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Optimal Linear Joint Source-Channel Coding
with Delay Constraint

Erik Johannesson, Anders Rantzer, Fellow, IEEE, Bo Bernhardsson, and Andrey Ghulchak

Abstract—The problem of joint source-channel cod-
ing is considered for a stationary remote (noisy) Gaus-
sian source and a Gaussian channel. The encoder and
decoder are assumed to be causal and their combined
operations are subject to a delay constraint. It is shown
that, under the mean-square error distortion metric, an
optimal encoder-decoder pair from the linear and time-
invariant (LTI) class can be found by minimization of
a convex functional and a spectral factorization. The
functional to be minimized is the sum of the well-
known cost in a corresponding Wiener filter problem
and a new term, which is induced by the channel
noise and whose coefficient is the inverse of the chan-
nel’s signal-to-noise ratio. This result is shown to also
hold in the case of vector-valued signals, assuming
parallel additive white Gaussian noise channels. It is
also shown that optimal LTI encoders and decoders
generally require infinite memory, which implies that
approximations are necessary. A numerical example
is provided, which compares the performance to the
lower bound provided by rate-distortion theory.

Index Terms—Analog transmission, causal coding,
delay constraint, joint source-channel coding, MSE dis-
tortion, remote source, signal-to-noise ratio (SNR).

I. INTRODUCTION

THE design of systems for point-to-point commu-

nication of analog data over noisy communication

channels has a theoretical basis in Shannon’s separation

theorem. The theorem gives a bound on the optimal

performance theoretically achievable (OPTA) by any
communication system. Specifically, it says that the

distortion can not be made smaller than Dmin, which
can be obtained from

R(Dmin) = C , (1)
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Fig. 1. The encoder measures the source sequence s plus the
measurement noise m and transmits t over the channel. The decoder
receives t plus the channel noise n and forms ŝ, the estimate of s.
Each source element has to be estimated after a given delay in order
to minimize the error e.

where R(D ) is the rate-distortion function, which is
given by the source statistics and the distortion mea-

sure, and C is the channel capacity. Under appropriate
assumptions, the separation theorem also shows that it

is possible to come arbitrarily close toDmin by the combi-
nation of source coding and channel coding. These codes

can, in principle, be independently developed without

loss. This means that the channel code designer does

not need to know anything about the source, and vice-

versa, which is clearly a practical advantage.

The separation theorem does, however, rely on asymp-

totic arguments where the delay and the size of the code-

book are allowed to increase indefinitely. Consequently,

it does not hold in presence of delay or complexity con-

straints and imposing such constraints generally ren-

ders the distortion bound unachievable. Since infinitely

large delays or codebooks are not possible in practice,

a suboptimal performance may have to be accepted.

Moreover, to minimize the distortion in the presence

of these constraints, it may be necessary to abandon

the separation-based design and consider joint source-

channel codes.

This is the subject of the present paper, where we

consider transmission of a stationary colored Gaussian

source over a power-constrained channel with additive

colored Gaussian noise, under the mean-square error

(MSE) distortion criterion. The encoder and decoder are
constrained to be causal and their combined operations

are subject to a delay constraint. Further, we allow for

the possibility of a remote (noisy) source. The situation
is illustrated in Fig. 1.

The encoder and decoder will be restricted to the class

of linear and time-invariant (LTI) filters. The linearity
assumption and the additive noise models allow us

to formulate the distortion minimization as a transfer

function optimization problem. The main result is that a
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jointly optimal encoder-decoder pair from the LTI class

can be found by first minimizing a functional of the form

qR − X q22 +
1

σ 2
qX Nq21 , (2)

where R ∈ L∞ and N ∈ H∞ are given transfer

functions and σ 2 is the signal-to-noise ratio (SNR), over
X ∈ H 2. The encoder and decoder are then obtained
from a spectral factorization. A corresponding result is

also shown to hold in the case with vector-valued signals

and parallel additive white Gaussian noise (AWGN)
channels.

The restriction to linear encoders and decoders may

obviously result in suboptimal solutions. Nevertheless,

the linear solution to any problem instance will provide

an upper bound to the minimum distortion possible for

the given SNR, delay constraint, and signal spectra.

Moreover, the proposed design methods are relatively

simple and computationally feasible.

An application where this problem formulation could

be relevant is the transmission of speech in mobile

communication. The source signal to be estimated at

the receiver is the speech signal. The delay constraint

is based on the acceptable latency and the noise is any

background sound present at the microphone.

The rest of this section will present the relevant

previous research and alternative interpretations of the

problem. Section II presents the mathematical notation

used in this paper. The exact problem formulation is

given in Section III. Section IV is devoted to the solution

of the problem, first in the scalar and then in the

vector case, followed by a theorem stating that optimal

LTI encoders and decoders require infinite memory.

Section V presents a procedure for numerical solution

and a numerical example where the performance of the

optimal LTI encoders and decoders is compared to the

lower bound provided by the separation theorem. Fi-

nally, Section VI presents the conclusions and discusses

further research. Some technical lemmas have been put

in the appendix.

A. Previous Research

The problem studied in this paper is closely related

to that of finding the optimal modulation matrices

for linear coding and decoding of a Gaussian vector

source for transmission over a Gaussian vector channel.

Optimal modulation matrices were derived in [2], where
it was also shown that linear modulation is only optimal

when the source and channel can be matched. That is,

when their dimensions match and the source and chan-

nel noise covariance matrices can be diagonalized into

uniform variances. The same problem was considered

in [3], where the solution was also given for the case
when the channel components have individual power

constraints. The performance of optimal linear coding

was compared, for a number of cases, to the OPTA, given

by (1), in [4].1
The general suboptimality of linear coding arises from

the fact that it cannot match any colored Gaussian

source to any colored Gaussian channel. It has re-

cently been shown, however, that such matching can be

achieved by the combination of prediction and modulo-

lattice operations [5].
The problem of coding with a remote source was

first considered for the Gaussian case with additive

noise and MSE distortion in [6]. It was shown that
the problem is asymptotically equivalent to, and can

thus be reduced to, the fully observed case and that an

optimal encoder generally has a structure consisting of

an optimal estimator followed by optimal encoding for a

noise-free source. This structural result was generalized

to the non-gaussian and finite time horizon cases in [7].
The problem was further studied in [8], where it was
noted that in the case of white source noise, the criterion

in the reduced problem is given by the conditional

expectation of the original criterion given the encoder

input. It was pointed out in [9] that the equivalence in
[6] actually was proved for the one-shot problem as well.
Moreover, it was shown that the reduction to the non-

remote problem follows from a general "disconnection

principle". In the literature, the problem of coding with

a remote source often includes the possibility of noise at

the receiver as well. The main motivation for excluding

that possibility here is the fact, noted in [7], that the
optimality of an encoder-decoder design is independent

of additive and independent zero-mean noise at the

receiver.
Coding problems with delay constraints have not

received the same level of attention as their classical

counterparts. Some structural results have, however,

been obtained. The optimal causal source coder for a

white source has been found to be memoryless [10]. For
a Markov source of order k and delay constraint d, an

optimal real-time source coder only needs to use the last

max{k,d + 1} source symbols plus the current state of
the decoder. No such memory bound is given, however,

when the encoder does not have access to the decoder

state [11]. Joint source-channel coding with noiseless
feedback was considered for finite alphabet sources in

