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Abstract

The electromagnetic far field, as well as near field, originating from light
interaction with a red blood cell (RBC) volume equivalent spheroid, were
analyzed utilizing T-matrix theory. This method is a powerful tool which en-
ables the influence of cell shape on the angular distribution of scattered light
to be studied. General observations were that the three-dimensional shape,
as well as optical thickness apparent to the incident field, affect the forward
scattering. The back scattering was influenced by the shape of the surface
facing the incident beam. Furthermore, sphering as well as elongation of an
oblate shaped RBC into a volume equivalent sphere or prolate shaped spher-
oid, respectively, were theoretically modeled in order to imitate physiological
phenomena caused, e.g., by sphering agents, heat or increased shear stress
of flowing blood. Both sphering and elongation were shown to decrease the
intensity of the forward directed scattering, thus yielding lower g-factors. The
sphering made the scattering pattern independent of the azimuthal scattering
angle φs, while the elongation induced more apparent φs-dependent patterns.
The light scattering by an RBC volume equivalent spheroid, was thus found
to be highly influenced by the shape of the scattering object. A near-field
radius, rnf, was evaluated as the distance to which the maximum intensity of
the total near field had decreased to 2.5 times that of the incident field. It
was estimated to 2-24.5 times the maximum radius of the scattering spher-
oid, corresponding to 12-69 µm. When the absorption properties of a red
blood cell were incorporated in the computations, the near-field radius was
only slightly reduced by 0.2-0.6 times the maximum radius. As the near-field
radius was shown to be larger than a simple estimation of the distance be-
tween the RBCs in whole blood, the assumption of independent scattering,
frequently employed in optical measurements on whole blood, seems inappro-
priate. This also indicates that results obtained from diluted blood, cannot
be extrapolated to whole blood, by multiplying with a simple concentration
factor.

1 Introduction

Optical measurements on blood both in vivo and in vitro seems to be an ever
growing field, since clinically useful information, expressed in terms of fundamental
haematological parameters, can be extracted with rather simple and non-destructive
measurement procedures. Traditionally, these measurements are focused on the
optical absorption properties of blood. Despite its general character, the macroscopic
average absorption parameter reveals several relevant, physiological properties of
blood, such as the degree of oxygen saturation, concentration of haemoglobin and
other light absorbing solutes that are characteristic of blood and thus relevant to
the state of the patient’s health. Measurements of optical absorption properties of
blood are often performed by recording either reflected, [5, 20, 28, 30] or transmitted
[6, 13, 32] probing light from, or through a blood sample, or blood perfused tissue.
A theoretical multiple scattering model, for example the diffusion approximation
of the transport equation [28, 30], inverse adding-doubling computations (IAD) [26]
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or Monte Carlo simulations [8], is then applied in order to relate the measured
quantities (transmittance and/or reflectance) to the optical absorption parameter
of blood.

However, there is a growing interest in the scattering properties of blood, partly
since a correct compensation for light scattering improves the accuracy of the ab-
sorption measurements, but mainly as the scattering properties themselves provide
interesting information on morphological properties of the blood cells [4, 14, 15, 25,
26, 32, 35]. Equivalent with the absorption properties of blood, the macroscopic av-
erage scattering properties can be determined by applying the previously mentioned
theoretical multiple scattering models. However, the macroscopic scattering para-
meters do not yield detailed morphological information on the blood cells. To be
able to extract microscopic information, such as cell size, shape and alignment, a
detailed and explicit model is needed; one which treats the light scattering from
each individual cell. Several such methods are available, all based on the solution of
Maxwell’s equations for an object with a shape similar to that of the cell, but each
applying different approximations required to obtain the angular distribution of the
scattered light [11, 36]. The choice of model is based on the properties of the ob-
ject being modeled, since this governs which approximations are realistic and valid.
A red blood cell (RBC) has a size in the order of 10 times larger than the wave-
length in the optical region, which means that neither Rayleigh scattering, consist-
ing of an approximation valid for small scatterers compared to the wavelength, nor
geometrical optics theory for large scatterers can successfully be applied. Instead,
other approximate models such as Fraunhofer diffraction, Anomalous diffraction and
Rayleigh-Gans-Debye scattering have been applied for red blood cells [21, 33], as well
as the exact solution of Maxwell’s equations for a homogeneous or layered sphere,
i.e. the Lorentz-Mie theory [16–18, 21, 31]. The latter method, has been applied to
evaluate the influence of the size of randomly oriented RBCs on the optical scat-
tering properties, by performing Mie calculations for spheres with different RBC
equivalent size [31] and comparing the theoretically obtained scattering properties
with those measured. The successful results of that study indicate that size rather
than shape affects the light scattering from a suspension with randomly oriented
cells. However, random orientation of RBCs is experimentally seldom realistic, as
optical measurements often are performed on blood in motion. A certain preferred
alignment of the disc-shaped cells is introduced and the asymmetric shape of the
cells has been shown to influence the angular distribution of scattered light [4]. Pa-
rameters such as direction and degree of alignment of the cells versus the direction
of the incident beam, as well as cell shape are essential in the evaluation of optical
measurements on flowing blood. In order to study the influence of cell shape on
scattered light, we have employed the so called T-matrix formalism [3, 38]. It is
a scattering method that solves Maxwell’s equations for e.g. oblate- and prolate
spheroids using expansions in global spherical vector waves. Computations have
previously been performed on spheroidal particles with a size in the same range as
the wavelength, such as soil particles [10], aerosols [22] and hematite particles [29].
Numerically it is found that the precision of the real and complex numbers, used
in the computations, has to increase when the size of the studied particle increases,
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in order to obtain accurate results. Thus, convergent solutions are not found for
particles with large size parameters or pronounced asymmetric shapes, such as for
RBC volume equivalent spheroids, when utilizing normal precision variables (8-digit
numbers) in the computations. Mishchenko and Travis [24] opened up the door to
T-matrix computations of light scattering by larger spheroids by demonstrating that
convergence is improved when using extended precision (32-digit numbers). Hence,
extended precision variables are used in this study. To the best of our knowledge
this is the first theoretical study of light scattering by RBCs employing the T-matrix
formalism. We would thus like to introduce this powerful method in the field of tis-
sue optics. Utilizing this numerical method, we have studied the changes in the
angular distribution of both the far- and near field of scattered light from an RBC,
induced by the alignment of the cells and two realistic shape transformations, i.e.
sphering and elongation.

