 0 < r_b < r_c & \beta_c \ge 0 & \\ r_{pn} > 0 & \beta_n \ge 0 & \text{for} & n = 1, \dots N \\ r_n = \sqrt{x_n^2 + y_n^2} \le r_b - r_{pn} & \text{for} & n = 1, \dots N \\ r_{mn} \ge r_{pm} + r_{pn} & \text{for} & m \ne n \\ r_{mn} = r_{pm} + r_{pn} & \text{only if} & \beta_m + \beta_n > 0 & \text{or} & T_{fm} = T_{fn} \end{split}$$
(10.2)

The condition $r_{mn} \ge r_{pm} + r_{pn}$ ensures that the pipes do not cover each other. They may touch each other, if there is a thermal insulation $(\beta_m + \beta_n > 0)$ or if the temperatures T_{fm} and T_{fn} are equal, so that the heat flux between the pipes remains finite.

The first step after input and test of the restrictions (10.2) is to calculate auxiliary variables and the resistance matrix (R_{mn}^{o}) with the elements (8.4). The inverse matrix (K_{mn}^{o}) is then calculated. The initial values of line sources and multipoles for $\nu = 0$ are given by (8.7). Formulas (8.8-10) are used in successive iterations, until the ϵ -criterion (8.11) is met.

The output is the values of the line sources and multipoles and, if requested, the temperature field T(x, y), which is obtained from (5.3-4) with summation in j up to J.

The steady-state heat conduction problem may be solved numerically with finite difference or finite element methods. The present method is however more rapid, and it is simpler to get a high and controlled accuracy. We will give the execution time for a number of cases in order to show this.

Consider the case with 15 pipes in section 9.4. In the first examples we use the first 5 pipes (N = 5), then the first 10 pipes (N = 10) and finally all 15 pipes. The accuracy ϵ is 10^{-4} and 10^{-5} , while J is 5 and 10. The execution times in CPU-seconds on a ND-500 computer from Norsk Data are given in Table 10.1.

 $\epsilon = 10^{-5}$ $\epsilon = 10^{-4}$ N = 5J = 513 s 18 s J = 10140s 200 s N = 10J = 544 s 60 s J = 10460 s 620 s N=15J = 5110 s 150 s J = 101200 s 1700 s

Table 10.1. Execution time in CPU-seconds on ND-500 for 5 to 15 pipes and multipole order J = 5, 10.

Table 10.1 shows that the CPU-time is below a few minutes even for 15 pipes, if the order of multipoles is kept below $J \leq 5$. The CPU-time for a more moderate case with $N \leq 3$, $J \leq 2$ is only a few seconds. The execution times for an IBM-PC AT-3 (10 MHz) with a 80287 math co-processor are about 60 times longer.

11. MANUAL FOR THE COMPUTER CODE

The program has been adapted to run on IBM-PC and other compatible computers. The source code is written in FORTRAN77. It has been compiled with the MS-FORTRAN77 compiler V3.3.

The executable code supplied on the disk may be used for cases with a maximum of 15 pipes. The maximum order of multipoles is 10. The size of the program is then 133K. These restrictions can be removed by changing the dimensions in the PARAMETER statement at the beginning of the main program. The maximum number of pipes is IW and the maximum order of multipoles is IJ.

The basic version of the source code is listed in Appendix 1. The current version of the program differs from the basic version according to the changes listed on the file README.DOC. This file may also contain important information about changes in this manual. Be sure to read this file before you run the program.

Files on the Disk.

A brief description of the files on the enclosed disk is given below.

_ MPC.EXE	Executable code
MPC.FOR	Source code for the current version of the program
SAMPLE.DAT	Input data file for the example. See below
SAMPLE.OUT	Output file for the example. See below
MPC.BAT	Batch file
SIGNAL.COM	Program that generates a signal when the job is completed
README.DOC	Contains updates of this manual and the basic version of the source code

Using the Program.

To run the program MPC (<u>MultiPoleComposite</u>), insert the disk into a drive, make that drive the default drive, and type the program name:

MPC

The program is intended for interactive use. The user is prompted for the names of an input data file (optional) and the output file. The input data may be entered interactively on the screen or read directly from a disk file. If the input data is entered interactively it may be saved on a disk file.

Input Data.

3.

The input data must satisfy the restrictions (10.2). The program indicates any violation of these restrictions. The input data list is read in free format, i.e. the values must be separated by one or more contiguous blanks or a comma. The input data records are specified below.

1.	λ_b	Thermal conductivity in the inner region, (W/mK)
	λ	Thermal conductivity in the outer region, (W/mK)
	N	Number of pipes
	J	Maximal order of multipoles

- 2. r_b Radius of the inner region, (m)
 - r_c Radius of the outer region, (m)
 - β_c Thermal resistance coefficient at the outer circle, (-)
 - T_c Temperature at outer circle, (°C)

The following record must be repeated for each pipe, i.e. N times.

- x_i x-coordinate of the center of pipe i, (m)
- y_i y-coordinate of the center of pipe i, (m)
- r_{pi} Radius of pipe i, (m)
- β_i Thermal resistance coefficient of pipe *i*, (-)
- T_{fi} Fluid temperature in pipe *i*, (°C)
- 4. ϵ Iteration accuracy. See section 8. A suitable value is 10^{-4} ITMAX Maximum number of iterations. A suitable value is 500

The temperatures are calculated in a rectangular grid within a rectangular region with the corners determined by XMIN, XMAX, YMIN, and YMAX. The number of grid points in the X- and Y-direction are NX and NY respectively. If a grid point lies within the circle of one of the pipes or outside the outer boundary, then there will be no temperature calculation in that point. There is no calculation of temperatures if $NX \le 0$ or $NY \le 0$.

XMIN	Minimum x-coordinate of rectangular region for temperature calculation, (m)
XMAX	Maximum x-coordinate of rectangular region for temperature calculation, (m)
YMIN	Minimum y-coordinate of rectangular region for temperature calculation, (m)
YMAX	Maximum y-coordinate of rectangular region for temperature calculation, (m)
NX	Number of grid points in the x-direction
NY	Number of grid points in the y-direction

The program is the same as in [1] except for the necessary modifications. The source code is given in appendix 1.

AN EXAMPLE

5.

The example 8.1 with 3 pipes is used. The complete set of data is given by (8.12). The accuracy ϵ is set to 10^{-4} and ITMAX to 500. The corner points of the region of temperature calculation are XMIN = -2., YMIN =-2., XMAX = 2., and YMAX = 2. The number of grid points in the x-direction, NX, and the number of grid points in the y-direction, NY, are both 5. This gives the following indata list:

```
1 0.6
      3.6 3 10
2 2.0
      4.0 0.0 0.0
                   0.0
3 1.0
        0.0 0.5
                         1.0
4 0.0
        1.5 0.25
                   0.0
                        -3.0
5 -1.0 -0.5 0.5
                   0.5
                         2.0
6 1.0E-4 500
7 -2.0 2.0 -2.0 2.0
                        5
                           5.
```

The output is given on the next two pages. The line sources and multipoles are denoted in the following way: $q_n = q(n)$, $P_{nk} = P(n,k)$, $P_{ck} = PC(k)$.