[12] where it was demonstrated that feedback is useful
in general, but that coding is useless for a class of

channels with a certain symmetry property. The results

in [11], [12] have been generalized in [13], which also
gives a nice overview of the literature on real-time cod-

ing. Conditions have also been found for when optimal

performance can be achieved without coding (even when
allowing coding systems with arbitrary delay) [14].
Since the OPTA given by (1) cannot generally be
1In all of these three papers, one may view the source vectors as

vectors in a one-shot problem, where there is no dependence over
time, or as finite sequences. In the former interpretation, the solution
satisfies a zero-delay constraint, but this is not very interesting due to
the lack of dependence. In the latter interpretation, a delay constraint
would translate to requiring the matrices to be lower-triangular,
which is not done.
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achieved in the presence of delay constraints, a relevant

question to ask is of course what the OPTA is when

there are such constraints. A partial answer in the

form of upper bounds on the rate-distortion functions

for zero-delay and causal source coding is given in the

recent paper [15]. Interestingly, some of the results in
that paper are obtained by solving a problem which is

somewhat similar to the one considered in this paper.

The solution of that problem can be applied to solve

some particular instances of the problem considered in

this paper. The main difference is that they assume that

the encoder has access to noiseless feedback from the

channel output. Moreover, only the scalar case with zero

delay constraint and no noise at the source is consid-

ered. The same problem has previously been considered

in [16], [17] as a means to design optimal scalar feedback
quantization schemes.

Real-time source coding for a remote source has

been considered in [18]. The structural results of [11],
[12] were extended to cover remote sources in [19],
which also presented a separation result for the linear-

quadratic Gaussian case similar to the one in [6]. A
method for design of optimal real-time coding systems

for noisy channels was presented in [20] using noisy
feedback and in [21] without feedback. However, there
seems to be no method for efficient numerical applica-

tion of the solution.

B. Alternative Interpretations

It is possible to make two alternative interpretations

of the problem illustrated in Fig. 1.

1) Connection to Wiener Filter: The problem of esti-

mating a signal that is measured with additive noise

under an MSE criterion is solved by the Wiener fil-

ter [22]. The filter is usually obtained by solving the
Wiener-Hopf equations, but can also be expressed in the

frequency domain as the stable filter K that minimizes
∥∥(z−d − K )S

∥∥2
2
+ qKMq22 , (3)

where d is the allowed time delay and S and M are

transfer functions that represent the frequency charac-

teristics of the signal of interest and the measurement

noise, respectively.

It is possible to interpret the problem in Fig. 1 as a

distributed Wiener filtering problem, where the filter

is separated into two different locations. The commu-

nication channel is used to model the communication

constraint between the two locations. This interpreta-

tion is strengthened by the fact that minimization of

(3) is equivalent to minimizing

qR − X q22 , (4)

where R is the same transfer function as in (2), over
X ∈ H 2. Comparing (4) with (2) it is seen that the
cost in the present problem is equal to the cost in

a Wiener filtering problem plus an additional term,

which is induced by the communication channel. Since

the coefficient of the new term is the inverse of the

channel’s SNR, the cost is asymptotically equal to that

in the Wiener filtering problem when the SNR tends to

infinity.

2) As a Feed-Forward Control Problem: Fig. 1 may

be interpreted as follows: The source signal is a distur-

bance that will affect some system where a controller

(the decoder) can compensate. The controller has a
remote sensor that measures the disturbance and trans-

mits information to the controller over the channel. In

this interpretation the delay block may also include any

dynamics that the disturbance passes through on the

way. A similar interpretation was discussed in [9].
A similar problem setup was studied in [23], where

information theory was used to find a lower bound on

the reduction of entropy rate made possible by side

information communicated through a general channel

with known capacity. Under stationarity assumptions,

this was used to derive a lower bound, which is a gen-

eralization of Bode’s integral equation, on a sensitivity-

like function.

II. NOTATION

The techniques in this paper rely on concepts from

functional analysis, such as Lp (Lebesgue), H p (Hardy)
and N + (Smirnov) function classes and inner-outer
factorizations. To conserve space, only some of the most

important facts will be given here. The interested reader

is referred either to [1] or to [24], [25] and [26] for the
remaining relevant definitions and theorems.

The natural logarithm is denoted log. The complex

unit circle is denoted by T. The singular value decom-

position of A is taken as A = UΣV ∗, where Σ is square.
A singular value decomposition of a transfer matrix

X ∈ Lp is defined pointwise on T as

X (eiω ) = U (eiω )Σ(eiω )V ∗(eiω ),

where U ,V ∈ L∞ and Σ ∈ Lp.
For matrix-valued functions X (z),Y(z) defined on T,

define

〈X ,Y〉 =
∫ π

−π

tr
(
X (eiω )∗Y(eiω )

) dω
2π

and the norms

qX q1 =
∫ π

−π

√
X (eiω )∗X (eiω ) dω

2π

qX q2 =
(∫ π

−π

∥∥X (eiω )
∥∥2
F

dω

2π

)1/2
,

where q⋅qF is the Frobenius norm.
When a function in H p is evaluated on T, it is to

be understood as the radial limit limr→1+ X (rz). The
arguments of transfer matrices will often be omitted

when they are clear from the context. Equalities and

inequalities involving functions evaluated on T are to

be interpreted as holding almost everywhere on T.
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Fig. 2. A representation of the problem in the frequency domain. The
transfer functions S,M and N are spectral factors of the source, mea-
surement noise and channel noise, respectively. The delay constraint
is determined by P. The encoder and decoder filters are given by C
and D. W is an optional frequency weight.

III. PROBLEM FORMULATION

Consider the system in Fig. 1. The source s, source

noise m and channel noise n are assumed to be mutually

independent, stationary Gaussian2 sequences with zero

mean and known covariance functions. The communica-

tion channel has additive noise and a power constraint.

That is,

r = t+ n (5)
E(t(k)2) ≤ σ 2. (6)

Denote the encoder mapping by γ (⋅) and the decoder
mapping by δ (⋅). The encoder and decoder are assumed
to be causal LTI filters with inputs s + m and r,

respectively. The estimate of the source sequence is

ŝ = δ (t+ n) = δ (γ (s+m) + n). (7)

Denoting the delay, in number of samples, by d, the

reconstruction error is

e(k) = s(k− d) − ŝ(k). (8)

The objective is to choose the encoder and decoder to

minimize the stationary value of the MSE, or E(e(k)2),
subject to the power constraint.