2 T-matrix formalism

The general idea of the T-matrix theory is to expand the incident and surface electric
fields, Ei and Esurf, as well as the internal and scattered fields, Eint and Es, in terms
of appropriate sets of vector waves. By utilizing integral representations of the fields,
a relation between the expansion coefficients for the incident and scattered fields is
obtained.

The electric fields, with a wavelength in the medium of λ, should satisfy the
Maxwell equations, rephrased in the vector Helmholtz equation, i.e.

∇×∇× E − k2E = 0 (2.1)

where k = 2π/λ is the wavenumber. For a spheroidal scattering object, the appro-
priate basis functions are spherical vector waves, M ν and N ν , with ν representing
the spherical harmonic double index m and n. When the time dependence e−iωt is
used (ω = 2πc/λ, where c is the speed of light), these functions are given by

M o
ν(r) == ∇× re−imφPm

n (cosθ) (jn(kr) + inn(kr))

N ◦
ν(r) = k−1∇× M ν(r)

(2.2)

with geometric parameters defined in Figure 1 a). Here Pm
n (cosθ) are the associated

Legendre functions, jn(kr) are the spherical Bessel functions, nn(kr) the Neumann
functions and the indices are n =0, 1, 2..., m = −n, −n + 1, . . . , n − 1, n. These
functions are outward traveling waves that are singular at the origin. They satisfy
the Helmholtz vector equation and form a complete set of functions on the unit
sphere. The corresponding functions that are regular at the origin are obtained by
excluding the Neumann function, nn(kr), in Eq. (2.2). Thus, the regular vector
waves, M r

ν(r) and N r
ν(r), have a pure Bessel function radial dependence. The

incident field in the surrounding medium is regular at the origin and is thus expanded
in regular waves:

Ei(ksurmedr) = E0

∑
ν

Dν (aνM
r
ν(ksurmedr) + bνN

r
ν(ksurmedr)) (2.3)
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Figure 1: The reference systems used are shown in (a) for the derivation of the
T-matrix formalism, in (b) to describe the geometry of the incident and scattered
light in conjunction with T-matrix computations and in (c) when presenting the
results of the T-matrix computations as the intensity of scattered light on a planar
grid.

E0 is the amplitude of the incident field, Dν is a normalization constant and finally
aν and bν are the expansion coefficients. The coefficients an and bn are assumed
to be known and are, for an incident plane wave, expressed in terms of associated
Legendre functions and their derivatives [38]. The internal field within the object is
expanded in the same regular vector waves:

Eint(kobjectr) = E0

∑
µ

(
cµM

r
µ(kobjectr) + dµN

r
µ(kobjectr

)
(2.4)

where µ incorporates the two spherical harmonics indices mentioned earlier and cµ

and dµ are the expansion coefficients of the internal field. Finally, the scattered
field is outgoing and is expanded in outgoing spherical waves, i.e. by keeping the
Neumann function in Eq. (2.2):

Es(ksurmedr) = E0

∑
ν

Dν

(
fνM

0
ν(ksurmedr) + gνN

0
ν(ksurmedr)

)
(2.5)

where fn and gn are the expansion coefficients characterizing the scattered field.
They, and thus the expression describing the angular distribution of the scattered
light, Eq. 2.5, are obtained by multiplying the known expansion coefficients of the
internal field by a so called transition matrix, or T-matrix:(

fν

gν

)
= −

(
T-

matrix

) (
aν

bν

)
(2.6)

The problem is thus reduced to computations of the expansion coefficients of the
incident field and of the elements of the T-matrix. The derivation of the elements of
the T-matrix is extensively described by [38] as well as by Barber and Yeh [3]. Briefly,
the internal field, resulting from the incident field, can be thought of as inducing
polarization currents within the spheroid, which in turn produces the scattered
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field. Thus, the connection between the scattered and incident field, mathematically
expressed by the T-matrix, lies physically in the internal field. In order to simplify
the mathematical analysis, the internal polarization currents are replaced by an
equivalent distribution of electric and magnetic currents on the surface of the object.
These currents are related to and can be derived from the known incident field, as
their resultant field inside the spheroid should cancel the incident field, forming a
null field within the scattering object, according to the so called equivalence theorem
[3, 38]. The surface currents are also related to the scattered field as they are the
source of the external, scattered light. The scattered field is obtained by computing
surface integrals with the surface currents as the integrands. Thus, the scattered
field is via surface integrals related to the surface currents, which in turn are related
to the incident field via the equivalence theorem. This means that the expansion
coefficients of the scattered field are related to those of the internal field, which can
be expressed in matrix form as follows:

(
fν

gν

)
= −i

(
B-

matrix

) (
cµ

dµ

)
(2.7)

The elements of the B-matrix are composed of surface integrals of the surface cur-
rents. Furthermore, the expansion coefficients of the internal field are related to
those of the incident field, applying the equivalence theorem:

(
A-

matrix

) (
cµ

dµ

)
= −i

(
aν

bν

)
(2.8)

Also the elements of the A-matrix are composed of surface integrals. The T-matrix
handles and combines these two steps by relating the expansion coefficients of the
incident field directly to those of the scattered field:(

fν

gν

)
= −

(
B-

matrix

) (
A-

matrix

)−1 (
aν

bν

)
= −

(
T-

matrix

) (
aν

bν

)
(2.9)

The elements of the T-matrix are composed of computationally tolerable surface
integrals. Moreover, when the scattering object is axi-symmetric, as for the spheroid,
the surface integrals can be reduced to one dimensional line integrals, simplifying
the computations further. In the case of spherical objects, the T-matrix is diagonal
and the matrix elements can be computed analytically. The explicit expression of
the scattered field is then identical to that obtained by Lorentz-Mie theory.