Correction on p.28, line 35-36:

Number of grid points along the x-axis5Number of grid points along the y-axis5

 $\mathbf{27}$

```
MULTIPOLE METHOD - Pipes in a composite cylinder
  1
  2
  3
     INPUT DATA
  4
  5
 6
     Input file a:sample.dat
     Output file a:sample.out
 7
 8
                                                    .600 W/(m*K)
    Thermal conductivity in inner region
 9
     Thermal conductivity in outer region
                                                   3.600 \text{ W/(m*K)}
 10
    Number of pipes
                                      3
 11
                                     10
    Order of multipoles
 12
 13
    Radius of inner region
                                          2.000 m
 14
    Radius of outer region
                                          4.000 m
 15
    Outer boundary
 16
      Thermal resistance coefficient
                                            .000E+00
 17
                                                 .000 C
      Temperature
 18
 19
      * * * * *
                  * * *
                                          * * * *
20
                *
                        *
                              *
                                *
                                     *
                                         rp(n)
     Pipe *
                                                *
 21
                x(n)
                            y(n)
                                                     beta(n)
                                                              *
                                                                  Temp C
                                         * * * * *
                                                                  * * * *
                            * * *
 22
     * * * *
                * * *
                      * *
                                     *
                                                   * * * * * * *
        1
                1.000
                             .000
                                          .500
                                                    .000E+00
                                                                   1.000
 23
          *
                       *
                                   *
                                                *
                                                              *
24
        2
           *
                 .000
                       *
                            1.500
                                   *
                                          .250
                                               *
                                                    .000E+00
                                                              *
                                                                  -3.000
                                                                          *
        3
               -1.000
                            -.500
                                          .500 *
          *
                                                    .500E+00
                                                                   2.000 *
25
                       *
                                  *
                                                             *
26
27
    Iteration accuracy
                                        .10E-03
    Maximum number of iterations
                                           500
28
29
    TEMPERATURE OUTPUT: Definition of rectangular area
30
      Minimum x-value
                                    -2.000
31
32
      Maximum x-value
                                     2.000
      Minimum y-value
                                    -2.000
33
      Maximum y-value
                                     2.000
34
      Number of grid points along x-axis
35
                                                    4
      Number of grid points along y-axis
36
                                                    4
37
   *********
38
                                                              ****
39
          Initial values for q(n) (Order of multipole = 0)
40
     Pipe
       1
             .3701710E+01
41
            -.8120926E+01
       2
42
             .4570385E+01
       3
43
44
    Number of iterations:
                               6
45
46
47
    Pipe
                  q(n)
48
             .3775983E+01
49
       1
       2
            -.8688749E+01
50
             .4791657E+01
       3
51
52
53
    Pipe
             Order
                             P(n,k)
                     .85094E-01 .26170E+00
               1
      1
54
                    -.30722E-01 -.72742E-01
               2
55
      1
      1
               3
                     .18398E-01 .80464E-02
56
                    -.27537E-02 .11994E-02
57
      1
               4
```

```
28
```

58	1 5	12744E-04	50169E-03			
59	1 6	.14905E-03	.25332E-04			
60	1 7	32846E-04	.30497E-04			
61	1 8	.43431E-06	11177E-04			
62	1 9	.17959E-05	.15383E-05			
63	1 10	46264E-06	.19077E-06			
64	2 1	19320E-01	20056E+00			
65	2 2	.50384E-01	.47747E-02			
66	2 3	.57549E-03	.63122E-02			
67	2 4	91680E-03	21108E-04			
68	2 5	.16576E-05	20578E-03			
69	2 6	.33463E-04	14848E-05			
70	2 7	18595E-06	.70751E-05			
71	2 8	13949E-05	.40628E-07			
72	2 9	.14387E-08	28067E-06			
73	2 10	.59501E-07	37228E-09			
74	3 1	60168E-01	.10666E-01			
75	3 2	.00000E+00	.00000E+00			
76	3 3	.18779E-02	.12627E-02			
77	3 4	.23297E-03	.46381E-03			
78	3 5	93677E-04	.14950E-03			
79	3 6	21800E-04	.14709E-05			
80	3 7	41423E-05	31219E-05			
81	3 8	.39756E-06	36033E-06			
82	3 9	.12760E-07	.21779E-07			
83	3 10	28358E-07	.25599E-07			
84						
85	Order	PC(k)				
86	1.1	5866E-012428	3E+00			
87	263	3526E-01 .1283	7E-01			
88	310)585E-02 .9722	8E-02			
89	4 .32	2898E-02 .6784	5E-03			
90	514	1272E-031144	5E-02			
91	632	2200E-03 .1453	9E-04			
92	711	403E-04 .1116	1E-03			
93	8.38	3088E-045180	1E-06			
94	934	1440E-061222	9E-04			
95	1043	1815E-051505	4E-06			
96						
97	**********	*************	*****	**********	*****	******
98	TEMPERATURES	(Deg C)				
99						
100	x	У	Temp			
101						
102	-2.00000	-2.00000	. 14027			
103	-2.00000	-1.00000	.26004			
104	~2.00000	.00000	. 20526			
105	-2.00000	1.00000	00343			
106	-2.00000	2.00000	09997			
107	-1.00000	~2.00000	.20032			
108	-1.00000	-1.00000	1.37087			
109	-1.00000	.00000	1.31407			
110	-1.00000	1.00000	31120			
111	-1.00000	2,00000	35746			
112	.00000	-2.00000	. 17064			
113	.00000	-1.00000	. 82908			
114	.00000	.00000	. 12430			

115	.00000	1.00000	-1.55455
116	.00000	2.00000	83812
117	1.00000	-2.00000	.12871
118	1.00000	-1.00000	.55357
119	1.00000	1.00000	06704
120	1.00000	2.00000	33614
121	2.00000	-2.00000	.08151
122	2.00000	-1.00000	. 14928
123	2.00000	.00000	.18674
124	2.00000	1.00000	.03184
125	2.00000	2.00000	08219

30

ŧ

REFERENCES

1. J. Claesson and J. Bennet, Multipole Method to Compute the Conductive Heat Flows between Pipes in a Cylinder; Notes on Heat Transfer 2-1987, Dep. of Building Technology and Mathematical Physics, University of Lund, Box 118, S-221 00 Lund, Sweden, 1987.

2. J. Claesson and G. Hellström, Thermal Resistances to and between Pipes in a Composite Cylinder, Notes on Heat Transfer 1987, Dep. of Building Technology and Mathematical Physics, University of Lund, Box 118, S-221 00 Lund, Sweden, 1987. (To be published)

APPENDIX 1. LISTING OF COMPUTER CODE

1 C------2 C PROGRAM MPC зC Multipole method to compute the heat flows 4 C and temperatures to and between insulated circular pipes in a composite cylinder with 5 C 6 C two concentric regions with different 7 C thermal conductivities 8 C 9 C Authors: Johan Bennet, Johan Claesson, Goran Hellstrom Departments of Building Technology and Mathematical Physics 10 C 11 C Lund Institute of Technology, Box 118, S-221 00 Lund, Sweden 1987-03-25 12 C Date: 13 C Reference: Notes on Heat Transfer 3 - 1987 14 C-----PARAMETER (IW=15, IJ=10, IW2=IW*IW) 15 COMPLEX*8 Z(IW), P(IW, IJ), P2(IW, IJ), PC(IJ), ZRC(IW, IJ), TERM 16 + ,RPZMN(IW,IW,IJ),RPMZN(IW,IW,IJ),PMK,PRB,ZPR,RPZ(IW,IJ) 17 DIMENSION RP(IW), BETA(IW), TF(IW), QBEG(IW) 18 + ,Q(IW),RRR(IW),QM(IW) 19 DOUBLE PRECISION RKO(IW,IW),RKOVEC(IW2),MC(IW),MD(IW) 20 CHARACTER*16 READFI, OUTFI 21 CHARACTER ANS 22 23 LOGICAL INFIL, OK DATA INFIL/.FALSE./ 24 WRITE(*,441) 26 WRITE(*.*) 27 28 2 WRITE(*,*)'Input data from file ? (Y/N)' READ(*,5) ANS 29 IF((ANS.EQ.'Y').OR.(ANS.EQ.'y')) THEN 30 WRITE(*,*) 'Name of input file ?' 31 READ(*,10) READFI 32 INQUIRE (FILE=READFI, EXIST=OK) 33 IF (OK) THEN 34 OPEN(UNIT=5,FILE=READFI) 35 INFIL=. TRUE. 36 ELSE 37 WRITE(*,*)' *** ERROR *** ',READFI,' File not found' 38 GO TO 2 39 ENDIF 40 ENDIF 41 WRITE(*,*) 'Name of output file ?' 42 READ(*,10) OUTFI 43 INQUIRE (FILE=OUTFI, EXIST=OK) 44 IF (OK) THEN 45 OPEN (UNIT=6, FILE=OUTFI) 46 47 ELSE OPEN (UNIT=6, FILE=OUTFI, STATUS='NEW') 48 49 ENDIF 5 FORMAT(A1) 50 10 FORMAT(A16) 51 52 C****** READ INPUT DATA ********* IF(INFIL) THEN 53 READ(5,*) RLAMB, RLAM, NW, J 54