Due to the linearity assumption, the problem can be

formulated in the frequency domain, as is illustrated

in Fig. 2. In this formulation, all the inputs are mu-

tually independent, zero mean, white noise sequences

with unit variance. The transfer functions S(z),M(z)
and N(z) are spectral factors of the sequences s,m
and n, respectively. The encoder and the decoder are

represented by the transfer functions C(z) and D(z). In
this formulation, the problem has been generalized in

two aspects:

• The delay is replaced by a general LTI filter P. That

is, the objective is to estimate the source signal after

it has passed through P.

• The error e is passed through a LTI filter W ,

representing a frequency weighting function, before

minimization.

2Since only linear solutions are considered, it does not matter if the
source, measurement noise or the channel noise are Gaussian or not.
Linear solutions may, of course, be more or less suboptimal depending
on the distributions.

It is assumed that S,M ,N, P,W ∈ H∞, that N,W
are invertible in H∞ and that

∃ε > 0 such that SS∗ +MM∗ ≥ ε on T, (9)

which implies that S and M have no common zeros on

the unit circle (an equivalent condition if S(z) and M(z)
are rational functions).
The objective is to choose C and D to minimize

the stationary variance of e after filtering by W . By

expressing the z-transform of e in terms of the transfer

functions in Fig. 2, this quantity can be expressed as

J(C, D) = qW(P− DC)Sq22 + qWDCMq
2
2 + qWDNq22 .

(10)
Similarly, the power constraint on t can be written as

qCSq22 + qCMq22 ≤ σ 2. (11)

It follows from (10) and (11) that C and D need to be
square integrable on the unit circle in order for J(C, D)
to be finite and the power constraint to be satisfied.

Since the encoder and decoder also should be causal

and stable this implies that the optimization should be

performed over C, D ∈ H 2.

IV. OPTIMAL LINEAR ENCODER AND DECODER

The problem of finding an optimal linear encoder

and decoder will first be solved in the scalar case. The

solution will then, under some additional assumptions,

be generalized to the vector case.

A. Scalar case

The objective function J(C, D) is clearly not convex
in the pair (C, D) due to the appearance of the product
DC. In order to find a minimum, the optimization

problem will be solved in two steps.

The idea is to first consider the product DC as

given and then to find an optimal factorization of this

product. The factorization gives an analytical expression

for the cost in terms of the product, which means that

optimization of the objective may then be performed

over the product. When an optimal product is found,

the optimality conditions from the solution to the fac-

torization problem can then be applied to find optimal

C and D.

First, however, it will be shown that the power con-

straint (11) can be equivalently written as

qCHq22 ≤ σ 2, (12)

where the function H has some nice properties.

Lemma 1: Suppose that S,M ∈ H∞ and that (9)
holds. Then there exists H ∈ H∞ with H−1 ∈ H∞ such
that

HH∗ = SS∗ + MM∗ on T. (13)

Proof: By (9) and the factorization theorem in [27]
there exists an outer function H ∈ H 2 such that (13)
holds. Since S,M ∈ H∞ it follows that H ∈ H∞.
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Moreover, it follows from (9) that
∥∥H−1

∥∥
∞ ≤ 1/

√
ε and

since H is outer it then follows from Lemma 4 (in the
appendix) that H−1 ∈ H∞.
Now, introduce K = DC ∈ H 1. The objective (10) can

then be written as

qW(P− K )Sq22 + qWKMq22 + qWDNq22 . (14)

Note that the first two terms are constant for fixed K .

The minimum over C and D, given K , is thus obtained

by minimizing the third term in (14) subject to (12)
and K = DC. This minimization problem is called the
optimal factorization problem.

The interpretation is that for any given product of the

encoder and decoder, the contribution to the objective

of the signals that pass through both the encoder and

the decoder is not affected by the choice of the factors C

and D — only their product matters. The channel noise,

however, only passes through the decoder, which means

that D (and implicitly C since C = D−1K ) should be
chosen to minimize the impact of the channel noise on

the objective. The solution to the scalar version of the

optimal factorization problem is given by the following

lemma.

Lemma 2 (Optimal factorization, scalar case):

Suppose that σ > 0, K ∈ H 1 and that H,N,W ∈ H∞
are invertible in H∞. Then the optimization problem

minimize
C,D∈H 2

qWDNq22 (15)

subject to

K = DC, qCHq22 ≤ σ 2 (16)

attains the minimum value

1

σ 2
qWKHNq21 . (17)

Moreover, if K is not identically zero then C, D ∈ H 2
are optimal if and only if DC = K and

pCp2 = σ 2

qWKHNq1

∣∣∣∣
WKN

H

∣∣∣∣ on T. (18)

If K = 0, then the minimum is achieved by D = 0 and
any function C ∈ H 2 that satisfies qCHq22 ≤ σ 2.

Proof: If K = 0 the proof is trivial, so assume
that K is not identically zero. Then C is not identically

zero and D = KC−1. Then (16) and Cauchy-Schwarz’s
inequality gives

qWDNq22 =
∥∥WKC−1N

∥∥2
2
≥ qCHq22

σ 2

∥∥WKC−1N
∥∥2
2

≥ 1

σ 2
〈
pCHp ,

∣∣WKC−1N
∣∣〉2 = 1

σ 2
qWKHNq21

This shows that (17) is a lower bound on the value.
Equality holds if and only if pWKC−1Np and pCHp are
proportional on T and qCHq22 = σ 2. It is easily verified
that this is equivalent to (18). Thus, C and D achieve
the lower bound if and only if D = KC−1 and (18) holds.
It remains to show existence of such C, D ∈ H 2. Note

that WKNH−1 ∈ H 1 is not identically zero. Hence, by

Theorem 17.17 in [25], log pWKNH−1p ∈ L1. It follows
from the factorization theorem in [27] that there exists
an outer C ∈ H 2 that satisfies (18). Thus
∥∥KC−1

∥∥2
2
= 1

σ 2
qWKHNq1

∥∥W−1KHN−1
∥∥
1
< ∞,

so D = KC−1 ∈ L2. Since K ∈ H 1 and C ∈ H 2 is
outer it follows from Lemma 4 (in the appendix) that
D = KC−1 ∈ H 2.
Remark 1: Optimal D satisfy

pDp2 = qWKHNq1
σ 2

∣∣∣∣
KH

WN

∣∣∣∣ on T. (19)

Apparently, the magnitudes of C and D are both pro-

portional to the square root of the magnitude of K .

This provides some intuition to why the minimum value

depends on the 1-norm of K .

Remark 2: The existence part of Lemma 2 shows that

a particular solution, where C is outer, can be obtained.

By using the freedom available in spectral factorization,

it is possible to obtain other solutions, for example

by changing the sign of both C and D, or by instead

choosing D to be outer. More generally, in the rational

case, any non-minimum phase zeros or time delays could

be located in C or D.

