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Abstract

In this paper synthetic aperture radar is analyzed from an inverse scattering
perspective. It is shown that the classical point scattering model can be
generalized to a dipole scattering model. The dipole scattering model reduces
to the point scattering model for small aperture angles. For large aperture
angles or multiple illumination apertures the dipole model gives an anisotropic
reflectivity such that orthogonal scattering processes are separated. Moreover,
it is shown that both the point and dipole scattering models can be interpreted
as an initial step of a least-squares inverse scattering algorithm.

1 Introduction

The resolution in radar imaging systems is determined by the bandwidth, center fre-
quency, and imaging aperture. In Synthetic Aperture Radar (SAR) a small antenna
is moved along a convenient path (here the flight track) to form a long antenna
and hence a large imaging aperture [1, 3, 7, 10, 18]. One distinguish between strip,
scan, and spot mode SAR systems. In this paper, the focus is on the spot mode
that offers a high resolution but narrow coverage. The CARABAS-II and LORA
systems operate in the MHz regime, see Table 1. In this frequency range, the radar
signals penetrate tree coverage and can hence be used to image concealed objects.
The radar echoes due to ground scattering are also reduced. However, the typical
resolution of these systems are not as good as of the GHz systems [16].

In this paper, multi-static SAR systems are analyzed. Here, it is important to
find the correct balance between the existence of a solution and the uniqueness of the
same solution, i.e., to find a simple and accurate scattering model that can be used to
model the interaction between the considered objects and the used electromagnetic
fields. The traditional SAR model is based on the point scatterer model [1, 3, 7,
10, 18]. This, very successful, model is good for high frequency systems with a
moderate aperture angle. To overcome some of its artifacts, point scatter fixes
can be used [3, 8]. These parametric models are typically based on high frequency
approximations, e.g., GTD. For low-frequency systems with a large aperture angle
or multi-static operation it is also observed that the point scatter model is not
satisfying. In this paper it is shown that a simple anisotropic scattering model
based on a dipole scattering model can be used for these systems.

The paper begins with a discussion on SAR imaging and inverse scattering in
Section 2. The point scattering model is considered in Section 3 and the dipole
scattering model is considered in Section 4. In Section 6, it is shown that both the
point scattering model and the dipole scattering model can be interpreted as an
initial step of a least-squares inverse scattering algorithm. In Section 7, the results
are discussed.



2

System frequency wavelength
CARABAS-II (VHF-band) 20 − 90 MHz 3.3 − 15 m

LORA (UHF-band) 195 − 755 MHz 0.4 − 1.5 m
L-band 1 − 2 GHz 15 − 30 cm
S-band 2 − 4 GHz 7.5 − 15 cm
C-band 4 − 8 GHz 3.8 − 7.5 cm
X-band 8 − 12 GHz 2.5 − 3.8 cm

Table 1: Example of SAR systems. The CARABAS-II system has a relatively low
frequency compared with the common L,S,C, and X band systems.

2 Synthetic aperture radar and inverse scattering

2.1 SAR data

In Figure 1, the typical SAR setup is illustrated. The object is illuminated with
an electromagnetic (EM) wave transmitted from an airplane. It is also common
to use satellites and space shuttles. The scattered EM wave field is received by a
receiver. The mono-static or back-scattered case where the transmitter and receiver
are located at the same position is the most well known case [7, 10, 16, 18, 19]. The bi-
static case, where the transmitter and receiver are located in different points has also
received a great deal of attention [17]. In a multi-static setup several transmitters
and receivers surrounding the object are considered. Typically, the receivers and
transmitters are located on a path (the flight track) far from the illuminated object.
In this paper, it is assumed that the transmitters and receivers are located in the
far-field of the object. The transmitter and receiver positions are denoted rt and rr,
respectively. The transmitter and receiver positions are given by the flight track,
e.g., rt = rt(τ), where τ is a parameterization of the path that generates the flight
track. Observe that although the mono-static case rt(τ) = rr(τ) and the bi-static
case rt(τ) �= rr(τ) are the most commonly considered cases, it is easy to generalize
the setup to a multi-static case with several transmitters and receivers.