55		READ(5,*) RB,RC,BETAC,TC
56		DO 15 M=1,NW
57		READ(5,*) ZRE,ZIM,RP(M),BETA(M),TF(M)
58		Z(M) = CMPLX(ZRE, ZIM)
59	15	CONTINUE
60		READ(5.*) EPS.ITMAX
61		READ(5 *) XMIN XMAX YMIN YMAX NX NY
60		
02		WRITE(* *)'Thermal conductivity in the inner region ?'
03		DEAD(* *) RIANR
64		WEITE(+ +)'Thormal conductivity in the outer region ?'
65		WRITE(*,*) Infermal conductivity in the outer region .
66		READ(*,*) RLAM
67		WRITE(*,*) Number of pipes :
68		$\frac{KEAD(*,*)}{W}$
69		WRITE(*,*)'Urder of multipoles ?
70		READ(*,*) J
71		WRITE(*,*)'Radius of inner region ?
72		READ(*,*) RB
73		WRITE(*,*)'Radius of outer region ?'
74		READ(*,*) RC
75		WRITE(*,*)
76		WRITE(*,*)'OUTER BOUNDARY'
77		<pre>WRITE(*,*)' Thermal resistance coefficient ?'</pre>
78		READ(*,*) BETAC
79		WRITE(*,*)' Temperature ?'
80		READ(*,*) TC
81		DO 16 M=1,NW
82		WRITE(*,443) M
83		WRITE(*,*)' x-value ?'
84		READ(*,*) ZRE
85		WRITE(*,*)' y-value ?'
86		READ(*,*) ZIM
87		Z(M) = CMPLX(ZRE, ZIM)
88		WRITE(*.*)' Pipe radius ?'
89		READ(*,*) RP(M)
90		WRITE(*,*)' Thermal resistance coefficient ?'
91		RFAD(*,*) BETA(M)
02		WRITE(* *)' Temperature ?'
03		RFAD(* *) TF(M)
93	16	CONTINIE
94	10	WDITE(* *)
95		WRITE($*, *$)'Iteration accuracy ?'
90		PRIIC(*,*) FOC
97		$\frac{READ(*,*)}{MDTTE(*,*)}$
98		WRITE(+,+) MAXIMUM HUMBER OF IDELATIONS .
99		$\operatorname{KEAD}(*,*) \operatorname{IIMAA}$
100		WAILE(*,*)
101		WRITE(*,*) TEMPERATORE OUTFOIL DETINE TECCARGUIAT area
102		WRITE(*,*)' Minimum x-value :
103		READ(*,*) XMIN
104		WKITE(*,*)' Maximum x-value (
105		READ(*,*) XMAX
106		WRITE(*,*)' Minimum y-value ?'
107		READ(*,*) YMIN
108		WRITE(*,*)' Maximum y-value ?'
109		READ(*,*) YMAX
110		WRITE(*,*)' Number of grid points along the x-axis ?'
111		READ(*,*) NX

.

```
WRITE(*.*)'
 112
                            Number of grid points along the y-axis ?'
               READ(*,*) NY
 113
               WRITE(*,*)
 114
               IF(.NOT.INFIL) THEN
 115
                   WRITE(*,*)'Save input data on file ? (Y/N)'
 116
                   READ(*,5) ANS
 117
                   IF((ANS.EQ.'Y').OR.(ANS.EQ.'y')) THEN
 118
                       WRITE(*,*) 'Name of input file ?'
 119
                       READ(*,10) READFI
 120
                       INQUIRE(FILE=READFI, EXIST=OK)
 121
                       IF (OK) THEN
 122
 123
                            OPEN(UNIT=5,FILE=READFI)
 124
                         ELSE
                            OPEN (UNIT=5.FILE=READFI.STATUS='NEW')
 125
                       ENDIF
 126
                       WRITE(5,701) RLAMB, RLAM, NW, J
 127
                       WRITE(5,702) RB,RC,BETAC,TC
128
                       DO 17 M=1,NW
129
                         ZRE=REAL(Z(M))
130
                         ZIM = AIMAG(Z(M))
131
                         WRITE(5,702) ZRE, ZIM, RP(M), BETA(M), TF(M)
132
       17
133
                       CONTINUE
                       WRITE(5,703) EPS.ITMAX
134
                       WRITE(5,704) XMIN, XMAX, YMIN, YMAX, NX, NY
135
                       CLOSE(UNIT=5)
136
                   ENDIF
137
              ENDIF
138
          ENDIF
139
140
    C********** CONSISTENCY TESTS OF INPUT DATA **********
          IF(RLAMB.LE.O.) STOP ' RLAMB < 0.'
141
          IF(RLAM.LE.O.) STOP ' RLAM < 0.'
142
143
          IF(NW.LT.1) STOP ' NW < 1'
          IF(J.LT.O) STOP ' J < O'
144
          IF(RB.LE.O.) STOP ' RB < 0.'
145
          IF(RC.LE.O.) STOP ' RC < 0.'
146
          IF (BETAC.LT.O.) STOP ' BETAC < 0.'
147
          DO 20 N=1.NW
148
149
            IF (RB.LT.CABS(Z(N))+RP(N)-1.E-6) STOP ' RB < R(N)+RP(N)'
            IF (BETA(N).LT.O.) STOP ' BETA(N) < O'
150
            IF(RP(N).LE.O.) STOP ' RP(N) < O.'
151
            DO 20 M=1,NW
152
153
              IF(M.NE.N) THEN
                  IF(CABS(Z(N)-Z(M)).LT.RP(N)+RP(M)-1.E-6)
154
         +
                    STOP ' RMN < RP(N) + RP(M)'
155
156
                  IF(CABS(Z(N)-Z(M))-RP(N)-RP(M).LE.1.E-6) THEN
                      IF (BETA(M) + BETA(N).EQ.O..AND.TF(N).NE.TF(M))
157
         +STOP ' RMN=RP(M)+RP(N) AND BETA(M)+BETA(N)=O. AND TF(M) NE TF(N)'
158
                  END IF
159
              END IF
160
       20
161
              CONTINUE
          IF (EPS.LE.O.) STOP ' EPS LE O.'
162
   163
          WRITE(*,*)
164
          WRITE(*,441)
165
          WRITE(*,450) RLAMB, RLAM, NW, J
166
          WRITE(*,460) RB,RC,BETAC,TC
167
          WRITE(*,470) (M,Z(M), RP(M), BETA(M), TF(M), M=1, NW)
168
```

```
WRITE(*,480) EPS, ITMAX
169
           WRITE(*,490) XMIN, XMAX, YMIN, YMAX, NX, NY
170
           WRITE(6,441)
171
           WRITE(6,442) READFI,OUTFI
172
           WRITE(6,450) RLAMB, RLAM, NW, J
173
           WRITE(6,460) RB,RC,BETAC,TC
174
175
           WRITE(6,470) (M, Z(M), RP(M), BETA(M), TF(M), M=1, NW)
           WRITE(6,480) EPS, ITMAX
176
           WRITE(6,490) XMIN,XMAX,YMIN,YMAX,NX,NY
177
           WRITE(6,410)
178
    C********** SET CONSTANTS **********
179
           IIT=0
180
          PI=3.14159265
181
           PILAMB=1./(2.*PI*RLAMB)
182
          PILAM=1./(2.*PI*RLAM)
183
184
           SIGMA=(RLAMB-RLAM)/(RLAMB+RLAM)
           ALBETC=BETAC+ALOG(RC/RB)
185
    C********* CALCULATION OF MATRICE RKO **********
186
                    AND AUXILIARY ARRAYS
    C********
                                               ******
187
188
          DO 60 M=1.NW
             RBM=RB**2/(RB**2-CABS(Z(M))**2)
189
             RKO(M,M)=PILAMB*(ALOG(RB/RP(M))+BETA(M)+SIGMA*ALOG(RBM))
190
191
               +PILAM*ALBETC
             IF(J.GE.1) THEN
192
                 DO 30 K=1,J
193
                   ZRC(M,K) = (0.,0.)
194
                   RPZ(M,K) = (0.,0.)
195
                   RPMZN(M, M, K) = (RP(M) * CONJG(Z(M)) * RBM/RB**2) * *K
196
                   IF (CABS (Z(M)).NE.O.) THEN
197
                        ZRC(M,K) = (Z(M)/RC) * *K
198
                        RPZ(M,K) = (RP(M)/Z(M)) * *K
199
200
                     END IF
       30
                   CONTINUE
201
               END IF
202
             DO 50 N=1,NW
203
               IF(M.NE.N) THEN
204
205
                   PMK=Z(N)-Z(M)
                   RMN=CABS(PMK)
206
                   RBM=RB**2/CABS(RB**2-Z(N)*CONJG(Z(M)))
207
                   PRB=RP(M)*CONJG(Z(N))/(RB**2-CONJG(Z(N))*Z(M))
208
                   RKO(M.N)=PILAMB*(ALOG(RB/RMN)+SIGMA*ALOG(RBM))+
209
                     PILAM*ALBETC
210
                   IF(J.GE.1) THEN
211
                       DO 40 K=1,J
212
                         RPZMN(M, N, K) = (RP(M)/PMK) * *K
213
                         RPMZN(M,N,K) = PRB * *K
214
215
       40
                         CONTINUE
                     END IF
216
                END IF
217
       50
              CONTINUE
218
       60
            CONTINUE
219
220 C********* CONVERT MATRIX RKO TO VECTOR RKOVEC *********
          K=0
221
          DO 64 JJ=1,NW
222
223
            DO 62 I=1,NW
              K=K+1
224
              RKOVEC(K)=RKO(I,JJ)
225
```

```
35
```