For any given K an optimal encoder-decoder pair,

under the constraint that their product is K , is specified

by (18) and (19), respectively. An optimal K can in
turn be obtained by inserting the minimum value of

qWDNq22 into (14) and minimizing

ϕ(K ) = qW(P− K )Sq22 + qWKMq
2
2

+ 1

σ 2

∥∥WK
[
S M

]
N
∥∥2
1

over K . This is a convex problem. That this procedure in

fact solves the main problem is shown by the following

theorem, which is the main result of this paper.

Theorem 1: Suppose that M ,N,S, P,W ∈ H∞, where
N and W are invertible in H∞, that σ > 0 and that (9)
holds. Then the optimization problem

minimize
C,D∈H 2

J(C, D) (20)

subject to

qCSq22 + qCMq
2
2 ≤ σ 2 (21)

attains a minimum value that is equal to the minimum

of the convex optimization problem

minimize
K∈H 2

ϕ(K ), (22)

which is attained by a unique minimizer.

Moreover, suppose K ∈ H 2 is a solution to (22). If K
is not identically zero, then C and D solve (20) subject
to (21) if and only if C ∈ H 2, D = KC−1 ∈ H 2 and

pCp2 = σ 2∥∥WKN
[
S M

]∥∥
1

pWKNp√
pSp2 + pM p2

on T. (23)

If K = 0, then the solution to (20) and (21) is given by
D = 0 and any function C ∈ H 2 that satisfies (21).
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Proof: Define H ∈ H∞ according to Lemma 1. Then
(21) is equivalent to qCHq22 ≤ σ 2. Define the sets

Θ =
{
(C, D) : C, D ∈ H 2, qCHq22 ≤ σ 2

}

Θ(K ) = {(C, D) : (C, D) ∈ Θ, K = DC} .

Then the infimum of J(C, D) subject to (21) can be
written

inf
C,D∈Θ

J(C, D)

= inf
K∈H 1

inf
C,D∈Θ(K )

J(C, D)

= inf
K∈H 1

(
qW(P − K )Sq22 +qWKMq

2
2 + inf
C,D∈Θ(K )

qWDNq22
)

= inf
K∈H 1

qW(P− K )Sq22 + qWKMq
2
2 +

1

σ 2
qWKHNq21

= inf
K∈H 1

ϕ(K ) (24)

The first equality is true by Theorem 17.10 in [25].
The second equality follows because the first two terms

in infC,D∈Θ(K ) J(C, D) are constant. The third equality
follows from application of Lemma 2 to perform the

inner minimization. The final equality follows from (13).
It will now be shown that the minimum is attained in

(24) by a unique K ∈ H 2. Completion of squares gives
that

ϕ(K ) = qW(P− K )Sq22 + qWKMq
2
2 +

1

σ 2
qWKHNq21

= qWPSq22 + qWKHq
2
2

− 2Re〈WPSS∗,WKHH−1〉 + 1

σ 2
qWKHNq21

= qWPSS∗H−∗ −WKHq22 +
1

σ 2
qWKHNq21 +η,

where η is a constant that does not depend on K . Let
X = WKH and R = WPSS∗H−∗ ∈ L∞. Minimizing
ϕ(K ) over K ∈ H 1 is then equivalent to minimizing

ψ (X ) = qR − X q22 +
1

σ 2
qX Nq21 (25)

over X ∈ H 1. In the latter problem, it is sufficient to
consider X such that ψ (X ) ≤ ψ (0) = qRq22. That is,
only X satisfying

qX q2 = qR − X − Rq2 ≤ qR − X q2 + qRq2
≤
√

ψ (X ) + qRq2 ≤ 2 qRq2
def= r.

Now, in the weak topology, ψ (X ) is lower semicontinu-
ous on L2 and the set {X : qX q2 ≤ r} is compact. This
proves the existence of a minimum. The minimum is

unique since ψ (X ) is strictly convex. Moreover, since
qX q2 ≤ r, it is sufficient to minimize over X ∈ H 2
instead of H 1.
Suppose now that X ∈ H 2 minimizes ψ (X ). From
H−1,W−1 ∈ H∞ it follows that K = W−1X H−1 ∈ H 2
attains the infimum value in (24) and that this value
is equal to the minimum of (22). Since the minimum
is attained in (24) and, by Lemma 2, there exists

(C, D) ∈ Θ such that J(C, D) = ϕ(K ), it follows that
the minimum of (20) subject to (21) is attained.
The optimality condition (23) follows from the appli-

cation of Lemma 2, using that pHp =
√
pSp2 + pM p2.

Remark 3: ϕ(K ) is convex, and ϕ(K ) = ϕ(K ). Thus,

ϕ

(
K + K
2

)
≤ 1
2

(
ϕ(K ) +ϕ(K )

)
= ϕ(K ).

Since the optimal K is unique, this shows that the

minimizing K satisfies K (e−iω ) = K (eiω ). Thus, C can
be chosen to have this property as well, meaning that

C can be approximated by a rational function with real

coefficients. The same holds for D.

Remark 4: It was noted in Remark 2 that the optimal

factorization problem can have multiple solutions. To

clarify, the optimal K is unique but there are multiple

factorizations of K into C and D that achieve the

minimum value of J(C, D).
It is noted that the solution of the problem essentially

amounts to minimizing the sum of a 2-norm and a 1-

norm of the decision variable. The 2-norm represents

the cost in the Wiener filter problem, and the 1-norm

represents the contribution of the channel noise to the

error variance. The SNR σ 2 determines the relative im-
portance of the two terms. For small SNR, the optimal

K will have small magnitude since the channel noise

dominates the transmitted signal. As the SNR becomes

larger, the magnitude of K will become larger, and it

will approach the Wiener filter in the limit when the

SNR goes to infinity.

B. Vector case

In this section, the results in the previous section will

be generalized to the case of vector-valued signals.

Consider again the system in Figure 2 and assume

that all signals are vector-valued and all systems are

given by their corresponding transfer matrices. The

number of elements in signal s is denoted ns and so

forth. That is, s(k) ∈ R
ns Matrix dimensions are not

explicitly stated in this section except when necessary.

It is generally assumed that all matrices are of appro-

priate size. In addition to all the assumptions made in

the scalar case, it is now also assumed that:

1) The communication channel consists of nt paral-
lel AWGN channels. The power constraint (6) is
replaced by the total power constraint

E(t(k)T t(k)) ≤ σ 2.

2) All input signals in Fig. 2 have identity covariance
matrices. Moreover, N(z) = W(z) = I. That is,
the channel noise is white with identity covariance

and the frequency weight is uniform.

3) The number of elements in the signals satisfy
nt ≥ min{ns,ne}, (26)

where C is nt$ns and D is ne$nt. If the number
of channels nt would be smaller than n f and ne,
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then the product DC could not have full rank. This

means that optimization over K = DC would have
to include a rank constraint, which is very difficult

to handle even in the static case.

