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Abstract—We consider the problem of stochastic
control under constraints on the information struc-
ture. We review some old results from static team
theory, where new simple proofs are given. The sig-
nalling phenomenon in distributed optimal linear
quadratic Gaussian control plays a central role be-
cause of the complexity it implicates. Necessary and
sufficient conditions for eliminating the signalling
incentive are given in terms of the interconnection
structure.

I. INTRODUCTION

The problem of distributed control with informa-
tion constraints is considered. For instance, infor-
mation constraints appear naturally when making
decisions over networks.
Early results considering team theory in [10], [17],
[19], [21], and [22] showed the difficulty of the LQG
problem with non-classical information structure.
Recently, Bamieh et al [5] and Rotkowitz et al [18]
showed that the distributed linear optimal control
problem is convex if the rate of information propa-
gation is faster than the dynamics.
In this paper, we consider the distributed linear

quadratic Gaussian control problem and give a solu-
tion using statistical decision theory.
We give a mathematical definition of signalling in

team decision problems, and give necessary and suf-
ficient conditions that are determined by the system
parameters (A, B,C) for elimination of the signalling
incentive in optimal control. Under the conditions
for eliminating the signalling incentive, the optimal
distributed controller is shown to be linear.
The outline of the paper is as follows. In section II

we introduce some notations that are used through-
out the paper. In section III we summarize some re-
sults in static team theory, where new formulations
and proofs are given. In section IV we give the neces-
sary and sufficient conditions for elimination of the
signalling incentive in terms of the interconnection
structure. We conclude the main results of the paper
in section V.

II. NOTATION

The ith component of a vector a is denoted by ai.
Column i of matrix M is denoted by Mi.
The element in position j of a vector Mi is

denoted by Mi j . For a matrix M ∈ Rm$n we let
vec(M) = (MT1 M

T
2 ⋅ ⋅ ⋅MTn )

T . Also, let diag(Ai)
denote a block diagonal matrix with the matrices
Ai on its diagonal. A ⊗ B denotes the Kronecker
product of the matrices A and B. We denote the
set of n $ n symmetric, positive semi-definite,
and positive definite matrices by Sn, Sn+ and Sn++,
respectively.

III. TEAM DECISION THEORY

In this section we will review some classical results
in the theory of teams.

A. The Static Team Decision Problem

In the static team decision problem, one would like
to solve the problem

minimize E
[
x

u

]T [
Qxx Qxu
Qux Quu

] [
x

u

]

subject to yi = Cix + vi
ui = µ i(yi)

for i = 1, ...,N.

(1)

Here, x and v are independent Gaussian variables
taking values in Rm, Rn, n = n1 + ... + nN , and
x ∼ N(0,Vxx), v ∼ N(0,Vvv). Also, let yi and ui
be stochastic variables taking values in Rni , Rpi ,
respectively,

[
Qxx Qxu
Qux Quu

]

∈ Sm+p, (2)

and Quu ∈ Sp++, p = p1 + ...+ pN .
Assuming full state information about x to each

decision maker ui, the minimizing u would be found
easily by completion of squares and is given by u =
Lx, where L is the solution to

QuuL = −Qux.

Then, the cost function in (1) can be rewritten as

J(x,u) = ExT (Qxx − LTQuuL)x+

+ E(u − Lx)TQuu(u − Lx).
(3)

Minimizing the cost function J(x,u), is equivalent
to minimizing E(u− Lx)TQuu(u− Lx), since nothing



can be done about E(xT (Qxx − LTQuuL)x) (the cost
when u has full information).
The following result was in principal first shown by
Radner [17], but we give a different formulation and
proof:

Theorem 1: Let x and vi be Gaussian variables
with zero mean, taking values in Rm, Rni , n = n1 +
...+nN . Also, ui is a stochastic variable taking values
in Rpi , and Quu ∈ Sp++, p = p1+ ...+ pN . The optimal
solution u to the optimization problem

minimize E(u − Lx)TQuu(u− Lx)

subject to ui = µ i(yi)

for i = 1, ...,N.

(4)

is unique and linear in y.

Proof: Let H be the space of all measur-
able functions �(y) from Rn to Rp for which
E[�(y)TQuu�(y)] < ∞. Then H is a Hilbert space
under the inner product

〈�,h〉 = E�(y)TQuuh(y),

and norm

pp�(y)pp2 = E[�(y)TQuu�(y)].