3 Computations

The T-matrix is determined by the wave numbers ksurmed and kobject, as well as by
the geometry of the object, but is independent of the incident field. In this study, the
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Figure 2: The geometrical shape and input parameters of the RBC volume equiv-
alent spheroids used for the T-matrix computations are illustrated. The volume
equivalent oblate spheroid (axial ratio: 0.375, size parameter: 19.6) and the sphere
(axial ratio:1, size parameter: 37.7) are shown here and the three prolate spheroids
(I-III) with different elongations in Figure 3 below. Computations were performed
at the wavelength 632.8 nm, as well as at 940 nm for the two particles here with the
corresponding size parameters 13.2 for the oblate spheroid and 25.4 for the sphere.

scattering particles are spheroidal with half axes a and b, as depicted for an oblate
spheroid in Figure 1 a). Further parameters used to characterize the spheroid are the
size parameter, x = 2πa/λ, with the wavelength λ compensated for the refractive
index of the surrounding medium, the axial or aspect ratio a/b, and finally the real
(mr) and imaginary part (mi) of the relative refractive index:

mr + imi = nobject/nsurmed (3.1)

The T-matrix formalism described above provides an exact solution to the prob-
lem of light scattering by axi-symmetric objects, under the condition that the fields
in Eqs. (2.3)-(2.5) are all expanded in infinitely many elements. This results in
a T-matrix of infinite size and in conjunction with practical computations the ex-
pansion series must be truncated. It follows from this that the convergence of the
computations has to be considered, in order to reach a correct solution within the
required accuracy. Three convergence parameters are often employed; the number
of integration points needed in the line integrals of the elements in the T-matrix for
accurate numerical integration, and the maximum values of the indices m and n in
the truncated series of Eq. (2.3). A convergence check is of particular importance,
since T-matrix computations for large objects require very accurate calculations of
the matrix elements, as well as large matrices. Initial small numerical errors can
otherwise result in manifest errors in the final T-matrix. Applying single precision
variables in a widely used T-matrix computer program [2] yields good accuracy for
small (compared to the wavelength) and weakly aspherical spheroids with size para-
meters x < 25 and axial ratios close to unity. T-matrix computations of spheroidal
particles with a similar shape and volume as the large (compared to the wavelength),
highly aspherical red blood cell have thus previously not been possible. Mishchenko
and Travis [24] have shown that high enough accuracy can be achieved for 2-2.7
times higher size parameters, by employing extended precision (32-digit numbers).

We have therefore expanded the range of size parameters, within which the
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Figure 3: The geometrical shape and input parameters of the three prolate spher-
oids (Prolate I to the left with an axial ratio of 1.63 and size parameter of 35.2,
Prolate II/III with the corresponding parameters 2.64/3.5 and 48.4/58.4, respec-
tively) with different elongations used for the T-matrix computations are illustrated.
Computations were performed at the wavelength 940 nm.

program of Barber and Hill [2] converges, by incorporating extended precision of
the variables used. However, as extended precision was not easily incorporated in
both real and imaginary parts of the complex variables, we focused on the real part.

This excluded the option of modeling the consequence of light absorption within
the scattering spheroid and its impact on the scattered field, as light absorption is
expressed by an imaginary refractive index. To be able to estimate the significance of
the influence of light absorption, a program with double precision variables (16-digit
numbers) was developed, enabling the complex refractive indices to be included. It
provided us with the means to compare results from computations, with and without
absorption, for spheroids with size parameters similar to those used in the extended
precision program, but with axial ratios closer to unity. Once the T-matrix was
computed, either a far-field or a near-field program (both modified with extended
and double precision variables) was employed in order to compute the resulting
scattered far- or near field. The far field is the scattered field found at rather large
distances from the scattering object, i.e. when r > λ and r > 2b and r > (2b)2/λ,
resulting in a field with a radial dependence of eikr/r. In regions closer to the object,
this far-field approximation is not valid. We refer to the field in this region as the
near field. Extensive comparisons between results obtained from the original and the
modified programs were conducted. All comparisons showed good correspondence,
confirming the accuracy of the modified code.

3.1 The far field

The angular scattering distributions were computed for the far field employing the
extended precision T-matrix programs for five RBC volume equivalent homogeneous
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spheroids, shown in Figures 2 and 3. The volume of a red blood cell [7] was taken
to be 94µm3, the refractive index of the surrounding blood plasma as 1.34514, and
the real part of the relative refractive index as 1.045 [7], neglecting the absorption
(mi = 0). Assuming wavelengths of 632.8 nm and 940 nm, a normal RBC was
modeled as a volume equivalent oblate with corresponding size parameters of 19.6
and 13.2, respectively, and an axial ratio of 0.375, shown to the left in Figure 2.
The azimuthal angle of the incident light, φi in Figure 1 b), was selected as 0◦,
since it does not affect the results due to the symmetry of the spheroids. Compu-
tations were performed for θi = 0◦, 45◦ and 90◦ (see Figure 1 b) with both parallel
and perpendicular (to the xz plane) polarization of the incident plane wave. The
influence of sphering was modeled by computing the light scattering, at the same
wavelengths, by an RBC volume equivalent sphere with parameters shown to the
right in Figure 2). Computations were performed for φi = θi = 0◦, as neither of
the incident angles affect the results due to complete symmetry of the sphere. The
angular distribution of the scattered light was again obtained for both parallel and
perpendicular polarization of the incident plane wave. Finally, the influence of elon-
gation of the RBC was studied by computing the light scattering at the wavelength
940 nm by a volume equivalent prolate spheroid, by varying the axial ratio from 1.63
to 3.5 as depicted in Figure 3) (Prolate I-III). The incident angles here were φi = 0◦

and θi = 90◦ and computations were performed for both polarization directions.
The logarithm of the intensity of the scattered light is presented in relative units in
planar grids with the zenith scattering angle (s mapped along the radius rpg (θs = 0◦

when rpg = 0 and θs = 180◦ when rpg = 1) and the azimuthal scattering angle φs

mapped in the normal way according to cylindrical coordinates (see Figure 1 b) and
c)). Values outside the unit circle are set to the logarithm of the back-scattered
intensity. To be able to interrelate the angular distributions of the scattered light of
differently shaped cells, the scattering probability was computed as a function of the
zenith scattering angle θs. This scattering probability, Pdiff (θs, φs), was calculated
by numerical integration of the differential scattering probability, Pdiff (θs, φs), over
all azimuthal angles φs = 0 − 2π:

Pθs =

2π∫
0

Pdiff sin θsdφ (3.2)

where

2π∫
0

π∫
0

Pdiff sin θdθdφ = 1 (3.3)

The differential scattering probability, Pdiff (θs, φs), was defined as the ratio of
the differential scattering cross section, σdiff(θs, φs) (proportional to the intensity
of the scattered light in the direction θs and φs shown in Figures 4 and 5) to the
total scattering cross section σtot (derived as the differential scattering cross section
integrated over the entire unit sphere) [2]. Furthermore, the angular distribution of
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the scattering probability was quantified by one single parameter, i.e. the average
of the cosine of the deflection angle:

g =< cos θs > (3.4)

3.2 The near field

Independent scattering of a collection of spheroids can be assumed when the distance
between the particles is large enough for the near fields to decline. We have there-
fore studied the extension of the near field of a single spheroid in order to estimate
the inter-particle distance required to be able to neglect the influence of surround-
ing scattering particles. The near field was computed for the same spheroids as
those treated in the far-field section, as shown in Figure 2, employing the near-field
computer program with extended precision variables. The incident plane wave prop-
agates in the positive x-direction direction with the polarization direction specified
as either parallel or perpendicular to the xy plane. The results are presented as
intensity in relative units versus x and y coordinates in the equatorial plane of the
spheroid. A near-field radius, rnf , was here defined as the distance from the center
of the particle, to where the maximum intensity of the total field had decreased to
2.5 times that of the incident field. The near-field radius was expressed in terms of
the maximum radius of the spheroid, rcsc (the radius of a circumscribed circle). If
the maximum intensity never exceeds the limit value of 2.5 times the incident field
then rnf was set to rcsc. The near-field radius was evaluated for all computed near
fields.

The influence of absorption on the near-field was estimated by employing the
imaginary part of the refractive index of the spheroid in the near-field program with
double precision variables. Computations were performed for spheroids with size
parameters similar to those used previously for extended precision computations
(Figure 2), but with less asymmetric shape in order to obtain convergence of the
solutions employing double precision variables. Scattering objects were here prolate
spheroids with size parameters in the range 27.0-40.5 and axial ratios between 1.10
and 2.02, as well as oblate spheroids with size parameters between 16.5 and 22.4
and axial ratios in the range 0.523-0.831. Two computations were performed for
each spheroid; one with the imaginary relative refractive index, mi, set to zero (no
absorption) and one with mi = 0.000113, which is a characteristic value for red
blood cells [28]. The near-field radius was then evaluated and compared for the two
corresponding computations with absorbing and non-absorbing spheroids.

4 Results

4.1 The far field

The angular far-field distributions of scattered light, computed at the wavelength
632.8 nm for the RBC volume equivalent sphere and oblate (depicted in Figure 2)
are mapped onto planar grids in logarithmic scale in Figure 4. Only the results
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Figure 4: Planar grids of the angular distribution of the scattered light resulting
from T-matrix computations employing parallel polarization of the incident plane
wave with a wavelength of 632.8 nm are presented. The intensity is shown on a
logarithmic scale (base 10) and arbitrary units versus the azimuthal scattering angle
φs and the zenith scattering angle θs, mapped onto the normal azimuthal angle and
the radius in the planar grid, respectively. The scattering pattern originating from
the RBC volume equivalent oblate spheroid with θi = 0◦ is shown in (a) with a value
of 3.25 (relative units) for the log intensity of the forward scattering (φs = θs = 0◦)
and -2.18 for the log intensity of the back scattering (θs = 180◦). Corresponding
planar grids are shown in (b) θs = 180◦ with a log intensity of the forward and
back scattering of 3.19 and -4.29 and in (c) θi = 90◦ with the values 2.83 and -2.64,
respectively. The distribution of the scattered light from the RBC volume equivalent
sphere is shown in (d) with a log intensity of the forward and back scattering of 2.48
and -3.95.
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of parallel (to the xz plane) polarized incident light are shown, since the direction
of polarization was found to have a minor influence on the results. The scattered
light by the RBC volume equivalent oblate was analyzed for θi = 0◦, 45◦ and 90◦.
Common to all graphs is the circular ripple structure. From an experimental point of
view these ripples are of minor interest, since they are averaged out when analyzing
and measuring light scattered by an assembly of spheroids, which do not have exactly
the same size and orientation. Comparing the three graphs from the oblate spheroid
in Figures 4 a-c, we note that the peak of forward scattering is decreased and
broadened with higher incident angles. It is also clear that the θs-dependence is in
general much stronger than the φs-dependence. When the light is incident along
the symmetry axis (the z-axis) of the oblate spheroid (φs = θi = 0◦), the angular
distribution of scattered light is more or less independent of the azimuthal angle
φs with merely a weak, wavy pattern at φs = 0◦ and 180◦ (Y = 0). However,
characteristic φs-dependent patterns appear in the distribution of scattered light for
larger incident angles at θi = 45◦ and 90◦. Local minima and maxima are obtained
depending on the shape of the surface of the spheroid the incident light faces. The
back-scattered light, mapped on the unit circle of the planar grids, seems to be
highly dependent on the curvature facing the incident light. When the incident
light faces any of the stagnation points of the surface of the spheroid (θi = 0◦ and
90◦), localized where the equatorial plane and the symmetry axis cross the surface,
the back scattering is significantly higher than for the case of obliquely incident light
(e.g. θi = 45◦). The light distribution in Figure 4 d) is completely symmetric versus
the azimuthal angle φs, in accordance with the symmetric shape of the sphere. It
shows a smooth decline with increasing zenith deflection angle θs mapped along
the radial axis in the planar grid. It is also evident that the forward scattering
peak, originating from the sphere, is lower and broader than those of the oblate
spheroid at zenith incident angles of 0◦ and 45◦. A lower forward scattering peak
can also be observed for the oblate spheroid at an incident angle of 90◦, compared
to that of the sphere. However, there is no clear difference in the width of the peak
and the back scattering is significantly higher for the oblate spheroid than that
of the sphere. Figure 5 shows the planar grids of the scattered light intensity on
a logarithmic scale, obtained at a wavelength of 940 nm from the RBC equivalent
prolate spheroids depicted in Figure 3). The incident angles are φi = 0◦ and θi = 90◦.
Since the incident angle θi is perpendicular to the symmetry axis, a rather strong
φs-dependency is seen for all prolate spheroids in Figures 5 a-c. These can be
seen as dips at approximately φs = 0◦ and 180◦ (Y = 0) at intermediate zenith
scattering angles θs. The dips become deeper with a more pronounced elongation
of the spheroid. The forward scattering peak is also influenced by the elongation
and shows a significant decrease in height with increasing elongation in these three
cases. This is in contrast to the back scattered light, which displays an increase with
the elongation.