226	62 CONTINUE			
227	64 CONTINUE			
228	C******** INVERSION OF MATRIX RKO *********			
229	CALL INV1(RKOVEC,MC,MD,NW,DET)			
230	C********** CONVERT	VECTOR RKOVEC TO MATRIX RKO		
231	K=0			
232	DO 68 JJ=1,NW			
233	DO 66 I=1,NW			
234	K = K + 1			
235	KKU(1,JJ)=	RKOVEC(K)		
236	66 CUNTINUE			
237	08 CUNIINUE	A THITTAL HATTER OF PHEDRY PLONG AAAAAAA		
238	· · · · · · · · · · · · · · · · · · ·	AND MULTIOLES OF ENERGY FLOWS *******		
239	DO 80 V=1 NW	AND MOLITFOLES		
240	08FC(N)=0			
241	QDLG(M)-0.			
242		3G(M) + RKO(M N) * (TF(N) - TC)		
244	70 CONTINUE			
245	O(M) = OBEG(M)			
246	80 CONTINUE			
247	WRITE(*,430)(N	Q(N), $N=1$, NW		
248	WRITE(6,430)(N	Q(N), N=1, NW		
249	IF(J.EQ.0) GO 1	TO 280		
250	DO 90 M=1,NW			
251	DO 90 K=1,J			
252	P(M,K) = (0.)	0.)		
253	90 CONTINUE			
254	DO 100 K=1,J			
255	PC(K) = (0., 0.)			
256	100 CONTINUE			
257	C*************************************	START OF ITERATION LOOP ******************		
258	WRITE(*,495) EF	'S		
259	DU 270 11T=1,11	MAX		
260	EPSMAX=0.			
261	C*************************************	ULTIPULES AT THE PIPES ************************************		
262	DU IOU M=1,NW			
263	PMMAX-U.	T		
204	DU 130 K-1, DWK-(0 0			
200	PMA-(0.,0 DO 130 N=	-) - 1 NIW		
267	PRR=1 /	(RB**2-CON IG(Z(N))*Z(M))		
268	KFAK=1			
269	DO 120	J.J=1 . J		
270	IF (N.	NE.M) $PMK=PMK+P(N,JJ)*RPZMN(N,M,JJ)$		
271	+ *RP	ZMN (M.N.K) *KFAK		
272	JPEND	=MINO(JJ,K)		
273	KFAK1	=KFAK		
274	KFAK2	=1		
275	DO 11	O JPRIM=O, JPEND		
276	JJP	RIM=JJ-JPRIM		
277	КJР	RIM=K-JPRIM		
278	TER	M=(1.,O.)		
279	IF(JJPRIM.GE.1) TERM=CONJG(RPMZN(N,M,JJPRIM)))	
280	IF(KJPRIM.GE.1) TERM=TERM*RPMZN(M,N,KJPRIM)		
281	РМК	=PMK+CONJG(P(N,JJ))*SIGMA*TERM*(RP(M)*RP	(N)	
282	+ *	PRB)**JPRIM*KFAK1*KFAK2		