The transmitted field E from the direction −k̂ is approximated with a plane
wave

E(x, t) = E0p(t − k̂ · x/c0), (2.1)

where p(t) is the pulse shape. The corresponding transmitted field in the wavenum-
ber domain is given by

E(x, k) = E0(k)e−ik·x, (2.2)

where k = kk̂ and k is the wavenumber k = 2πf/c0 = 2π/λ. The related scattered
field is of the form

E(r, k) =
e−ikr

kr
F (r̂, k) (2.3)

where F is the far-field pattern. The map from the incident plane wave to the
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Flight track

a) b)

Aperture
angle

Figure 1: Illustration of the SAR setup. a) in the mono-static (backscattering)
case, a single airplane is used both to transmit and receive the radar signal. b)
in the bi-static case separate airplanes are used as transmitters and receivers. An
arbitrary number of airplanes can be used in multi-static cases.

scattered field is called the scattering dyad (or scattering matrix) [12], i.e.,

F (r̂, k) = S(r̂, k)E0(k). (2.4)

Mono-static and bi-static SAR data consist of the far-field pattern (or scattering
matrix) given for a range of wavenumbers k1 ≤ k ≤ k2 together with the plane
wave direction k̂(τ) and the corresponding observation direction r̂(τ) along a path
0 ≤ τ ≤ T . Multi-static data can be given for many different configurations. In
this paper it is sufficient to consider the multi-static SAR data given by the far-
field patterns for a range of wavenumbers k1 ≤ k ≤ k2 together with N plane
wave directions k̂n(τn), n = 1, ..., N and M corresponding observation directions
r̂mn(τn), m = 1, ..., Mn along the N paths 0 ≤ τn ≤ Tn. Spherical coordinates {θ, φ}
are used to parameterize the illumination angle and observation angle, i.e.,

k̂ = (cos φi sin θi, sin φi sin θi, cos θi) and r̂ = (cos φo sin θo, sin φo sin θo, cos θo)
(2.5)

where θ is the elevation angle and φ is the azimuthal angle. It is common to consider
a fixed elevation angle and to let the flight track be parametrized by the azimuthal
angle φ1 ≤ φ ≤ φ2. For a low flight track, θ ≈ 90◦, the aperture angle is approxi-
mately φ2 − φ1.

2.2 Inverse scattering theory related to SAR

SAR is often analyzed from an imaging perspective, where a scalar reflectivity is
used to model the scattering object [2, 18], see Section 3. This leads to linear inverse
problems analog to tomography [18]. Although, this approach is very successful for
typical mono-static narrow angle SAR systems it is necessary to improve theses
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models for general multi-static SAR systems. SAR can also be analyzed from an
inverse scattering perspective where material parameters such as permittivity and
conductivity of penetrable objects and the shape of impenetrable objects are used
to model the scattering object. In this case Colton-Kress gives several uniqueness
theorems [6]. For example the shape of an object is uniquely determined by the
far-field data if

• the far-field pattern is given for all incident directions and all polarizations at
one single frequency, i.e., F (r̂, kk̂) is given for all r̂, all k̂, and a fixed k, see
Theorem 7.1 in [6].

• the far-field pattern is given for some directions and the object is sufficiently
small.

• the far-field pattern is given in one direction and one polarization for a range
of wavenumbers, i.e., F (r̂, kk̂) is given for all r̂, one k̂, and an interval k1 <
k < k2, see Theorem 7.2 in [6].

There are also several theorems for the uniqueness of medium parameters. For
example the index of refraction (permittivity) is uniquely determined by the far-field
data under similar circumstances. The third case is the most interesting case for
SAR. However, it is important to notice that although the object shape is uniquely
determined by the far-field data, the shape does not depend continuously on the
data. Small errors in the data (noise) can give large errors in the shape. Also
observe that the theorems in [6] require a lot of data, i.e., the complete far-field
pattern. Unfortunately, the theorems do not give any information about the case
with limited data such as bi-static and multi-static data.

The are a few non-linear inversion algorithms. One is the linear sampling method
by Colton and Kirsch. The linear sampling method determines the shape of an
object from multi-static data at a fixed frequency [5]. A comparison between the
linear sampling method and the linearized tomographic inverse scattering algorithm
is given in [4], see also [15] for comparisons between linear and non-linear inversion
algorithms.