The angular distributions of the scattered light, obtained from different spher-
oids and incident angles, are interrelated in two-dimensional plots of the scattering
probability versus the zenith scattering angle θs. Figure 6 presents the scattering
probability for light with a wavelength of 632.8 nm, scattered by the oblate spheroid
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Figure 5: Planar grids of the angular distribution of the scattered light resulting
from T-matrix computations of prolate spheroids, employing parallel polarization
of the incident light with a zenith incident angle of 90◦ and a wavelength of 940
nm are presented. The intensity is presented on a logarithmic scale (base 10) and
arbitrary units. The results of Prolate I are shown in (a) with a log intensity of the
forward and back scattering of 1.72 and 4.31 (relative units), of Prolate II in (b)
with corresponding values of 1.46 and -4.05 and finally of Prolate III in (c) with a
log intensity of the forward and back scattering of 1.31 and -3.81.
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Figure 6: The scattering probability is plotted versus the zenith scattering angle
for the oblate spheroid with the incident angles θi = 0◦, 45◦ and 90◦ at the wave-
length 632.8 nm (grey lines). The black line represents the scattering probability of
the volume equivalent sphere.

and the sphere. Despite the large intensity at small deflection angles in Figure 4, the
scattering probability is seen to be much smaller at deflection angles in the region
0◦− 2◦ in Figure 6 than in the region 2◦− 3◦. This originates from the fact that the
scattering probability, Pθs , is proportional to sin θs times the differential scattering
probability (proportional to the intensity) integrated over 0 < φ ≤ 2π, due to the
surface element sin θdθdφ of the unit sphere (see Eqs. 11 and 12). From Figure 6 it
is evident that the forward scattering peak is higher and more narrow for the oblate
spheroid at zenith incident angles of 0◦ and 45◦ than for the sphere, while an incident
angle of 90◦ yields a lower and broader forward scattering than that of the sphere, as
already indicated in the planar grids. Thus, the incidence of light closer to the sym-
metry axis (small θi) yields higher and more narrow peaks in the forward direction,
than with zenith incident angles θi close to 90◦. The latter phenomenon can also be
seen for an RBC volume equivalent oblate at the wavelength 940 nm, as represented
by the grey curves in Figure 7. In addition, a slight shift in the maximum scattering
probability to larger deflection angles with larger incident angles θi can be observed
for the oblate spheroid in both Figures 6 and 7. Figure 7 also includes scattering
probability curves at a wavelength of 940 nm for RBC volume equivalent prolate
spheroids (Prolate I-III depicted in Figure 3 with increasing elongation. A decrease
in the scattering probability in the forward direction is shown for these three cases,
as well as a slight shift of the maximum value to smaller zenith scattering angles θs

with increasing elongation.
Further analysis of the angular distribution of the scattering probability was per-

formed by associating a g-factor to each curve. The results were obtained for incident
angles of θi = 0◦, 45◦ and 90◦ from the symmetry axis and the three individually
extracted g-factors for each spheroid were averaged to form a simple approximation
of randomly oriented particles. The results are listed in rows in Table 1, starting
with g-factors obtained from light impinging on the particle along the major axis
and ending with incidence along the minor axis. From this it follows that the inci-
dent angle versus the symmetry axis, θi, is listed in the opposite order for the oblate
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Figure 7: The scattering probability is plotted versus the zenith scattering angle
for the oblate spheroid with the incident angles θi = 0◦, 45◦ and 90◦ at the wave-
length 940 nm (grey lines). The black lines correspond to results obtained for the
volume equivalent prolate spheroids I-III with an incident angle of 90◦ and the same
wavelength.

Incident Oblate Sphere Oblate Sphere Prolate Prolate Prolate
angle 632.8 632.8 940 940 I II III
vs. major nm nm nm nm 940 nm 940 nm 940 nm
axis
0◦ 0.989 0.993 0.989 0.992 0.989 0.986 0.985
45◦ 0.996 0.993 0.993 0.992 0.991 0.990 0.990
90◦ 0.997 0.993 0.994 0.992 0.992 0.991 0.990
Average 0.994 0.993 0.993 0.992 0.991 0.989 0.988

Table 1: The influence of particle shape and incident angle on the g-factor. Note
that the incident angle is given versus the major axis. It is equivalent with the
symmetry axis for the prolate but perpendicular to that of the oblate spheroid.

as compared to the prolate spheroid. From Table 1 it is thus clear that the g-factor
increases when the direction of the incident light approaches the minor axis of the
spheroid. Furthermore, a decrease in the g-factor is seen at incident angles of 45◦

and 90◦ versus the major axis for both wavelengths evaluated (632.8 and 940 nm),
when an oblate spheroid turns spherical without changing the volume. However,
the very opposite, i.e. a slight increase, is observed for both wavelengths at an inci-
dent angle of 0◦ versus the major axis. Still, the average values of the RBC volume
equivalent oblate spheroid and sphere show a slightly smaller g-factor for the sphere
than for the oblate spheroid.