Let Y ⊆ Rn be a space such that z ∈ Y if zi is a linear
transformation of yi, that is zi = Aiyi for some real
matrix Ai ∈ Rpi$ni . Clearly, Y is a linear subspace
of Rn. Now the optimization problem in equation (4)
can be extended to

minimize ppu − Lxpp2

subject to u = µ : Y → Rp
(5)

Finding the best linear optimal decision u∗ to the
extended problem is equivalent to finding the short-
est distance from the subspace Y to the element
Lx ∈ Rp, where the minimizing u∗ is the projection
of Lx on Y, and hence unique. Also, since u∗ is the
projection, we have

0 = 〈u∗ − Lx,u〉 = E(u∗ − Lx)TQuuu,

for all u. In particular, for fi = (0, 0, ..., zi, 0, ..., 0), we
have

E(u∗ − Lx)TQuu fi = E[((u∗ − Lx)TQuu)i fi] = 0.

The Gaussian assumption implies that fi is indepen-
dent of ((u∗ − Lx)TQuu)i. Hence, for any decision u,
linear and nonlinear, we have that

〈u∗ − Lx,u〉 = E(u∗ − Lx)TQuuu

=
∑

i

E[((u∗ − Lx)TQuu)izi] = 0.

Finally, we get

ppu − Lxpp2 = 〈u− Lx,u − Lx〉

= 〈u∗ − Lx + u − u∗,u∗ − Lx + u − u∗〉

= 〈u∗ − Lx,u∗ − Lx〉 + 〈u − u∗,u− u∗〉+

+ 2〈u∗ − Lx,u∗ − u〉

= 〈u∗ − Lx,u∗ − Lx〉 + 〈u − u∗,u− u∗〉

≥ 〈u∗ − Lx,u∗ − Lx〉

with equality if and only if u = u∗. This concludes
the proof.

The next theorem shows how to find the linear
optimal control law u = K y.

Theorem 2: Let x and vi be independent Gaus-
sian variables taking values in Rm, Rni , and x ∼
N(0,Vxx), v ∼ N(0,Vvv). Also, let yi and ui be
stochastic variables taking values in Rni , Rpi , respec-
tively, and Quu ∈ Sp+. The linear optimal solution
u = K y to the optimization problem

minimize E(u − Lx)TQuu(u− Lx)

subject to yi = Cix + vi
ui = µ i(yi)

for i = 1, ...,N.

(6)

is the solution to the linear system of equations

N∑

j=1

(Quu)i jK j(CjVxxC
T
i + (Vvv) ji) = −(Qux)iVxxC

T
i ,

for i = 1, ...,N,

C =






C1
...
CN




 , Ki ∈ Rpi$ni , K = diag(Ki).

Proof: The problem of finding the optimal linear
feedback law ui = Kiyi can be written as

minimize Tr[EQuu(u− Lx)(u − Lx)T ]

subject to u = K (Cx + v)
(7)

Now

f (K ) = Tr[EQuu(u − Lx)(u − Lx)
T ]

= Tr[EQuu(KCx + Kv− Lx)(KCx + Kv− Lx)
T ]

= Tr[Quu(K (CVxxC
T + Vvv)K

T − 2LVxxCTK T

+ LVxxL
T )]

= Tr[
N∑

i, j=1

(Quu)i jK j(CjVxxC
T
i + (Vvv) ji)K

T
i −

− 2
N∑

i, j=1

(Quu)i jL jVxxC
T
i K

T
i ] + Tr[QuuLVxxL

T ].

(8)



The minimizing K is obtained by solving
∇Ki f (K ) = 0:

0 = ∇Ki f (K )

= 2
N∑

j=1

(Quu)i jK j(CjVxxC
T
i + (Vvv) ji)−

− 2
N∑

j=1

(Quu)i jL jVxxC
T
i .

(9)

Since QuuL = −Qux, we get that

N∑

j=1

(Quu)i jL jVxxC
T
i = −(Qux)iVxxC

T
i .

Hence, the equality in (9) is equivalent to

N∑

j=1

(Quu)i jK j(CjVxxC
T
i + (Vvv) ji) = −(Qux)iVxxC

T
i .

(10)

Note that separation does not hold for the static
team problem when constraints on the information
available for every decision maker ui are imposed.
That is, the optimal decision is not given by u = Lx̂,
where x̂ is the optimal estimated value of x.

Note also that (10) is easy to pose as a linear
system of equations in a simple structural way as
follows. It is well known for matrices V and U of
compatible sizes, we have the relation

vec(UX V ) = (VT ⊗ U )vec(X ).