Non-linear optimization have received a lot of attention the last couple of years.
Theses algorithms often iterative and require numerical solutions of the direct scat-
tering problem for each iteration. Hence, these algorithms are generally slow and
require fast forward solvers. However, there are algorithms that can be more ef-
ficient [11]. Their advantage is that the formulation is general and can hence be
applied to many problems. A typical formulation is minparameters ‖umeasured−ucalc‖+
‖ucalc‖reg where the second term is the regularization. After proper choices of the
norms and tuning of all variables it is just to choice a standard optimization algo-
rithm. It is common to differentiate between global optimization algorithms and
local optimization algorithms. The local optimization algorithms uses some kind of
gradient estimate to find the locally best direction to update the parameters. In
this paper a time domain least-squares algorithm is used for the SAR problem with
multi-static data, see Section 6.
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3 Point scattering model

One of the simplest ways to derive a SAR imaging algorithm is to use the point
scattering model or scalar reflectivity model. In this model the vector nature of the
EM field is neglected and scalar fields are used. Let E0 represent the incident field,
i.e., E0 = E0φ̂ and E0 = E0θ̂ for a horizontally and vertically polarized antenna,
respectively. The received field is assumed to be co-polarized, i.e., the scalar far-field
pattern F is defined as F = F φ̂ and F = F θ̂ in the horizontal and vertical cases,
respectively. The point scattering model gives the far-field pattern F

F (r̂, k) =

∫
Ω

E0(k)e−ik·xk3γ(x)eikr̂·x dVx =

∫
Ω

k3E0(k)e−i(ki−kr̂)·xγ(x) dVx, (3.1)

where γ(x) is the scalar reflectivity. Here, it is seen that there is a Fourier type
relation between the far-field pattern and the reflectivity. The k3 factor in this
model is motivated by the scattering properties of a small sphere, i.e., the scattering
amplitude of a sphere with radius a is proportional to a3k3 if ka � 1. However,
different weight factors can be used. Although the discussion here is limited to scalar
reflectivity it can be extended to polarimetric SAR by inclusion of the cross-polarized
far-field pattern [13].

In the mono-static case kr̂ = −k, the result simplifies to

F (k) =

∫
Ω

k3E0(k)γ(x)e−i2k·x dVx . (3.2)

Formal inversion of the Fourier integral (3.2) gives

γ(x) =
1

8π3

∫
k∈R3

1

k3

E∗
0(k)F (k)

|E0(k)|2 ei2k·x dVk, (3.3)

i.e., the scalar reflectivity is given by the Fourier transform of the scattering dyad, cf.
(2.4). It is also interesting to compare with the physical optics approximation [12].
The physical optics approximation is valid for convex perfectly conducting objects
that are smooth relative the wave length. The support of the object is given by

γpo(x) =
1

8π2

∫
1

k3

(
E∗

0(k)F (k)

|E0(k)|2 +
E0(−k)F ∗(−k)

|E0(−k)|2
)

ei2k·x dVk . (3.4)

The occurrence of the two terms in the integral is related to the physical optics
approximation, i.e., only illuminated part of the object is used.

The Fourier transform requires knowledge of the scattering dyad for all directions
and all frequencies. In general, SAR data is never given for all frequencies and
all directions, in these cases the reflectivity is typically given by (3.3) over the
available data. In typical mono-static and bi-static flight paths (2.5), the reflectivity
is determined for fixed heights z, here z = 0. The scalar reflectivity (3.1) can hence
be inverted by spectral data in a plane, e.g., a mono-static flight path around the
object for all frequencies. The support in the wavenumber domain is given by

k(k̂(τ) − r̂(τ)), for k1 ≤ k ≤ k and 0 ≤ τ ≤ Υ. (3.5)
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Figure 2: Spectral coverage for mono-static and bi-static setups with a 90◦ aperture
angle. The mono-static case has the largest spectral coverage and the spectral
coverage of the bi-static cases increases as the scattering angle increases.

The wavenumber domain for mono-static and bi-static setups with a 90◦ aperture
angle and CARABAS-II frequencies is depicted in Figure 2. The mono-static case
has the largest spectral coverage. The spectral coverage of the bi-static case has
its maximum in back-scattering and direction decreases as the scattering angle de-
creases. Also observe that the wavenumber domain mainly changes in the direction
of the illumination.