4.2 The near field

The total near field was computed at the wavelengths 632.8 nm and 940 nm and the
results obtained at 940 nm are for all RBC volume equivalent particles mapped onto
the equatorial plane of the particles shown in Figures 8-12. The polarization of the
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incident plane wave was here parallel to the xy plane. However, computations with
perpendicular polarization showed similar results. The near field is composed of the
incident and scattered light, where the former is assigned unit amplitude. The field
inside a circumscribed circle with a radius of rcsc, equaling the maximum radius of
the spheroid, cannot be calculated for theoretical reasons [38] and was set to zero.
The position of the particle is indicated by an arrow in each graph (Figures 8-12)
and the scale on the x- and y-axis is expressed in terms of rcsc. Note that the
scale on the z-axis, showing the intensity of the near field, is the same in all graphs
except in Figure 8, where the near field of the sphere is shown. The near field of
the sphere reveals a significantly higher peak intensity than do any of the oblate
or prolate spheroids. All particles were found to cause a standing wave pattern,
resulting from interference between the incident and scattered fields, which has a
highly forward directed component. The height and location of the peak of these
near-field components depend on the shape and size (versus the wavelength) of the
scattering object. The sphere (Figure 8 induces the highest near-field peak slightly
shifted in the positive x direction. The oblate and weakly prolate shaped spheroids
(Figures 9 and 10) have peaks of similar heights, but the location of the peak for the
oblate spheroid is almost immediately behind the scattering particle, whereas the
peak of the prolate is again slightly shifted in the positive x direction. Figures 11
and 12 show that the peak is clearly reduced when the prolate spheroid is elongated,
leaving a slowly declining plateau.

The extension of the near field was evaluated in terms of a near-field radius,
indicating where the maximum intensity had been reduced to 2.5 times that of the
incident light. Values between 2.0 rcsc (for Prolate III at 940 nm) and 24.5 (for
the sphere at 632.8 nm) were obtained. All values are presented in Table 2, both
in terms of the radius of a circumscribed circle and of absolute values (12.1 µm
for the oblate at 632.8 nm to 69.1 µm for the sphere at 632.8 nm). No significant
difference in the near-field radius was obtained for incident light with parallel or
perpendicular polarization. Furthermore, scattered light by an oblate spheroid was
at both wavelengths shown to yield a significantly shorter near-field radius than a
sphere. Also the elongation of the prolate spheroid was shown to reduce the near-
field radius.

In contrast to the angular distribution of the far field, the near-field radius, used
to evaluate the near field, is dependent on the light absorption in the spheroid.
As it was not possible to evaluate the absorption of light using the programs with
extended precision, the analysis of the influence of absorption similar to that of a
red blood cell, had to be performed using programs with double precision limited
to spheroids with moderate axial ratios. The near-field radius was decreased by on
average 0.6 rcsc for prolate spheroids and 0.2 rcsc for oblate spheroids, all with an
axial ratio close to unity, when the light absorption was incorporated in the T-matrix
computations.



16

-4.97

-0.50
3.97

8.44
0.00
2.00
4.00

6.00
8.00

Figure 8: The near fields are shown, computed at 940 nm with a parallel polariza-
tion of the incident light, surrounding the five spheroids depicted in Figures 2 and
3. The incident plane wave propagates in the positive x direction and the intensity
of the near field is given in relative units in the equatorial plane of the scattering
object. An arrow indicates the position of the spheroid and the scale of the x- and
y-axis is expressed in terms of the major axis of the spheroid, rcsc. The near field of
the sphere is shown in this figure.

-4.97
-0.50

3.97

8.44
0.00
1.00
2.00
3.00
4.00
5.00

Figure 9: Same as Figure 8 but for the oblate spheroid shown in Figures 2 and 3.

5 Discussion

Computations on light propagation in blood are often performed in order to be able
to correlate the results with those obtained from measurements [28, 31, 32]. Detailed
information on biochemical and morphological properties of blood which are impor-
tant to determine, both in vivo and in vitro [5, 6, 8, 13, 25, 32, 35], can be deduced
and followed by relating measured to theoretical parameters. The choice of theo-
retical model and approximations must thus be made in close relation to physical
reality. Measurements have proven that Mie theory can successfully be applied,
when studying the size of randomly oriented red blood cells in a suspension [32].
The various shapes of the red blood cells are more difficult to examine, although
several experimental studies [4, 19, 27] have measured the influence of cell shape and
alignment on optical parameters. Multiple scattering models for a homogeneous
medium with random distribution of scatterers, as well as Mie theory, assuming
spherical scattering objects, may therefore be inappropriate for theoretical analysis
of light transport in flowing blood. Instead we have here introduced the T-matrix
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Figure 10: Same as Figure 8 but for the prolate spheroid I shown in Figures 2
and 3
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Figure 11: Same as Figure 8 but for the prolate spheroid II shown in Figures 2
and 3

formalism for spheroidal objects [3, 38] in the field of tissue optics. The T-matrix
method is considered to be one of the most accurate and powerful techniques to
compute light scattering by non-spherical particles, with sizes in the range of the
wavelength. The computations in this study were performed for RBC volume equiv-
alent, homogeneous spheroids.

Thus, we did not incorporate a cell membrane in the model, as it has been
shown to have only a minor influence on the angular scattering pattern [17, 21]. The
biconcave shape of a normal RBC under low or no shear stress was also neglected,
though we acknowledge that the characteristic dips do perhaps influence the angular
distribution of the scattered light. However, the general trend of the cell shape is
unquestionably oblate shaped by nature. Moreover, healthy cells are flexible to
facilitate their migration through thin capillaries and it is therefore reasonable to
assume an average cell shape of a spheroid for red blood cells, when under moderate
or high shear stress, or when affected by fluid dynamic interactions with surrounding
cells [34].