4) The inequality (9) is replaced by the matrix ver-
sion

∃ε > 0 such that FF∗ + GG∗ 4 ε I on T. (27)
The objective is thus to minimize

Jv(C, D) = q(P− DC)Sq22 + qDCMq
2
2 + qDq22

subject to

qCSq22 + qCMq22 ≤ σ 2 (28)
The objective and the constraint are thus quite similar

to the ones in the scalar case. It will be seen that the

equivalent convex problem looks the same but that the

optimality condition will, however, be more complicated.

The main difference between the scalar and vector

versions of the problem is that the optimal factorization

(Lemma 2) is much more difficult to prove in the vector
case.

Lemma 3 (Optimal factorization, vector case):

Suppose that σ > 0, K ∈ H 1, that H ∈ H∞ is
invertible in H∞ and that (26) holds. Then the
optimization problem

minimize
C,D∈H 2

qDq22

subject to

K = DC, qCHq22 ≤ σ 2

attains the minimum value 1
σ 2
qKHq21.

Moreover, suppose that K is not identically zero

and let K = KiKo be an inner-outer factorization and
KoH = UoΣV ∗ be a singular value decomposition. Then

C, D ∈ H 2 are optimal if and only if
K = DC, qCHq22 = σ 2, (29)

DD∗ = qKHq1
σ 2

KiUoΣU
∗
o K

∗
i . (30)

If K = 0 then the minimum is achieved by D = 0 and
any function C ∈ H 2 that satisfies qCHq22 ≤ σ 2.

Proof: If K = 0 the proof is trivial, so assume that
K is not identically zero. Then neither C nor D are

identically zero and α = qCHq2 > 0. Now, suppose that
C, D are feasible and that α < σ . Then

Cα =
σ

α
C, Dα =

α

σ
D

are feasible and qDα q2 < qDq2. Hence, a necessary
condition for optimality is that qCHq22 = σ 2.
The remainder of this proof is divided into three

parts. First, the dual problem is considered. Then, it

is shown that there is a saddle point and the optimality

criteria are derived. Finally, existence of the solution is

proven by construction.

DUAL PROBLEM: In order to avoid dealing with analyticity

constraints associated with H 2, the search will tem-
porarily be relaxed to C, D ∈ L2. Later, it will be shown

that there are C, D ∈ H 2 that satisfy the derived opti-
mality criteria. For λ ≥ 0 and matrix-valued Φ ∈ L∞,
introduce the Lagrangian

L(C, D,λ ,Φ) = qDq22 + λ
(
qCHq22 −σ 2

)

− 〈ReΦ, Re DC − K 〉 − 〈ImΦ, Im DC − K 〉
= qDq22 + λ

(
qCHq22 −σ 2

)
− Re〈Φ, DC − K 〉

=
∫ π

−π

qDq2F + λ qCHq2F − Re tr (Φ∗(DC − K ))dω
2π

− λσ 2

(31)
The integrand in (31) can be rewritten as
qDq2F + λ qCHq2F − Re tr (CΦ∗D − Φ∗K )

=
∥∥∥∥D −

1

2
ΦC∗

∥∥∥∥
2

F

+ λ qCHq2F −
1

4
qCΦ∗q2F + Re tr (Φ∗K )

=
∥∥∥∥D −

1

2
ΦC∗

∥∥∥∥
2

F

+tr
[
C

(
λHH∗ − 1

4
Φ∗Φ

)
C∗+ ReΦ∗K

]

(32)
Only the first term depends on D. The contribution of

this term is minimized by

D = 1
2

ΦC∗. (33)

If (33) holds, then L only depends on C through the
first term inside the brackets in (32). Pointwise mini-
mization of that term gives

inf
C∈L2

tr

[
C

(
λHH∗ − 1

4
Φ∗Φ

)
C∗

]

=
{
0, 4λHH∗ ≥ Φ∗Φ on T

−∞, otherwise.
Moreover, the remaining term in (32) can be written

tr (Φ∗K ) = tr (Φ∗DC) = 1
2
tr (CΦ∗ΦC∗) = 1

2
qΦC∗q2F .

Thus, tr (Φ∗K ) is real and non-negative, and

inf
C,D∈L2

L =
{∫ π

−π tr (Φ∗K ) dω
2π − λσ 2, 4λHH∗≥Φ∗Φ on T

−∞, otherwise.

Introduce

Ψ = 1

2
√

λ
ΦH−∗.

Then the dual problem can be written as

maximize
λ≥0,Ψ∈L∞

2
√

λ

∫ π

−π

tr (Ψ∗KH) dω
2π

− λσ 2

subject to

Ψ∗Ψ ≤ I on T. (34)
The dual function is concave in λ . Letting λ = 0 gives

the value 0. Since tr (Ψ∗KH) ≥ 0 there exists λ > 0
that gives a positive value, so the optimal λ is given by
the first-order condition

(
1

σ 2

∫ π

−π

tr (Ψ∗KH) dω
2π

)2
= λ ,



8

obtained by differentiation with respect to λ . With this
λ the dual problem simplifies to

maximize
Ψ∈L∞

1

σ 2

(∫ π

−π

tr (Ψ∗KH) dω
2π

)2
(35)

subject to (34).
The integrand in (35) will now be maximized point-

wise. Recall that KH = KiKoH = KiUoΣV ∗ and denote

the number of rows of Ko by m. Then Σ is diagonal with

diagonal elements σ k, k = 1 . . .m. Since K is ne $ ns the
rank of K is not greater than min{ne,ns} and thus

m ≤ min{ne,n f }. (36)
Ko is row outer by definition and H is outer by

Corollary 4.7 in [24]. It follows that KoH is row outer
and thus has full row rank. It follows that the singular

values are positive: σ k > 0, k = 1 . . .m. Since KoH is
wide (it has ns ≥ m columns) it follows that Uo is square
and thus unitary.

Define U = KiUo and Ψ̃ = U ∗ΨV . Then it follows

from (34) and UU ∗ ≤ I that

Ψ̃∗Ψ̃ = V ∗Ψ∗UU ∗ΨV ≤ V ∗Ψ∗ΨV ≤ V ∗V = I.
Using Ψ̃, an upper bound can be obtained for the

integrand in (35):
sup

Ψ∗Ψ≤I
tr (Ψ∗KH) = sup

Ψ∗Ψ≤I
tr (Ψ∗UΣV ∗)

= sup
Ψ∗Ψ≤I

tr (V ∗Ψ∗UΣ)

≤ sup
Ψ̃∗Ψ̃≤I

tr
(

Ψ̃∗Σ
)

=
m∑

k=1
sup
pΨ̃kkp≤1

σ kΨ̃kk =
m∑

k=1
σ k

The supremum is achieved if and only if Ψ̃ = I.