283		IF (JPRIM.NE.JPEND) THEN	
284		KFAK1=KFAK1*KJPRIM/(K+JJ-1-JPRIM)	
285		KFAK2=KFAK2*JJPR1M/(JPR1M+1)	
286		END IF	
287	110	CONTINUE	
288		KFAK=KFAK*(K+JJ)/JJ	
289	120	CONTINUE	
290		IF(N.NE.M) PMK=PMK+Q(N)*PILAMB*RPZMN(M,N,K)/K	
291		PMK=PMK+Q(N)*PILAMB*SIGMA*RPMZN(M,N,K)/K	
292	130	CONTINUE	
293		KFAK=1	
294		DO 140 JJ=K,J	
295		PMK=PMK+PC(JJ)*(1SIGMA)*RPZ(M,K)*ZRC(M,JJ)*KFAK	
296		KFAK=KFAK*(JJ+1)/(JJ+1-K)	
297	140	CONTINUE	
298		PMK=CON JG (PMK) * (BETA(M) * K-1.) / (BETA(M) * K+1.)	
299		PMMAX=AMAX1 (CABS (PMK), PMMAX)	
300		IF(CABS(PMK).GT.1.E-7) EPSMAX=	
301	+	AMAX1 (EPSMAX, CABS (PMK-P(M,K))/PMMAX)	
302		P2(M,K)=PMK	
303	150	CONTINUE	
304	160	CONTINUE	
305	C*****	************* NEW MULTIPOLES ARE ASSIGNED ************************************	
306		DO 170 M=1,NW	
307		DO 170 K=1,J	
308		P(M,K)=P2(M,K)	
309	170	CONTINUE	
310	C*****	************ CALCULATION OF MULTIPOLES ***************	
311	C*****	*********** AT THE OUTER CIRCLE ************************************	
312			
~~~		PMMAX=O.	· . ø · · ·
313		PMMAX=0. D0 200 K=1,J	an seanna an
313 314		PMMAX=0. DO 200 K=1,J PMK=(0.,0.)	an an≉ ar an An an an an an An an
313 314 315		PMMAX=0. DO 200 K=1,J PMK=(0.,0.) DO 190 M=1,NW	an an • • an an An - Charles - An - An An - Charles - An - An An - Charles - An
313 314 315 316		PMMAX=0. D0 200 K=1,J PMK=(0.,0.) D0 190 M=1,NW KFAK=1	
313 314 315 316 317		PMMAX=0. D0 200 K=1,J PMK=(0.,0.) D0 190 M=1,NW KFAK=1 D0 180 JJ=1,K	an an ∎an an an an Arida Shaan Ala an Ala an Ari Ala
313 314 315 316 317 318		PMMAX=0. D0 200 K=1,J PMK=(0.,0.) D0 190 M=1,NW KFAK=1 D0 180 JJ=1,K PMK=PMK+P(M,JJ)*ZRC(M,K)*RPZ(M,JJ)*KFAK	<ul> <li>A set a se</li></ul>
313 314 315 316 317 318 319		PMMAX=0. D0 200 K=1,J PMK=(0.,0.) D0 190 M=1,NW KFAK=1 D0 180 JJ=1,K PMK=PMK+P(M,JJ)*ZRC(M,K)*RPZ(M,JJ)*KFAK KFAK=KFAK*(K-JJ)/JJ	<ul> <li>A second sec second second sec</li></ul>
313 314 315 316 317 318 319 320	180	PMMAX=0. D0 200 K=1,J PMK=(0.,0.) D0 190 M=1,NW KFAK=1 D0 180 JJ=1,K PMK=PMK+P(M,JJ)*ZRC(M,K)*RPZ(M,JJ)*KFAK KFAK=KFAK*(K-JJ)/JJ CONTINUE	
313 314 315 316 317 318 319 320 321	180	PMMAX=0. D0 200 K=1,J PMK=(0.,0.) D0 190 M=1,NW KFAK=1 D0 180 JJ=1,K PMK=PMK+P(M,JJ)*ZRC(M,K)*RPZ(M,JJ)*KFAK KFAK=KFAK*(K-JJ)/JJ CONTINUE PMK=PMK+ZRC(M,K)*Q(M)*PILAMB/K	
313 314 315 316 317 318 319 320 321 322	180 190	PMMAX=0. D0 200 K=1,J PMK=(0.,0.) D0 190 M=1,NW KFAK=1 D0 180 JJ=1,K PMK=PMK+P(M,JJ)*ZRC(M,K)*RPZ(M,JJ)*KFAK KFAK=KFAK*(K-JJ)/JJ CONTINUE PMK=PMK+ZRC(M,K)*Q(M)*PILAMB/K CONTINUE	
313 314 315 316 317 318 319 320 321 322 323	180 190	<pre>PMMAX=0. D0 200 K=1,J PMK=(0.,0.) D0 190 M=1,NW KFAK=1 D0 180 JJ=1,K PMK=PMK+P(M,JJ)*ZRC(M,K)*RPZ(M,JJ)*KFAK KFAK=KFAK*(K-JJ)/JJ CONTINUE PMK=PMK+ZRC(M,K)*Q(M)*PILAMB/K CONTINUE XX=(1BETAC*K)/(1.+BETAC*K)</pre>	
<ul> <li>313</li> <li>314</li> <li>315</li> <li>316</li> <li>317</li> <li>318</li> <li>319</li> <li>320</li> <li>321</li> <li>322</li> <li>323</li> <li>324</li> </ul>	180 190	<pre>PMMAX=0. D0 200 K=1,J PMK=(0.,0.) D0 190 M=1,NW KFAK=1 D0 180 JJ=1,K PMK=PMK+P(M,JJ)*ZRC(M,K)*RPZ(M,JJ)*KFAK KFAK=KFAK*(K-JJ)/JJ CONTINUE PMK=PMK+ZRC(M,K)*Q(M)*PILAMB/K CONTINUE XX=(1BETAC*K)/(1.+BETAC*K) PMK=CONJG(PMK)*XX*(SIGMA+1.)/(SIGMA*XX*(RB/RC)**(2*K)-1)</pre>	
313 314 315 316 317 318 319 320 321 322 323 324 325	180 190	<pre>PMMAX=0. D0 200 K=1,J PMK=(0.,0.) D0 190 M=1,NW KFAK=1 D0 180 JJ=1,K PMK=PMK+P(M,JJ)*ZRC(M,K)*RPZ(M,JJ)*KFAK KFAK=KFAK*(K-JJ)/JJ CONTINUE PMK=PMK+ZRC(M,K)*Q(M)*PILAMB/K CONTINUE XX=(1BETAC*K)/(1.+BETAC*K) PMK=CONJG(PMK)*XX*(SIGMA+1.)/(SIGMA*XX*(RB/RC)**(2*K)- PMMAX=AMAX1(CABS(PMK),PMMAX)</pre>	
313 314 315 316 317 318 319 320 321 322 323 324 325 326	180 190	<pre>PMMAX=0. D0 200 K=1,J PMK=(0.,0.) D0 190 M=1,NW KFAK=1 D0 180 JJ=1,K PMK=PMK+P(M,JJ)*ZRC(M,K)*RPZ(M,JJ)*KFAK KFAK=KFAK*(K-JJ)/JJ CONTINUE PMK=PMK+ZRC(M,K)*Q(M)*PILAMB/K CONTINUE XX=(1BETAC*K)/(1.+BETAC*K) PMK=CONJG(PMK)*XX*(SIGMA+1.)/(SIGMA*XX*(RB/RC)**(2*K)-: PMMAX=AMAX1(CABS(PMK),PMMAX) IF(CABS(PMK).GT.1.E-7) EPSMAX=</pre>	
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327	180 190 +	<pre>PMMAX=0. D0 200 K=1,J PMK=(0.,0.) D0 190 M=1,NW KFAK=1 D0 180 JJ=1,K PMK=PMK+P(M,JJ)*ZRC(M,K)*RPZ(M,JJ)*KFAK KFAK=KFAK*(K-JJ)/JJ CONTINUE PMK=PMK+ZRC(M,K)*Q(M)*PILAMB/K CONTINUE XX=(1BETAC*K)/(1.+BETAC*K) PMK=CONJG(PMK)*XX*(SIGMA+1.)/(SIGMA*XX*(RB/RC)**(2*K)- PMMAX=AMAX1(CABS(PMK),PMMAX) IF(CABS(PMK).GT.1.E-7) EPSMAX= AMAX1(EPSMAX,CABS(PMK-PC(K))/PMMAX)</pre>	
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328	180 190 +	<pre>PMMAX=0. D0 200 K=1,J PMK=(0.,0.) D0 190 M=1,NW KFAK=1 D0 180 JJ=1,K PMK=PMK+P(M,JJ)*ZRC(M,K)*RPZ(M,JJ)*KFAK KFAK=KFAK*(K-JJ)/JJ CONTINUE PMK=PMK+ZRC(M,K)*Q(M)*PILAMB/K CONTINUE XX=(1BETAC*K)/(1.+BETAC*K) PMK=CONJG(PMK)*XX*(SIGMA+1.)/(SIGMA*XX*(RB/RC)**(2*K)- PMMAX=AMAX1(CABS(PMK),PMMAX) IF(CABS(PMK).GT.1.E-7) EPSMAX= AMAX1(EPSMAX,CABS(PMK-PC(K))/PMMAX) PC(K)=PMK</pre>	
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329	180 190 + 200	<pre>PMMAX=0. D0 200 K=1,J PMK=(0.,0.) D0 190 M=1,NW KFAK=1 D0 180 JJ=1,K PMK=PMK+P(M,JJ)*ZRC(M,K)*RPZ(M,JJ)*KFAK KFAK=KFAK*(K-JJ)/JJ CONTINUE PMK=PMK+ZRC(M,K)*Q(M)*PILAMB/K CONTINUE XX=(1BETAC*K)/(1.+BETAC*K) PMK=CONJG(PMK)*XX*(SIGMA+1.)/(SIGMA*XX*(RB/RC)**(2*K)- PMMAX=AMAX1(CABS(PMK),PMMAX) IF(CABS(PMK).GT.1.E-7) EPSMAX= AMAX1(EPSMAX,CABS(PMK-PC(K))/PMMAX) PC(K)=PMK CONTINUE</pre>	<ul> <li>A and a second seco</li></ul>
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330	180 190 + C******	<pre>PMMAX=0. D0 200 K=1,J PMK=(0.,0.) D0 190 M=1,NW KFAK=1 D0 180 JJ=1,K PMK=PMK+P(M,JJ)*ZRC(M,K)*RPZ(M,JJ)*KFAK KFAK=KFAK*(K-JJ)/JJ CONTINUE PMK=PMK+ZRC(M,K)*Q(M)*PILAMB/K CONTINUE XX=(1BETAC*K)/(1.+BETAC*K) PMK=CONJG(PMK)*XX*(SIGMA+1.)/(SIGMA*XX*(RB/RC)**(2*K)- PMMAX=AMAX1(CABS(PMK),PMMAX) IF(CABS(PMK).GT.1.E-7) EPSMAX= AMAX1(EPSMAX,CABS(PMK-PC(K))/PMMAX) PC(K)=PMK CONTINUE ************ CALCULATION OF NEW ENERGY FLOWS *******</pre>	
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331	180 190 + 200 C******	<pre>PMMAX=0. D0 200 K=1,J PMK=(0.,0.) D0 190 M=1,NW KFAK=1 D0 180 JJ=1,K PMK=PMK+P(M,JJ)*ZRC(M,K)*RPZ(M,JJ)*KFAK KFAK=KFAK*(K-JJ)/JJ CONTINUE PMK=PMK+ZRC(M,K)*Q(M)*PILAMB/K CONTINUE XX=(1BETAC*K)/(1.+BETAC*K) PMK=CONJG(PMK)*XX*(SIGMA+1.)/(SIGMA*XX*(RB/RC)**(2*K)- PMMAX=AMAX1(CABS(PMK),PMMAX) IF(CABS(PMK).GT.1.E-7) EPSMAX= AMAX1(EPSMAX,CABS(PMK-PC(K))/PMMAX) PC(K)=PMK CONTINUE *********** CALCULATION OF NEW ENERGY FLOWS ******* D0 240 M=1,NW</pre>	