Independent of how the far field was analyzed, the results imply a substantial
impact of the cell shape on the light scattering. There are essentially three mor-
phological properties, which here theoretically have been shown to characteristically
affect the angular distribution of the scattered light. The general three dimensional
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Figure 12: Same as Figure 8 but for the prolate spheroid III shown in Figures 2
and 3

Oblate Sphere Oblate Sphere Prolate I Prolate II Prolate III
632.8 nm 632.8 nm 940 nm 940 nm 940 nm 940 nm 940 nm

Polarization ‖ ⊥ ‖ ⊥ ‖ ⊥ ‖ ⊥ ‖ ⊥ ‖ ⊥ ‖ ⊥
rnf (no. rcsc) 3.1 4.0 24.5 24.5 9.2 9.3 20.4 20.4 15.8 15.8 9.7 9.7 2.0 2.0
rnf (µm) 12.1 15.6 69.1 69.1 36.0 36.4 57.5 57.5 61.8 61.8 52.4 52.4 13.0 13.0

Table 2: The near-field radius, rnf , for the volume equivalents of a RBC was
evaluated as the distance from the center of the particle to where the maximum
intensity of the total field had decreased to 2.5 times that of the incident field.
The results are shown both as absolute values in µm and relative a radius of a
circumscribed circle of the particle (rcsc=maximum(a, b)).

shape of the scattering object, as well as the thickness of the particle along the
direction of the incident light (here called the optical thickness), seem to have a
manifest effect on the forward scattering component. Moreover, the back scatter-
ing component is highly influenced by the shape of the particle surface facing the
incident light. The latter is clearly exemplified when varying the zenith incident
angle of the oblate spheroid, shown in Figures 4 a-c. A significantly greater back
scattering is obtained, when the light is impinging on a surface segment perpen-
dicular to the direction of the incident light (Figures 4 a and c), compared to that
for oblique incidence (Figure 4 b). Furthermore, the change in back scattering is
less pronounced when the change in shape does not seriously affect the curvature
of the surface, as for elongation of the prolate spheroids shown in Figure 5. The
behavior of the forward scattering is completely different. The general trend here
is an increase in intensity, when the direction of the incident light approaches that
of the minor axis, irrespective of whether it is an oblate or prolate spheroid (see
Figures 4, 6, 7 and Table 1). The forward scattering component thus tends, as
previously mentioned, to be influenced by the thickness of the spheroid apparent to
the incident light. For example, the oblate spheroid has a rather small optical thick-
ness at incident angles of 0◦ and 45◦ and consequently a large forward scattering,
as shown in Figures 4 and 6. In contrast, at an incident angle of 90◦, meaning an
incident beam along the major axis, yields a large optical thickness and thus reduced
forward scattering. Furthermore, the optical thickness at an incident angle of 90◦ is
even larger than for a volume equivalent sphere. Consequently, the scattering prob-
ability in the forward direction of the oblate spheroid at this incident angle is lower
than that obtained for the sphere, as can be seen in Figure 6. This phenomenon is
further exemplified in Figure 7 (940 nm). However, the optical thickness is not the
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only parameter affecting the forward scattering. There seems to be a dominating
influence of the three-dimensional shape, observed when keeping the zenith incident
angle θi constant at 90◦ and instead changing the elongation. Despite the decrease
in optical thickness apparent to the incident light perpendicular to the symmetry
axis, a decrease in the forward scattering is observed in Figures 5 and 7 with more
pronounced elongation. The three-dimensional shape of the spheroid has apparently
a greater impact on the forward scattering for the prolate spheroid than the optical
thickness, which indicates the complex nature of the scattered light.

Neither the angular distributions of scattered light nor the scattering prob-
abilities (Figures 4-7) agree very well with the probability function of Henyey-
Greenstein [9], which is the most frequently used probability function, when model-
ing light propagation in tissue. The Henyey-Greenstein function exhibits a clearly
weaker forward scattering (θs = 1 − 15◦) and a larger side- and back scattering,
than any of the theoretical results obtained in this study. It has previously been
shown that the Henyey-Greenstein function describes the angular distribution of the
scattering from dense tissue (skin) [12] with a g-factor of 0.82 well, but this has not
been proven for whole blood with a substantially larger g-factor and is thus still an
open question. The discrepancy may also indicate an averaging of several scatter-
ing events being incorporated in the Henyey-Greenstein function, i.e. it embodies
multiple scattering rather than single scattering in view of electromagnetic theory.

All results from the far-field computations were obtained for both directions of
the polarization. The polarization was in general shown to have a minor or in-
significant influence on the distribution of scattered light, probably due to a relative
refractive index close to unity [1]. In contrast, the wavelength of the incident light
was shown to be a more important parameter. The distribution of scattered light
is determined by the size of the scattering object relative to the wavelength, rather
than the absolute value of the size. This can be seen in Table 1, which presents the
results of far-field computations performed at two different wavelengths, 632.8 nm
and 940 nm, i.e. two important wavelengths from an experimental point of view,
which enables comparisons to be undertaken between experimental results and the
theoretical calculations.