Therefore, the upper bound is achieved by Ψ if and only
if U ∗ΨV = I and Ψ∗Ψ ≤ I. The set of Ψ satisfying

these conditions can be parametrized as:

Ψ = UV ∗ + Ψ0 = KiUoV ∗ +Ψ0 (37)
I ≥ Ψ∗Ψ, (38)

where Ψ0 satisfies

0 = U ∗Ψ0V = U ∗
o K

∗
i Ψ0V . (39)

Pre-multiplying (39) with Uo gives the equivalent con-
dition

K ∗
i Ψ0V = 0. (40)

Choosing, for example, Ψ0 = 0 gives Ψ = UV ∗, which

attains the upper bound. Hence, the value of the dual

problem is

max
Ψ∗Ψ≤I

1

σ 2

(∫ π

−π

tr (Ψ∗KH) dω
2π

)2

= 1

σ 2

(∫ π

−π

tr (VU ∗UΣV ∗) dω
2π

)2
= 1

σ 2
qKHq21 .

The maximizing dual variables are given by

Φ = 2
√

λ ΨH∗ = 2
√

λ(KiUoV ∗ + Ψ0)H∗ (41)
where Ψ0 is such that (37), (38) and (40) hold, and

λ =
(
1

σ 2
qKHq1

)2
. (42)

SADDLE POINT: It will now be shown that there is a saddle

point, which implies that the duality gap is zero.

In the following, assume that (37), (38), (40), (41) and
(42) hold. Then λ and Φ are dual feasible. The point
(C, D,λ ,Φ) is a saddle point if and only if C, D ∈ H 2
are primal feasible,

λ
(
qCHq22 −σ 2

)
= 0 (43)

and

L(C, D,λ ,Φ) = inf
Ĉ,D̂∈H 2

L(Ĉ, D̂,λ ,Φ). (44)

The saddle point conditions imply that qCHq2 = σ since
λ > 0 and that D = 1

2
ΦC∗ as it was seen earlier that

this follows from minimization of the Lagrangian.

Suppose that the saddle point conditions hold. Then

C, D satisfy K = DC and D = 1
2

ΦC∗. Moreover,

DD∗ = 1
2
DCΦ∗ = 1

2
KΦ∗ =

√
λKiKoH(VU ∗

o K
∗
i + Ψ∗

0)

=
√

λ(KiUoΣU ∗
o K

∗
i + KiUoΣV ∗Ψ∗

0).
Clearly, DD∗ and KiUoΣU ∗

o K
∗
i are Hermitian. Accord-

ingly,

A = KiUoΣV ∗Ψ∗
0

must be Hermitian. Now, by (40),
AKi = KiUoΣV ∗Ψ∗

0Ki = 0
[ 0 = AKi = A∗Ki = Ψ0VΣU ∗

o K
∗
i Ki = Ψ0VΣU ∗

o .

Hence, A = 0 and

DD∗ =
√

λKiUoΣU
∗
o K

∗
i =

qKHq1
σ 2

KiUoΣU
∗
o K

∗
i . (45)

Suppose instead that C, D ∈ H 2 satisfy K = DC,
qCHq2 = σ and (45). Then C, D are primal feasible
and (43) is satisfied. Moreover,

L(C, D,λ ,Φ) = qDq22 =
√

λ

∫ π

−π

tr (KiUoΣU ∗
o K

∗
i )
dω

2π

=
√

λ

∫ π

−π

tr (Σ) dω
2π

= 1

σ 2
qKHq21 ,

so (44) holds and thus the saddle point conditions are
satisfied. Since these assumptions and the saddle point

conditions imply each other, they are equivalent.

To conclude, it has been shown that (C, D,λ ,Φ) is a
saddle point, which implies that C, D ∈ H 2 achieve the
claimed minimum, if and only if K = DC, qCHq22 = σ 2

and (45) holds.
EXISTENCE OF SOLUTION: Define B =

√
λUoΣU ∗

o ∈ L1,
which is Hermitian with real diagonal. Recall that KoH
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is row outer with singular values σ k > 0, k = 1 . . .m.
From this and Lemma 5 it follows that logσ k ∈ L1.
Since Uo is unitary it also follows that B is positive

definite. Moreover,

log det B = m
2
log λ +

m∑

k=1
logσ k ∈ L1

Therefore, according to the theorem in [27], there is an
outer transfer matrix Do ∈ H 2 such that B = DoD∗

o .

Let D̃ = KiDo ∈ H 2 and C̃ = D−1o Ko. Then

C̃ = D−1o KoHH−1 = D−1o UoΣV ∗H−1

= D−1o UoΣU ∗
oUoV

∗H−1 = 1√
λ
D∗
oUoV

∗H−1 ∈ L2

Since Do is outer it follows from Lemma 4 that C̃ ∈ H 2.
It can now be verified that C̃ and D̃ satisfy the

optimality conditions:

D̃C̃ = KiDoD−1o Ko = KiKo = K ,

∥∥∥C̃H
∥∥∥
2

2
=
∥∥D−1o KoH

∥∥2
2
=
∫ π

−π

tr
(
H∗K ∗

oD
−∗
o D

−1
o KoH

) dω
2π

=
∫ π

−π

tr
(
VΣU ∗

o B
−1UoΣV ∗

) dω
2π

= 1√
λ

∫ π

−π

tr (Σ) dω
2π

= σ 2

and

D̃ D̃∗ = KiDoD∗
oK

∗
i =

√
λKiUoΣU

∗
o K

∗
i .

If the rank of K does not equal nt, then C̃ and D̃ are

not of the required dimensions. C̃ is m $ ns and D̃ is
ne$m, where, by (26) and (36), m ≤ min{ne,n f} ≤ nt.
It is required that C is nt$ns and that D is ne$nt. To
solve this problem, let

D =
[
D̃ 0ne$nt−m

]
∈ H 2, C =

[
C̃

0nt−m$ns

]
∈ H 2.

Noting that DC = D̃C̃ = K , that qCHq2 =
∥∥∥C̃H

∥∥∥
2
and

that DD∗ = D̃ D̃∗ it is finally concluded that C, D are

optimal.

Just as in the scalar case, the solution to the optimal

factorization problem can be used to find an equivalent

convex problem. This problem looks exactly the same

both cases. The theorem for the vector case is now

stated.

Theorem 2: Suppose that σ > 0, S,M , P ∈ H∞ and
that (26) and (27) hold. Then the optimization problem

minimize
C,D∈H 2

J(C, D) (46)

subject to

qCSq22 + qCMq22 ≤ σ 2 (47)

attains a minimum value that is equal to the minimum

of the convex optimization problem

minimize
K∈H 2

q(P − K )Sq22 + qKMq22 +
1

σ 2

∥∥K
[
S M

]∥∥2
1
,

(48)
which is attained by a unique minimizer.