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332	180 190 + 200 C******	<pre>PMMAX=0. D0 200 K=1,J PMK=(0.,0.) D0 190 M=1,NW KFAK=1 D0 180 JJ=1,K PMK=PMK+P(M,JJ)*ZRC(M,K)*RPZ(M,JJ)*KFAK KFAK=KFAK*(K-JJ)/JJ CONTINUE PMK=PMK+ZRC(M,K)*Q(M)*PILAMB/K CONTINUE XX=(1BETAC*K)/(1.+BETAC*K) PMK=CONJG(PMK)*XX*(SIGMA+1.)/(SIGMA*XX*(RB/RC)**(2*K)- PMMAX=AMAX1(CABS(PMK),PMMAX) IF(CABS(PMK).GT.1.E-7) EPSMAX= AMAX1(EPSMAX,CABS(PMK-PC(K))/PMMAX) PC(K)=PMK CONTINUE *********** CALCULATION OF NEW ENERGY FLOWS ******* D0 240 M=1,NW QQQ=0.</pre>	
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333	180 190 + C*****	<pre>PMMAX=0. D0 200 K=1,J PMK=(0.,0.) D0 190 M=1,NW KFAK=1 D0 180 JJ=1,K PMK=PMK+P(M,JJ)*ZRC(M,K)*RPZ(M,JJ)*KFAK KFAK=KFAK*(K-JJ)/JJ CONTINUE PMK=PMK+ZRC(M,K)*Q(M)*PILAMB/K CONTINUE XX=(1BETAC*K)/(1.+BETAC*K) PMK=CONJG(PMK)*XX*(SIGMA+1.)/(SIGMA*XX*(RB/RC)**(2*K)- PMMAX=AMAX1(CABS(PMK),PMMAX) IF(CABS(PMK).GT.1.E-7) EPSMAX= AMAX1(EPSMAX,CABS(PMK-PC(K))/PMMAX) PC(K)=PMK CONTINUE ********** CALCULATION OF NEW ENERGY FLOWS ******* D0 240 M=1,NW QQQ=0. D0 220 N=1,NW</pre>	
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334	180 190 + 200 C*****	<pre>PMMAX=0. D0 200 K=1,J PMK=(0.,0.) D0 190 M=1,NW KFAK=1 D0 180 JJ=1,K PMK=PMK+P(M,JJ)*ZRC(M,K)*RPZ(M,JJ)*KFAK KFAK=KFAK*(K-JJ)/JJ CONTINUE PMK=PMK+ZRC(M,K)*Q(M)*PILAMB/K CONTINUE XX=(1BETAC*K)/(1.+BETAC*K) PMK=CONJG(PMK)*XX*(SIGMA+1.)/(SIGMA*XX*(RB/RC)**(2*K)-: PMMAX=AMAX1(CABS(PMK),PMMAX) IF(CABS(PMK).GT.1.E-7) EPSMAX= AMAX1(EPSMAX,CABS(PMK-PC(K))/PMMAX) PC(K)=PMK CONTINUE *********** CALCULATION OF NEW ENERGY FLOWS ******* D0 240 M=1,NW QQQ=0. D0 220 N=1,NW D0 210 JJ=1,J</pre>	
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335	180 190 + 200 C*****	<pre>PMMAX=0. D0 200 K=1,J PMK=(0.,0.) D0 190 M=1,NW KFAK=1 D0 180 JJ=1,K PMK=PMK+P(M,JJ)*ZRC(M,K)*RPZ(M,JJ)*KFAK KFAK=KFAK*(K-JJ)/JJ CONTINUE PMK=PMK+ZRC(M,K)*Q(M)*PILAMB/K CONTINUE XX=(1BETAC*K)/(1.+BETAC*K) PMK=CONJG(PMK)*XX*(SIGMA+1.)/(SIGMA*XX*(RB/RC)**(2*K)-: PMMAX=AMAX1(CABS(PMK),PMMAX) IF(CABS(PMK).GT.1.E-7) EPSMAX= AMAX1(EPSMAX,CABS(PMK-PC(K))/PMMAX) PC(K)=PMK CONTINUE ************************************</pre>	
<ul> <li>313</li> <li>314</li> <li>315</li> <li>316</li> <li>317</li> <li>318</li> <li>319</li> <li>320</li> <li>321</li> <li>322</li> <li>323</li> <li>324</li> <li>325</li> <li>326</li> <li>327</li> <li>328</li> <li>329</li> <li>330</li> <li>331</li> <li>332</li> <li>333</li> <li>334</li> <li>335</li> <li>336</li> </ul>	180 190 + C*****	<pre>PMMAX=0. D0 200 K=1,J PMK=(0.,0.) D0 190 M=1,NW KFAK=1 D0 180 JJ=1,K PMK=PMK+P(M,JJ)*ZRC(M,K)*RPZ(M,JJ)*KFAK KFAK=KFAK*(K-JJ)/JJ CONTINUE PMK=PMK+ZRC(M,K)*Q(M)*PILAMB/K CONTINUE XX=(1BETAC*K)/(1.+BETAC*K) PMK=CONJG(PMK)*XX*(SIGMA+1.)/(SIGMA*XX*(RB/RC)**(2*K)-: PMMAX=AMAX1(CABS(PMK),PMMAX) IF(CABS(PMK).GT.1.E-7) EPSMAX= AMAX1(EPSMAX,CABS(PMK-PC(K))/PMMAX) PC(K)=PMK CONTINUE *********** CALCULATION OF NEW ENERGY FLOWS ******* D0 240 M=1,NW QQQ=0. D0 220 N=1,NW D0 210 JJ=1,J IF(M.NE.N) QQQ=QQQ+REAL(RPZMN(N,M,JJ)*P(N,JJ)) QQQ=QQQ+SIGMA*REAL(P(N,JJ)*RPMZN(N,M,JJ))</pre>	
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337	180 190 + 200 C******	<pre>PMMAX=0. D0 200 K=1,J PMK=(0.,0.) D0 190 M=1,NW KFAK=1 D0 180 JJ=1,K PMK=PMK+P(M,JJ)*ZRC(M,K)*RPZ(M,JJ)*KFAK KFAK=KFAK*(K-JJ)/JJ CONTINUE PMK=PMK+ZRC(M,K)*Q(M)*PILAMB/K CONTINUE XX=(1BETAC*K)/(1.+BETAC*K) PMK=CONJG(PMK)*XX*(SIGMA+1.)/(SIGMA*XX*(RB/RC)**(2*K)-: PMMAX=AMAX1(CABS(PMK),PMMAX) IF(CABS(PMK).GT.1.E-7) EPSMAX= AMAX1(EPSMAX,CABS(PMK-PC(K))/PMMAX) PC(K)=PMK CONTINUE ************ CALCULATION OF NEW ENERGY FLOWS ******* D0 240 M=1,NW QQQ=0. D0 220 N=1,NW D0 210 JJ=1,J IF(M.NE.N) QQQ=QQQ+REAL(RPZMN(N,M,JJ)*P(N,JJ)) QQQ=QQQ+SIGMA*REAL(P(N,JJ)*RPMZN(N,M,JJ))</pre>	
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338	180 190 + C******	<pre>PMMAX=0. D0 200 K=1, J PMK=(0.,0.) D0 190 M=1,NW KFAK=1 D0 180 JJ=1,K PMK=PMK+P(M,JJ)*ZRC(M,K)*RPZ(M,JJ)*KFAK KFAK=KFAK*(K-JJ)/JJ CONTINUE PMK=PMK+ZRC(M,K)*Q(M)*PILAMB/K CONTINUE XX=(1BETAC*K)/(1.+BETAC*K) PMK=CONJG(PMK)*XX*(SIGMA+1.)/(SIGMA*XX*(RB/RC)**(2*K)-: PMMAX=AMAX1(CABS(PMK),PMMAX) IF(CABS(PMK).GT.1.E-7) EPSMAX= AMAX1(EPSMAX,CABS(PMK-PC(K))/PMMAX) PC(K)=PMK CONTINUE *********** CALCULATION OF NEW ENERGY FLOWS ******* D0 240 M=1,NW QQQ=0. D0 220 N=1,NW D0 210 JJ=1,J IF(M.NE.N) QQQ=QQQ+REAL(RPZMN(N,M,JJ)*P(N,JJ)) QQQ=QQQ+SIGMA*REAL(P(N,JJ)*RPMZN(N,M,JJ)) CONTINUE CONTINUE</pre>	

340	230	QQQ=QQQ+(1SIGMA)*REAL(PC(JJ)*ZRC(M,JJ)) CONTINUE
940	200	ON (M) =000
949	240	
343	240	
344	ι.	
340		
340		D0 250 N-1, N = 0000-00(N) + PKO(N N) + 0000
347	050	QQUTTUE
348	200	
349	260	Q(M)~QDCG(M)~QQQQ CONTTUR
350	477777 700	CONTINUE
301	C+++++	THE ACCORDUCTION IS FILTED ATTACASE
959	0	WRITE (* 500) IIT FPSMAY
954		IF(FPSMAX IT FPS) GO TO 280
955	270	CONTINIE
956	C*****	**************************************
357	C****	**************************************
358	280	WRITE(6.370) IIT
359		WRITE(*.370) IIT
360		WRITE (6.380) (N.Q(N).N=1.NW)
361		WRITE(*.380)(N.Q(N).N=1.NW)
362		IF (J.GE.1) THEN
363		WRITE(6,390)((N,K,P(N,K),K=1,J),N=1,NW)
364		WRITE(6,420)(K,PC(K),K=1,J)
365		END IF
366		WRITE(6,440)
367		WRITE(6,395)
368	C****	************* CALCULATION AND OUTPUT **********************************
369	C****	************ OF TEMPERATURES ************************************
370		DO 360 MPR=0, NX
371		DO 360 NPR=0, NY
372		ZPR=CMPLX((XMAX-XMIN)*MPR/NX+XMIN,(YMAX-YMIN)*NPR/NY+YMIN)
373	C	D0 360 MPR=0,100
374	C	ZPR=(1.,0.)+CEXP(CMPLX(0.,MPR*PI/100.))
375		DO 290 N=1, NW
376		IF(CABS(ZPR-Z(N)).LT.RP(N)-1.E-5) GO TO 360
377	290	CONTINUE
378		IF(CABS(ZPR).GT.RC) GO TO 360
379		PMK=(0.,0.)
380		IF (CABS(ZPR).LE.RB) THEN
381	C*****	**************************************
382	C*****	**************************************
383		$\frac{1}{100} \frac{1}{100} \frac{1}$
384		IF(J.GE.1) IHEN $DDD=1 ((DD++0, Z(N)+GON IG(ZDD))$
385		$PKD-1./(KD**Z^{-Z}(N)*CONJG(ZPK))$
380 987		DMK=DMK+D(N K)*((bD(M)/(2DD-2(M)))**K+
387	L L	PMR - PMR + P(N, R) + (MP(N) - (LPR - L(N))) + rr
300	+ ۵۸۵	οταμα» (με (μ) τουμου (Δι κ) τε κρ) ττκ) CONTINUE
200	300	FND TF
301		RON=CARS(ZPR-Z(N))
302		$PMK=PMK+\Omega(N) * (PTI AM * AI.BETC+$
		L MAR - L MAR - A LAMAR -
303	+	PTLAMB*(ALOG(RB/RON)+STGMA*ALOG(RB**2*CABS(PRB))))
393 394	+ 310	PILAMB*(ALOG(RB/RON)+SIGMA*ALOG(RB**2*CABS(PRB))))
393 394 395	+ 310	PILAMB*(ALOG(RB/RON)+SIGMA*ALOG(RB**2*CABS(PRB)))) CONTINUE IF(J.GE.1) THEN

ŝ^ė

. . . . .