With these general observations in mind, it is interesting to model and analyze
the impact of two authentic phenomena on the scattering pattern, i.e. sphering and
elongation of blood. Sphering of an RBC volume equivalent oblate spheroid, results
in lower and broader forward scattering (Figures 4 and 6) at incident angles of θi = 0◦

and 45◦. This is in accordance with the previously mentioned general observations.
The g-factor is a convenient parameter to describe the angular distribution of the
scattering, when dealing with multiple scattering and it is therefore frequently used
and measured within tissue optics. Experimental results obtained in an earlier study
[26] revealed a small but distinct decrease in the g-factor of blood measured at 632.8
nm in combination with slow heating, when the disc shaped cells turned spherical
due to the increase in temperature. The slightly lower average value of the g-factor
for the sphere compared to the oblate spheroid (at both wavelengths), exhibited by
the theoretical results obtained in this study (Table 1), is thus in accordance with the
experimental results. However, the results presented here indicate that the g-factor
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is only slightly changed with sphering (Table 1), though the angular distributions
show major alterations. This indicates that a small change in a g-factor close to
unity, can still correspond to a significant change in the angular distribution of
the scattered light caused by cell shape transformations. Substantial information
concerning changes in cell shape is thus lost when analyzing the light scattering in
terms of the g-factor. The g-factor seems to be more influenced by changes and
differences in cell size [27, 32].

The results obtained from the T-matrix computations have shown that the in-
fluence of shape, elongation and orientation of RBCs on the transport of light in
blood in motion can be analyzed theoretically. According to Bitbol [4], the cells are
randomly oriented and oblate shaped at low shear stress. The random orientation
suggests that the average value of the g-factor for the three different incident angles
(0◦, 45◦ and 90◦), i.e. 0.993 for the wavelength 940 nm, should be used. At interme-
diate shear stress, the cells have been shown to align themselves side-on, with the
symmetry axis perpendicular to the flow direction. For many optical measurements
of flowing blood, the probe light often passes the sample perpendicular to the flow
direction, i.e. with an incident angle of approximately 90◦ from the symmetry axis of
the cell (0◦ from the major axis). From Table 1 it is clear that this alignment would
cause a decrease in the g-factor from 0.993 to 0.989 at 940 nm, i.e. a distribution of
scattered light less forwardly directed. At even higher shear stress the cells become
elongated, which according to Table 1 would again cause a slight decrease in the
g-factor at an incident angle of 90◦. Increasing the flow of blood would therefore
cause a decrease in the forward scattering. The computed decrease in g-factor with
increasing flow and shear stress corresponds well with experimental results obtained
by Tomita et al. [35], Bitbol [4] and Lindberg et al. [19] on flowing blood. Cell
orientation and elongation are therefore, together with the previous suggestion of
re-suspension of aggregated cells [19, 35], also possible explanations of the decrease
in light transmission and increase in reflection, with increasing shear rate.

When comparing experimental and theoretical results, we assume that the mea-
surements were performed on blood, where the cells can be regarded as independent
scatterers. The results of single scattering computations, based on for example
the T-matrix formalism or Lorentz-Mie theory, can only under this assumption be
valid when extrapolated to suspensions containing several scattering particles. This
assumption is reasonable for diluted blood, often used for optical measurements in
vitro. However, it has so far been unclear whether this approach can be employed to
describe light scattering from whole blood, with an inter-particle distance estimated
to approximately three times the RBC radius (center to center). By comparing the
far field originating from a single sphere, or spheroid on the one hand and from
bispheres, or clusters of spheroids on the other, Mishchenko et al. [23] and Vargas et
al. [37] have shown that for a center-to-center inter-particle distance of more than
four times the maximum radius, yields independent scattering, when the axial ratios
of the scattering objects are unity, or close to unity, and the size of the particles
is small. However, it is difficult to draw any firm conclusions concerning the light
scattering by highly asymmetric, large RBCs from their results. We have therefore
evaluated the near-field radius for light interaction with a single spheroid scatterer.
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In the following we have considered the radius at which the intensity of the near field
has decreased to 2.5 times that of the incident field. When the distance between the
cells is in this range, or larger, we have assumed that the scattering by each cell can
be considered as being independent. The results shown in Figures 8-12 and Table 2
suggest that the extension of the near field is strongly dependent on the shape of the
scattering spheroid, as well as on the size, relative to the wavelength. The smallest
near-field radius was 2.0 rcsc (13.0 µm for Prolate III) and the largest near-field ra-
dius, 24.5 rcsc, was obtained for the sphere evaluated at 632.8 nm, i.e. all spheroids
were surrounded by near fields with significant extensions. Moreover, incorporating
the absorption properties of the haemoglobin suspension inside the red blood cells
in our spheroidal model, seems to have only a minor effect on the extension of the
near field. It is thus clear that red blood cells in whole blood cannot be regarded
as independent scatterers, in contrast to those in diluted blood. This might partly
explain the larger impact, of the sphering on the g-factor found experimentally, on
whole blood [26], compared to the theoretical results obtained in this work assuming
independent scattering. It indicates that the concentration of RBCs must be con-
sidered when performing optical measurements on blood and that results obtained
from measurements on diluted blood cannot simply be extrapolated to the in vivo
case with whole blood.

6 Conclusions

A theoretical scattering model, taking the shape of the red blood cells into account,
should be employed to better understand physiological phenomena concerning the
shape of red blood cells from optical measurements. Only then can fundamental
haematological and morphological properties of RBCs be optically extracted with
sufficient accuracy. Applying the common Lorentz-Mie theory for blood in motion,
i.e. assuming spherical red blood cells, seems inappropriate in the light of the
results obtained in this study. The T-matrix method with extended precision was
employed here, revealing that both alignment of RBC volume equivalent spheroids,
sphering, and elongation have a significant influence on the angular distribution of
the scattered light. The shape of the particle surface facing the incident light seems
to have a large impact on the back scattered light, while the total, three-dimensional
shape and the optical thickness apparent to the incident light, appear to mainly
influence the forward scattering component. From these results it follows that the
flow of the blood and the measurement geometry must be taken into account when
analyzing optical measurements of blood.

The analysis of near fields surrounding the RBC volume equivalents, suggests
that an inter-particle distance (center to surface of neighboring spheroid) larger
than 3-24.5 times the maximum radius of the spheroid is required to be able to
consider the RBCs as independent scatterers. The extension of the near field was
shown to be dependent on the shape and size of the spheroid and wavelength used.
In all, this implies that results obtained from optical measurements performed on
diluted blood cannot simply be extrapolated to describe light scattering by whole
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blood.
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