3.1 Interference and anisotropy

The scalar point-like scattering model is based on the assumption that the object
consists of a collection of single scattering objects. Moreover, the scattering is often
assumed to be isotropic and non-dispersive. Unfortunately, the scattering of most
SAR objects are very complex and these approximations are in general not valid.
However, the point-like model is widely used and there is a massive amount of
successful SAR images based on this model, so the approximation must be rather
good under normal SAR circumstances.

The complex scattering properties of typical SAR objects are due to three proper-
ties. First, a typical SAR object is in a wave length scale or smaller for CARABAS-II
frequencies whereas several wave lengths for X band systems. This gives typically
anisotropic properties in the low frequency regime, dispersive properties in the res-
onance regime, and oblique scattering properties in the high frequency regime, re-
spectively. Secondly, the dominant scattering process is often multiple scattering
paths incorporating both the object and the ground. Finally, multiple scattering
between separated objects can also contribute to the total scattering. In this paper,
the first processes with single object scattering are analyzed. The problem with a
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210 225 240 270180

Figure 3: Comparison between the SAR images with a point source (top row) and
SAR images with a directional dependence. The directional dependence is given by
the weight patterns shown to the left of the images. The flight track is between 180◦

to 270◦ with an average illumination indicated by the arrows.

ground reflection can reduced by incorporation of a layered wave propagation model.
In [16], computer simulations have been performed to analyze SAR images for

the CARABAS-II and LORA systems, see Table 1 and the top row of Figure 3. A
Swedish military terrain vehicle with dimensions of approximately 2.5 m × 3 m ×
6.5 m, modeled as a perfect electric conductor (PEC), standing on a ground with
permittivity εr = 10 and conductivity σ = 0.01 S/m is used as scattering object.
The object is illuminated from a 90◦ flight track at elevation angle θo = 50◦ with
normal direction between 180◦ and 270◦ as indicated by the arrows under each image
in the top row in Figure 3. In the figure, it is observed that the scalar reflectivity
model gives good results for the case with broad side illumination, i.e., the first and
last cases.

In the other cases with illumination both from the side and front of the vehicle,
the images appear irregular. This irregular behavior is due to a sort of interference
between the two dominant scattering processes in these images, i.e., the oblique
scattering from the side and front of the vehicle, see also Figure 4. These parts
of the scattering process are clearly visible in the lower parts the Figure 3. In
the second to fourth row of Figure 3, the SAR images weighted with directional
patterns depicted to the left of the images are shown. Scattering processes related
to the left-right and up-down directions are shown in the second and fourth row,
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scattering
direction

dominant
scattering
direction

point scatterer
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current
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the right-hand side
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Figure 4: Illustration of the point scatter interference. The interference is due to ad-
dition of complex valued image parts originating from different scattering processes.

respectively.
Notice that the image contents of the 180◦ images, with an illumination from the

left, is found in the second row and similarly, the 270◦ images, with an illumination
from below is found in the fourth row. In these two cases, it is also observed that the
point scattering model with an isotropic weight pattern gives good results. However,
for the 210◦ and 225◦ cases, there are image contributions in more than one row. The
scattering from the side of the vehicle is seen in the second row and the scattering
from the front is seen in the fourth row.

3.2 Bi-static and multi-static data

Assuming the point scattering model (3.1), there is clearly a unique image for the
case of mono-static data given for all wave numbers. This image also depends
continuously on the data, i.e., the Fourier transform is a continuous map. It is
also clear that there exist such an image. So where is the problem with the point
scattering model? One problem is that it is not clear how the point scattering
image relates to the actual object properties, i.e., the shape of PEC objects and
permittivity and conductivity of penetrable objects, see Figure 3. Another problem
is that it is not possible to add data consistently, i.e., in general there is no solution
if more data is provided, e.g., bi-static or multi-static data. For these cases, a more
accurate scattering model has to be used.

To illustrate the requirements of the SAR scattering model, the scattering prop-
erties of a plate, a wedge, and a non-connected wedge is considered. The mono-static
radar cross section of the plate and a wedge and bi-static radar cross section of a
plate is depicted in Figures 5, 6, and 7, respectively. The plate is 1 m × 1 m and
the wedge is composed of two plates. The plate is oriented with its normal in the
x-direction and the wedge has its normal in the x-direction and y-direction. The
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mono-static RCS is given for the flight path θ = 90◦ and 0 ≤ φ ≤ 360◦. The vertical
(TE) and horizontal (TM) cases are given by a θ̂ (orthogonal to the flight path) and
φ̂ (parallel with the flight path) polarization, respectively. The RCS is calculated
with the method of moments using an equidistant triangularization (with 1 dm side)
and RWG basis functions [14].