```
PMK=PMK+(1.-SIGMA)*PC(K)*(ZPR/RC)**K
397
      320
                      CONTINUE
308
                  END IF
399
              ELSE
400
    401
    402
403
                DO 340 N=1,NW
                  IF(J.GE.1) THEN
404
                     DO 330 K=1,J
405
                       PMK=PMK+P(N,K)*(1.+SIGMA)*(RP(N)/(ZPR-Z(N)))**K
406
      330
                        CONTINUE
407
                    END IF
408
                  RON=CABS(ZPR-Z(N))
409
                 PMK=PMK+Q(N)*(PILAM*(ALBETC+SIGMA*
410
                    ALOG(RB/CABS(ZPR)))+PILAMB*(1.+SIGMA)*ALOG(RB/RON))
411
                  CONTINUE
412
      340
413
                IF(J.GE.1) THEN
                   DO 350 K=1.J
414
                     PMK=PMK+PC(K)*((ZPR/RC)**K-SIGMA*
415
                        (RB**2/(RC*CONJG(ZPR)))**K)
416
      350
                     CONTINUE
417
                  END IF
418
              END IF
419
            TPR=REAL (PMK)+TC
420
           X=REAL(ZPR)
421
            Y=AIMAG(ZPR)
422
           WRITE(6,400) X,Y,TPR
423
      360
           CONTINUE
424
         WRITE(*,510) OUTFI
425
      370 FORMAT(/' Number of iterations: ',I4/)
426
      380 FORMAT(/' Pipe
                                 q(n)'/(I5,3X,E14.7))
427
      390 FORMAT(/' Pipe',4X,'Order',11X,'P(n,k)'/(I5,I8,3X,2E12.5))
428
429
      395 FORMAT(/8X,'x',13X,'y',12X,'Temp',/)
      400 FORMAT(2X,F10.5,4X,F10.5,4X,F10.5)
430
      410 FORMAT(/,75('*'))
431
      420 FORMAT(/' Order', 13X, 'PC(k)'/(I5,4X,2E12.5))
432
      430 FORMAT(/' Pipe Initial values for q(n) (Order of multipole = 0)'
433
        +
                /(I5,E17.7))
434
     440 FORMAT(/1X,75('*')/ ' TEMPERATURES (Deg C)')
435
     441 FORMAT(' MULTIPOLE METHOD - Pipes in a composite cylinder'/,
436
        + 1X,48(1H=),//,' INPUT DATA')
437
     442 FORMAT(/,' Input file ',A16,/,' Output file ',A16,/)
438
     443 FORMAT(/,' Pipe n=',I2)
439
     450 FORMAT(' Thermal conductivity in inner region',
440
        + 3X,F10.3,' W/(m*K)'/' Thermal conductivity in outer region',
441
        + 3X,F10.3,' W/(m*K)'/' Number of pipes',8X,I10/
442
        + 'Order of multipoles',4X,I10)
443
     460 FORMAT(/' Radius of inner region',9X,F10.3,' m'/
444
           ' Radius of outer region',9X,F10.3,' m'/
445
        +
        +
           ' Outer boundary',/,
446
               Thermal resistance coefficient ',2X,E10.3,/,
        +
447
        + '
               Temperature', 23X, F10.3, 'C')
448
     470 FORMAT(/1X.34(' *')/
449
                                                          beta(n)',
                                   y(n)
                                               rp(n) *
            Pipe *
                       x(n) *
        +
450
           • *
                  Temp C *'/1X,34(' *')/
451
                 *',3(F9.3,' *'),E10.3,' *',F9.3,' *'))
452
        + (15.'
     480 FORMAT(/' Iteration accuracy', 13X, E10.2/
453
```