Moreover, suppose K ∈ H 2 is a solution to (48). If K
is not identically zero, then C, D ∈ H 2 solve (46) subject
to (47) if and only if

K = DC,
∥∥C
[
S M

]∥∥2
2
= σ 2,

DD∗ =
∥∥K

[
S M

]∥∥
1

σ 2
KiUoΣU

∗
o K

∗
i ,

where Ki is defined by an inner-outer factorization

K = KiKo and Uo and Σ are given by a singular value
decomposition KoH = UoΣV ∗, where H ∈ H∞ satisfies
H−1 ∈ H∞ and HH∗ = SS∗ + MM∗.
If K = 0, then the solution to (46) and (47) is given

by D = 0 and any function C ∈ H 2 that satisfies (47).
Proof: With the assumption (27), Lemma 1 holds in

the matrix case as well. The rest of the proof is identical

to the proof of Theorem 1, except that Lemma 3 is used

instead of Lemma 2, with the obvious implications for

the optimality conditions.
Remark 5: The assumption (26) may deserve some

explanation. If there are too few communication chan-

nels relative to the dimensionality of s and e, the

maximum rank of the product DC may be smaller than

the smallest dimension of K . Then not all K would

be realizable as a product of D and C, and a rank

condition would have to be imposed on K in Theorem 2.

In principle, this changes nothing, but the assumption

is included in order to avoid formulating the solution

in terms of an optimization problems that cannot be

reliably solved.

C. Optimal LTI Filters Require Infinite Memory

The structure of optimal linear encoders and decoders

will now be studied. In particular, it will be shown that

the optimal filters generally have non-rational transfer

functions. This corresponds to systems with infinite

memory, since it is generally impossible to find a fi-

nite dimensional state-space realization of such transfer

functions.

We consider the scalar case with white channel noise

and rational S,M , P and W . This implies that N(z) = 1
and that R = WPSS∗H−∗ is rational, where H satisfies

(13). Since S,M , P and W are proper, it can safely be
assumed that R is proper. If R is not proper then it can

be made proper by multiplying H with z−k, for a large
enough k.

If we define

ψ (X ) = qR − X q22 +
1

σ 2
qX q21 , (49)

the solution is given by solving the problem

minimize
X∈H 2

ψ (X ). (50)
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Recall that the minimum of (50) is attained and that
it is a strictly convex problem. It will now be shown

that a necessary condition for the minimum cannot be

satisfied by a rational X except in some special cases.

To begin with, two simple observations are made:

1) If the solution X to (50) is a rational function
it can be factorized into inner-outer factors as

X = FXo. The outer factor Xo is then a rational
function that solves the optimization problem

minimize
Xo∈H 2

qF∗R − Xoq22 +
1

σ 2
qXoq21 (51)

where F∗R is a rational function. Thus, we can

assume without loss of generality that the optimal

solution X is outer.

2) Due to the orthogonality
qR − X q22 = qR−q2 + qR+ − X q22 , (52)

where R = R+ + R− is a decomposition of R into
the analytical and anti-analytical parts, respec-

tively, we can also assume that R is analytical

since the anti-analytical part does not affect the

optimization. That is, R = R+.
Another assumption we make to simplify the proof is

that the function R has only simple poles. Note that

the poles of P+(F∗R) are the same as of P+R, so the
simplicity of the poles remains true through the two

rewritings above.

Theorem 3: Consider the problem (50) with a proper
non-constant rational function R ∈ H 2 and assume that
the poles of R are simple and that the optimal solution

X is not identically zero. Then X is not a rational

function.

Proof: We split the proof into several steps to un-

derline the structure.

STEP 1: Calculate the first variation of the functional ψ
and state the Euler-Lagrange equation. The standard

differentiation of ψ (X + ǫh) with respect to ǫ and then
setting ǫ = 0 gives

δψ (h) = 2Re
∫ π

−π

(qX q1
σ 2

X

pX p − (R − X )
)∗

h
dω

2π

For convex problems the necessary and sufficient condi-

tion for the minimum is that δψ (h) = 0 for all h ∈ H 2.
It gives the Euler-Lagrange equation for the optimal X

as
qX q1

σ 2
P+
X

pX p = R − X

where P+ is the standard orthogonal projection from L2
to H 2. Note that the constant qX q1σ−2 can be incorpo-
rated into X and R without affecting their rationality.

So in the following we assume without loss of generality

that this constant is equal to 1 and analyze the equation

P+
X

pX p = R − X . (53)

Since X is not identically zero, it is not zero almost

everywhere on T and the fraction X
pX p is well defined.

STEP 2: We will now assume that the solution X ∈ H 2
to (53) is rational and show that it will lead us to a
contradiction. In this step we prove that rationality of

R and X in (53) implies rationality of pX p. Indeed

pX p = X ∗ X

pX p = X
∗P+

X

pX p + X
∗P−

X

pX p .

The second term in the right hand side is anti-

analytical, hence

P+pX p = P+
(
X ∗P+

X

pX p
)
. (54)

Clearly P+X pX p−1 is rational due to (53) and thus the
right hand side of (54) is rational too. Accordingly,
P+pX p is also rational. Furthermore, the function pX p
is real and has a symmetric Laurent series. Therefore,

the function pX p must be rational itself.
Factorization as pX p = h∗h = php2 = ph2p with an

outer rational h ∈ H 2 and assuming, as was explained
previously, that X is outer, gives the only possibility

that X = h2. That is, the rational solution X must be
a square of a rational function.

STEP 3: Rewrite the Euler-Lagrange equation in terms

of h and then in terms of numerators and denominators

of h and R. Substituting X = h2 into (53) gives

P+
X

pX p = P+
h2

h∗h
= P+

h

h∗
= R − h2.

Introduce the notations for the numerators and the

denominators

h = p
q
, R = b

a

where a, b, p and q are polynomials. The polynomials

a, p and q are stable by definition, since R ∈ H 2 and h
is outer in H 2. Introduce the notation for the conjugate
polynomial to p as

p̃(z) = znp(z−1)
where n is the degree of p. The conjugate of a stable

polynomial has the same degree and is anti-stable. With

these notations in mind the Euler-Lagrange equation

becomes

P+
pq̃zn−m

qp̃
= b
a
− p

2

q2
= bq

2 − ap2
aq2

. (55)

Here n and m are degrees of p and q respectively.

STEP 4: Calculate the projection in the left hand side

of (55) and state the polynomial version of the Euler-
Lagrange equation. We assume now that n−m ≥ 0 and
cover the opposite in the next step. Perform the partial

fraction decomposition

pq̃zn−m

qp̃
= Q
q
+ r
p̃

where Q is a polynomial and the degree of r is less than

n. Then

P+
pq̃zn−m

qp̃
= Q
q
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and the equation (55) becomes

aqQ = bq2 − ap2.

Clearly q(z) = 0 implies a(z) = 0 since p and q

are prime, hence a = qa0 where a0 is a polynomial.
Canceling q above we get

a0qQ = bq− a0p2.

Similarly q(z) = 0 implies a0(z) = 0 and thus a0 = qa1.
Canceling again gives

a1qQ = b− a1p2.

Now it is clear that a1 = 1 since otherwise a1(z) = 0
would give b(z) = 0, which is impossible since a and
b are also prime. Finally, we have a = q2, which

contradicts the assumption that zeros of a are simple

unless q = a = 1. But for a proper non-constant R it is
impossible.