As seen in the figures, the radar cross section depends strongly on the illumi-
nation angle for the horizontal case. Observe that the objects are 1 m to 2 m and
hence much smaller than the wave length for the frequencies 20 MHz (15 m) and
55 MHz (5.5 m), i.e., the objects are to be considered as point scatterers for these
frequencies. The almost constant RCS in the vertical case can be explained by the
induced currents, that are orthogonal to the flight path and hence radiates omni
directionally for small objects. The vector nature of the EM field can be neglected
and the point scatterer model is valid. However, the vector nature of the EM field
is crucial in the horizontal case. In this case, the currents are induced parallel with
the flight path and can contribute both constructively and destructively to the back
scattered field. The RCS of the plate is zero for the grazing illumination , i.e.,
φ = 90◦ and φ = 270◦. Comparing with the point-scatterer model, that predicts
that the scattering is independent of the incident angle and polarization, it is noticed
that the point scatterer model is only valid for the vertical case. For the horizontal
case it is necessary to incorporate the vector nature of the EM fields in the model.
This can be done with an anisotropic scattering model, e.g., a model based on the
scattering properties of a short wire, i.e., a dipole.

4 Dipole scattering model

4.1 Dipole scatterer model and anisotropic reflectivity

The scattering from a short wire is in the form of a dipole pattern. The scattered
field from a short dipole with direction d̂ is proportional to the incident electric field
projected on the dipole E · d̂ and the far-field pattern is F d(r̂) ∼ θ̂, where θ is the
angle between d and r̂. With the dipole moment p, the far-field pattern is

F (r̂) =
k3

4πε0

r̂ × (p × r̂). (4.1)

In general, the magnetic dipole can also contribute to the scattering, i.e., the scat-
tering from a small object is given by

F (r̂) =
k3

4πε0

(r̂ × (p × r̂) + ε0µ0m × r̂) . (4.2)

With an incident plane wave E(x, τ, k) = E0e
−ikk̂·x and assuming single scattering

of electrical dipole type, the scattered field is

F (r̂, k) ∼
∫

Ω

r̂ × ((d · E0e
−ik·x)d̂ × r̂)eikr̂·x dVx

= r̂ ×
∫

Ω

ΓE0e
−i(k−kr̂)·x dVx ×r̂. (4.3)
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Figure 5: Mono-static scattering by a 1 m × 1 m PEC plate for the frequencies
20, 55, 90, 125 MHz. The vertical (TE) and horizontal (TM) cases are given by the solid
and dashed curves, respectively.
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Figure 6: Mono-static scattering by a (1 + 1) m × 1 m PEC wedge for the frequencies
20, 55, 90, 125 MHz. The vertical (TE) and horizontal (TM) cases are given by the solid
and dashed curves, respectively.
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Figure 7: Bi-static scattering by a (1 + 1) m × 1 m PEC plate for the frequen-
cies 20, 55, 90 MHz. The different curves correspond to illuminating wave field from
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Figure 8: Dyadic SAR images from a combined vertically and horizontally polarized
case and a flight track given by θo = 60◦ and 100◦ ≤ φ ≤ 350◦. The horizontal po-
larization giving the xy-subspace dominates the image. The xx- and yy-components
comes from the y- and x-directions, respectively. The corresponding SVD images
are depicted in the lower triangular part of the matrix.

The dipole moments are represented by a matrix or dyad Γ, i.e., ΓE0 = d · E0d̂,
with the interpretation of three dipole moments given by the eigenvalues of Γ and
the corresponding eigenvectors.

Due to the dyadic product between the anisotropic reflectivity and the illumi-
nating wave field, the simple Fourier transform relation between the reflectivity
and the far-field pattern is no longer valid. However, it is possible to use a least-
squares inversion to approximate the anisotropic reflectivity. Define an error func-
tional as the least-squares difference between the given (measured) far-field pattern
F (r̂, k) = F (τ, k) and a calculated far-field pattern F γ(r̂, k̂, k) = F γ(τ, k) that
corresponds to the reflectivity γ(x). The least-squares functional is given by the
least-squares integral over the flight path, i.e.,

J [γ] =

∫ Υ

0

∫ k2

k1

ψ(τ, k)|F γ(τ, k) − F (τ, k)|2 dk dτ, (4.4)
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where ψ(τ, k) is a suitable weight function. For multi-static data, a summation
over the measurements is included in (4.4), i.e.,

∑N
n=1

∑Mn

m=1. A gradient based
optimization algorithm such as the conjugate gradient algorithm can be used to find
the reflectivity that minimizes (4.4).