```
+ ' Maximum number of iterations',2X,I10)
 454
      490 FORMAT(/' TEMPERATURE OUTPUT: Definition of rectangular area',/,
 455
                Minimum x-value', 10X, F10.3/
         +
 456
            .
                Maximum x-value',10X,F10.3/
         +
 457
            ,
                Minimum y-value', 10X, F10.3/
 458
         +
            ,
                Maximum y-value', 10X, F10.3/
 459
         +
            ,
         ÷
                Number of grid points along x-axis', I11/
 460
            ,
                Number of grid points along y-axis', I11)
 461
         +
      495 FORMAT(/' Starting iterations Goal: Iteration accuracy ',E10.2,/)
 462
      500 FORMAT(' Number of iterations', 14,' Iteration accuracy ', E10.2)
 463
      510 FORMAT(//' Job ended. Output written to ',A16)
 464
 465
      701 FORMAT(1X,2(E12.5,2X),2I5)
 466
      702 FORMAT(1X.5(E12.5.2X))
      703 FORMAT(1X,E12.5,I7)
 467
      704 FORMAT(1X,4(E12.5,2X),215)
 468
          END
 469
          SUBROUTINE INV1(B.MC.MD.N.D)
 470
 471 C-----
                                                _____
 472 C
             Calculate inverse of a matrix
 473 C
474 C
             Author: Anders Peterson
             Date: 1982-05-28
 475 C
      476 C-
          IMPLICIT REAL*8 (A-H.O-Z)
477
          DIMENSION B(1),MC(1),MD(1)
478
479 C
          DATA C1/1.0DO/
480
          DATA C2/1.0D50/
481
482 C
483
          D=C1
          NK=-N
484
485
          DO 80 K=1,N
          NK=NK+N
486
          MC(K) = K
487
488
          MD(K) = K
          KK=NK+K
489
          BIGA=B(KK)
490
491
          DO 20 J=K,N
492
          IZ=N*(J-1)
         DO 20 I=K,N
493
          IJ=IZ+I
494
         R1=B(IJ)
495
         IF(R1.LT.O.ODO) R1=-R1
496
         R2=BIGA
497
         IF(R2.LT.0.0D0) R2=-R2
498
         R2=R2-R1
499
      10 IF(R2.GT.O.ODO) GO TO 20
500
501
         BIGA=B(IJ)
         MC(K) = I
502
         MD(K) = J
503
      20 CONTINUE
504
         J=MC(K)
505
506
         IF(J-K.LE.O) GO TO 35
         KI=K-N
507
         DO 30 I=1,N
508
         KI=KI+N
509
         HOLD = -B(KI)
510
```

511			JI=KI-K+J
512			B(KI)=B(JI)
513		30	B(JI) =HOLD
514		35	I=MD(K)
515			IF(I-K.LE.O) GO TO 45
516			JP=N*(I-1)
517			DO 40 J=1,N
518			JK=NK+J
519			JI=JP+J
520			HOLD=-B(JK)
521			B(JK)=B(JI)
522		40	B(JI) =HOLD
523		45	IF(ABS(BIGA).GT.O.ODO) GO TO 48
524		46	D=0.0
525			RETURN
526		48	DO 55 I=1,N
527			IF(I-K.EQ.O) GO TO 55
528			IK=NK+I
529			B(IK)=B(IK)/(-BIGA)
530		55	CONTINUE
531			DO 65 I=1,N
532			IK=NK+I
533			HOLD=B(IK)
534			IJ=I-N
535			DO 65 J=1.N
536			IJ=IJ+N
537			IF(I-K.EQ.O) GO TO 65
538			IF(J-K.EQ.O) GO TO 65
539			KJ=IJ-I+K
540			B(IJ) = HOLD * B(KJ) + B(IJ)
541		65	CONTINUE
542			KJ=K-N
543			DO 75 J=1.N
544			KJ=KJ+N
545			IF(J-K.EQ.O) GO TO 75
546			B(KJ)=B(KJ)/BIGA
547		75	CONTINUE
548	C		
549	C		UNDEFINED VALUE OF D IF ABS(D).GT.C2
550	С		
551			IF(D.LT.C2 .AND.D.GTC2) D=D*BIGA
552	C		
553			B(KK)=C1/BIGA
554		80	CONTINUE
555			K=N
556		100	K = (K - 1)
557			IF(K.LE.O) GO TO 150
558			I=MC(K)
559			IF(I-K.LE.O) GO TO 120
560		108	JQ=N*(K-1)
561			JR=N*(I-1)
562			DO 110 J=1,N
563			JK=JQ+J
564			HOLD=B(JK)
565			JI=JR+J
566			B(JK) = -B(JI)
567		110	B(JI) =HOLD

568	120 J=MD(K)
569	IF(J-K.LE.O) GO TO 100
570	125 KI=K-N
571	DO 130 I=1,N
572	KI=KI+N
573	HOLD=B(KI)
574	JI=KI-K+J
575	B(KI) = -B(JI)
576	130 B(JI) =HOLD
577	GO TO 100
578	150 CONTINUE
579	RETURN
580	ENDæ

• · · · · · · ·

-çu