Then we can write (10) as

N∑

j=1

((CjVxxC
T
i + (Vvv) ji)

T ⊗ (Quu)i j)vec(K j) =

−vec((Qux)iVxxCTi ),

or equivalently as

Hz = −G,

where H constitutes of blocks given by

Hi j = (CjVxxC
T
i + (Vvv) ji)

T ⊗ (Quu)i j ,

z = (vec(K1)T ⋅ ⋅ ⋅ vec(KN)T )T ,

and

G = (vec((Qux)1VxxCT1 )
T

⋅ ⋅ ⋅ vec((Qux)NVxxC
T
N)
T )T .

Since Quu is positive definite and CVxxCT + Vvv is
positive semi-definite, it follows that H is a positive
definite matrix, and hence invertible, which proves
uniqueness of the solution.

B. Team Decision Problems and Signalling

Consider a modified version of the static team
problem posed in the previous section, where the
observation yi for every decision maker i is affected
by the inputs of the other decision makers, i.e.

yi = Cix +
∑

j

Di ju j + vi,

where D j = 0 if decision maker j does not affect the
observation yi. The modified optimization problem
becomes

minimize E(u − Lx)TQuu(u− Lx)

subject to yi = Cix +
∑

j

Di ju j + vi

ui = µ i(yi)

for i = 1, ...,N.

(11)

The problem above is, in general, very complex if
decision maker i does not have access to the infor-
mation about the decisions ui that appear in yi (see
Blondel [6]). It has been shown in Witsenhausen
[21], by means of a counterexample, that for such
problems there could be nonlinear decisions in the
observations that perform better than any linear
decision. This is referred to as the problem of sig-
nalling, where the decision makers try to encode
information in their decisions that could be decoded
by decision maker i whose observation is affected
(see Ho [10]).
If we assume that decision maker i has the value of
u j available for every j such that Di j ,= 0, then it
could form the new output measurement given yi

ȳi = yi −
∑

j

Di ju j = Cix + vi,

which transforms the problem to a static team prob-
lem without signalling, and the optimal solution
is linear and can be found according to Theorem
(1) and (2). Note that if decision maker i has the
information available that every decision maker j
has for which Di j ,= 0, then the decision u j is
also available to decision maker i. This information
structure is closely related to the partially nested
information structure, which was introduced by Ho
in [13].
Finally, we state a mathematical definition of

signalling in static teams:

Definition 1 (Signalling): Consider the static
team problem given by

minimize E(u − Lx)TQuu(u− Lx)

subject to yi = Cix +
∑

j

Di ju j + vi

ui = µ i : Yi ]→ Rpi

for i = 1, ...,N.

(12)
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Fig. 1. The graph reflects the interconnection structure of the
dynamics between four systems. The arrow from node 1 to node 2
indicates that system 1 affects the dynamics of system 2 directly.

where Yi denotes the set of information yj available
to decision maker i. Then, the problem is said to
have a signalling incentive if there exist i, j such that
Yj * Yi and Di j ,= 0.

IV. DISTRIBUTED LINEAR QUADRATIC GAUSSIAN CONTROL

In this section, we will treat the distributed
linear quadratic Gaussian control problem with
information constraints, which can be seen as a
dynamic team decision problem.

Consider an example of four dynamically coupled
systems according to the graph in Figure (1). The
equations for the interconnected system are then
given by






x1(k+ 1)
x2(k+ 1)
x3(k+ 1)
x4(k+ 1)







︸ ︷︷ ︸

x(k+1)

=







A11 0 A13 A14
A21 A22 0 0
0 A32 A33 0
0 0 A43 A44







︸ ︷︷ ︸

A







x1(k)
x2(k)
x3(k)
x4(k)







︸ ︷︷ ︸

x(k)

+

+







B1 0 0 0
0 B2 0 0
0 0 B3 0
0 0 0 B4







︸ ︷︷ ︸

B







u1(k)
u2(k)
u3(k)
u4(k)







︸ ︷︷ ︸

u(k)

+







w1(k)
w2(k)
w3(k)
w4(k)







︸ ︷︷ ︸

w(k)

.

(13)
For instance, the arrow from node 1 to node 2 in

the graph means that system 1 affects the dynam-
ics of system 2 directly, which is reflected in the
system matrix A, where the element A21 ,= 0. On
the other hand, system 2 does not affect system 1
directly, which implies that A12 = 0. Because of the
“physical” distance between the subsystems, there
will be some constraints on the information available
to each node.