STEP 5: The case n−m < 0 is similar. Denote k = m−n.
The only difference is in the partial fraction decomposi-

tion
pq̃

qp̃zk
= Q
q
+ r

p̃zk

where Q is a polynomial and the degree of r is less than

n + k = m. The rest is exactly the same as in Step 4
with the same conclusion that a = q2 which contradicts
the assumption.

Because S,M and W are assumed to be rational and

X = WKH it follows that K is rational if and only if
X is rational. Clearly, if K is not rational, it cannot be

factorized as K = DC with rational C and D. Thus, the
transfer functions of optimal LTI encoders and decoders

are not rational.

As explained previously, this means that the filters

can not be realized using finite memory. Obviously,

approximations have to be done for practical implemen-

tation. For example, impulse responses of the filters may

be truncated. It remains to investigate the impact on the

performance of such approximations.

If the channel has noise-free feedback, that is, if C

has access to the channel output, then C can estimate

the states of D exactly. It would be interesting to study

if the memory of optimal linear encoders and decoders

could be bounded in this case. Such a result would also

be in line with the structural result for causal coders

in [11], where the memory was bounded given that the
encoder has knowledge of the decoder state.

V. NUMERICAL SOLUTION

A procedure for obtaining an approximate numerical

solution will now be outlined for the vector version of

the problem.

1) The first step is to solve the optimization problem
(48) or, alternatively, minimize (25) (the constant
part η must then be added to obtain the distor-
tion). An approximate solution can be obtained

by using a finite basis representation of K and

approximating the integrals by sums over a finite

number of frequency grid points. Such an approxi-

mated problem can be cast as a quadratic program

with second-order cone constraints.

2) Perform a matrix spectral factorization of SS∗ +
MM∗ to obtain H ∈ H∞ with H−1 ∈ H∞.

3) Perform an inner-outer factorization of K to ob-
tain KiKo = K .

4) Perform a singular value decomposition of KoH to
obtain UoΣV ∗ = KoH.

5) Use a finite basis approximation A(ω ) of DD∗, for

example using the parametrization

A(ω ) = A0 +
Nc∑

k=1
Ak
(
ekiω + e−kiω

)

and fit A(ω ) to
∥∥K

[
S M

]∥∥
1

σ 2
KiUoΣU

∗
o K

∗
i ,

by minimizing the deviation in some suitable

norm.

6) Perform a spectral factorization of A(ω ), choosing
Do as the stable and outer spectral factor.

7) Let D = KiDo and C = D−1o Ko.
8) If C and D are of incorrect size, add rows of zeros
to C and columns of zeros to D until they are of

correct size.

In the scalar case, the procedure is simplified as follows:

Step 2 and 6 requires only scalar spectral factorizations,

step 3, 4 and 8 are skipped and step 5 consists of fitting

A(ω ) to ∥∥K
[
S M

]∥∥
1

σ 2
pKHp.

A. Example

The numerical solution is illustrated by the following

example. Consider the problem with S = 1/(z − 0.9),
M = 0, W = N = 1 and P = z−d. The functional ψ (X ),
given by (25), was approximated by discretization of the
integrals over 4000 grid points, uniformly placed on the

unit circle. X was parametrized as an FIR filter with

60 coefficients. The minimization was then carried out

for different SNR levels σ 2 and delays d, using Matlab,
Yalmip [28] and SeDuMi [29].
The resulting MSE distortion levels are displayed in

Fig. 3 together with the OPTA for the case with no delay

constraint, obtained from (1). It can be seen that for
small SNR’s, the distortion is very close to the lower

bound. This is not surprising since for zero SNR, the

minimum distortion is qWPSq22 = qSq22 over any type
of coding system. For medium SNR’s, the distortion is

lower for longer delays. The difference seems, however,

to decrease when the SNR becomes larger. The gap to

the OPTA seems to approach about a factor two for

high SNR’s, regardless of delay. This suggests that for

this source, it is the linearity, rather than the delay
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Fig. 3. MSE distortion as a function of SNR level (logarithmic
scale) for optimal linear encoders and decoders for three different
delay constraints (approximate solutions), and the OPTA for the case
without delay constraint. (Problem parameters: S = 1/(z − 0.9),
M = 0, W = N = 1, P = z−d)

constraint, that is the performance-limiting factor for

high SNR levels.

VI. CONCLUSION

This paper has shown how to find optimal LTI en-

coders and decoders for joint source-channel coding for

Gaussian sources and channels. It has also been shown

that such encoders and decoders in general require

infinite memory. Thus, some approximation has to be

done for numerical solution of the problem. It would be

interesting to investigate if the performance loss due to

such approximations can be somehow bounded.

In the scalar case, the solution has been extended to

handle channels with feedback [1]. This is not presented
here to conserve space. Another extension is the prob-

lem of feedback control over AWGN channels, which will

be the topic of an upcoming paper.

Possible topics for further research includes extending

the solution in the MIMO case to channels with colored

noise, investigating memory bounds when the channel

has feedback and the suboptimality of linear solutions.

APPENDIX

Lemma 4: Suppose Y ∈N + is square and outer, X ∈
N +, and that Y−1X ∈ Lp. Then Y−1X ∈ H p.

Proof: Y−1 ∈ N + by Theorem 10 in [26]. It is easy
to verify that the product of two N + functions is N +.
The proof follows from the fact that Lp∩N + = H p [24].

Lemma 5: Suppose that m ≤ n and that the m $ n
transfer matrix X ∈ H p, p ∈ {1, 2,∞}, is row outer.
Then the singular values of X satisfy

logσ k ∈ L1, k = 1 . . .m.

Proof: By Theorem 8 in [26] there exists a factor-
ization X = XcoX i, where Xco is column outer and X i
is inner. Since Xco has full column rank on T it cannot

have more columns than rows, and since X is row outer

Xco cannot have fewer rows than columns. Thus Xco is

m$m and hence, by Theorem 10 in [26], det Xco is outer
and thus det Xco ∈ N +. According to a statement in
section 17.19 in [25] it follows that log pdet Xcop ∈ L1.
For the singular values of X , it holds that

m∑

k=1
logσ k =

1

2
log

m∏

k=1
σ 2k =

1

2
log det X X ∗

= 1
2
log det XcoX iX

∗
i X

∗
co =

1

2
log det XcoX

∗
co

= log pdet Xcop ∈ L1.
Furthermore, σ k ∈ L1 since X ∈ H p. Because logσ k <
σ k it holds that∫ π

−π

logσ k dω <
∫ π

−π

σ k dω < ∞, k = 1 . . .m

Since the sum of the logarithms is L1 and every term
has an integral bounded from above, it follows that the

integral of every term also must be bounded from below.

That is,
∫ π

−π

logσ k dω > −∞, k = 1 . . .m

and hence logσ k ∈ L1, k = 1 . . .m
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