The structure of the matrix A could be described
by the adjacency matrixA of the graph. For instance,
the adjacency matrix for the graph in Figure 1 is
given by

A =







1 0 1 1
1 1 0 0
0 1 1 0
0 0 1 1






.

The observation of system i at time k is given by

yi(k) = Cix(k),

where

Ci =







Ci1 0 0 0
0 Ci2 0 0
0 0 Ci3 0
0 0 0 Ci4






. (14)

Here, Ci j = 0 if system i does not have access to
yj(k). Let Yki denote the set of observations yj(n)
available to node i up to time k, n ≤ k, j = 1, ...,N.
Consider the following (general) dynamic team

decision problem:

minimize
M∑

k=0

E

[
x(k)
u(k)

]T [
Qxx Qxu
Qux Quu

] [
x(k)
u(k)

]

subject to x(k+ 1) = Ax(k) + Bu(k) +w(k)

yi(k) = Cix(k) + vi(k)

ui(k) = µ i : Yki ]→ Rpi

for i = 1, ...,N.

(15)

where x(k) ∈ Rm, yi(k) ∈ Rni , ui(k) ∈ Rpi , x(0) ∼
N(0,R0), {v(k)} and {w(k)} are sequences of inde-
pendent Gaussian variables, uncorrelated with x(0),
such that

E

[
v(k)
w(k)

] [
v(k)
w(k)

]T

= R,

and the weighting matrix Quu is positive definite.
Now write x(k) and y(k) as

x(k) = Atx(k− t)+

+
t−1∑

n=0

AnBu(k− n− 1) +
t−1∑

n=0

Anw(k− n− 1),

yi(k) = CiA
tx(k− t)+

+

t−1∑

n=0

CiA
nBu(k− n− 1)

+
t−1∑

n=0

CiA
nw(k− n− 1) + vi(k).

(16)
Note that the summation over n is defined to be
zero when t = 0.



Theorem 3: Consider the optimization problem
given by (15). The problem has no signalling incen-
tive if and only if

yj(n) ∈ Y
k
i for (CiA

nB)i j ,= 0 (17)

for all n such that 0 ≤ n ≤ k, and k = 0, ...,M − 1.
In additon, the optimal solution to the optimization
problem given by (15) is linear in the observations
Yki if condition (17) is satisfied, and has an analytical
solution that can be found by solving a linear system
of equations.

Proof: Introduce

x̄ =










w(N − 1)
w(N − 2)

...
w(0)
x(0)










, ūi =








ui(N)
ui(N − 1)

...
ui(0)







,

Then, we can write the cost function
N∑

k=0

E

[
x(k)
u(k)

]T [
Qxx Qxu
Qux Quu

] [
x(k)
u(k)

]

as

E

[
x̄

ū

]T

Q̄

[
x̄

ū

]

. (18)

Consider the expansion given by (16). The problem
here is that yi(k) depends on previous values
of the control signals u(n) for n = 0, ..., k − 1.
The components u j(n) that yi(k) depends on are
completely determined by the structure of the matrix
(CiA

nB)i j . This means that, to avoid signalling,
every node i must have the information of yj(n)
and u j(n − 1) available at time n if the element
(CiA

nB)i j ,= 0. Thus, we have proved the first
statement of the theorem.

Now if condition (17) is satisfied, we can form the
new output measurement

y̌i(k) = yi(k) −

k−1∑

n=0

CiA
nBu(k− n− 1)

= Akx(0)+

+

k−1∑

n=0

CAnw(k− n− 1) + vi(k).

(19)

Let

ȳi(k) =








y̌i(k)
y̌i(k− 1)
...
y̌i(0)







.

With these new variables introduced, the optimiza-
tion problem given by equation (15) reduces to the
following static team decision problem:

min
µ
E

[
x̄

ū

]T

Q̄

[
x̄

ū

]

subject to ui(k) = µ̄ i(ȳi(k))

for i = 1, ...,M .

(20)

and the optimal solution ū is unique and linear
according to Theorem 1, and can be obtained using
Theorem 2, QED .

V. CONCLUSIONS AND FUTURE WORK

We have considered the distributed linear
quadratic Gaussian control problem using statistical
decision theory. We give a mathematical definition of
signalling in team decision problems, and necessary
and sufficient conditions for elimination of the
signalling incentive in optimal control are obtained.
The conditions are determined completely by the
structure of the system parameters (A, B,C).

It would be challenging to explore the H∞ control
problem and examine the information structure for
which the problem is tractable.
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