Perturb the reflectivity γ as γ(x) → γ0(x) + δγ′(x). The corresponding far-field
pattern is perturbed as F γ0+δγ′ = F γ0 + δF γ′ , where F γ′ is the far-field pattern of
the reflectivity γ′(x). The least-squares functional is linearized as

J [γ0 + δγ′] = J [γ0]

+ δ2 Re

∫ Υ

0

∫ k2

k1

ψ(τ, k)F γ′(τ, k) ·
(
F γ(τ, k) − F (τ, k)

)∗
dk dτ + O(δ2). (4.5)

The far-field pattern of a scalar reflectivity γ(x) and an illuminating wave field

E(x, τ, k) = E(x, k̂(τ), k) = E0(τ)e−ik·x (4.6)

is

F γ(τ) = F γ(r̂(τ), k(τ)) = r̂ ×
∫

Ω

ΓE0e
−i(k−kr̂)·x dVx ×r̂. (4.7)

The adjoint field to (3.1) is used to determine the gradient. The adjoint field is
given by

Ẽ(x, τ, k) = Ẽ(x, r̂(τ), k) = ψ(τ, k)
(
F γ(τ) − F (τ)

)∗
e−ikr̂·x. (4.8)

The product between the perturbed illuminating field and the adjoint field integrated
over wavenumber and flight path is

Re

∫
Ω

∫ Υ

0

∫ k2

k1

Ẽ(x, τ, k) · Γ′(x)E(x, τ, k) dk dτ dVx

= Re

∫
Ω

∫ Υ

0

∫ k2

k1

r̂ × (Ẽ(x, τ, k) × r̂) · Γ′(x)E(x, τ, k) dk dτ dVx

= Re

∫
Ω

∫ Υ

0

∫ k2

k1

Ẽ(x, τ, k) ·
(
(r̂ × (Γ′(x)E(x, τ, k)) × r̂

)
dk dτ dVx

= Re

∫ Υ

0

∫ k2

k1

ψ(τ, k)
(
F γ(τ, k) − F (τ, k)

)∗ ·
∫

Ω

E0(k)e−i(kr̂−k)·xγ′(x) dVx dk dτ

= Re

∫ Υ

0

∫ k2

k1

ψ(τ, k)
(
F γ(τ, k) − F (τ, k)

)∗ · F γ′(τ, k) dk dτ (4.9)

where, the identities Ẽ = r̂ × (Ẽ × r̂) and(
r̂ × (F × r̂)

)
· E = F ·

(
(r̂ × E) × r̂) (4.10)

are used. Hence, to minimize the least-squares functional the perturbation should
be made in the direction such that (4.9) is maximized. Rewrite the vector matrix
products in the first term of (4.9) as

Ẽ · Γ′E =
3∑

i=1

3∑
j=1

ẼiΓ
′
ijEj =

3∑
i=1

3∑
j=1

Γ′
ijẼiEj = Γ′ẼE, (4.11)
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where ẼE is the dyadic product between the vectors Ẽ and E. This gives the
gradients

GΓ(x) =

∫ Υ

0

∫ k2

k1

E∗(x, τ, k)Ẽ∗(x, τ, k) dk dτ. (4.12)

As in the point scattering model, the update direction is identified with the SAR
image, i.e., Γ(x) = GΓ(x). This image consists of the images of each matrix element
of Γ(x), i.e., Γij for i, j = 1, 2, 3 or i, j = x, y, z, see e.g., Figure 8. An eigenvalue
decomposition or singular value decomposition of the matrix Γ(x) can be used to
obtain coordinate independent images, see e.g., Figure 8. In the free space case, the
explicit expressions for the illuminating field and the time reversed field gives

Γ(x) =

∫ Υ

0

∫ k2

k1

E∗(x, τ, k)Ẽ∗(x, τ, k) dk dτ

=

∫ Υ

0

∫ k2

k1

ψ(τ, k)E∗
0(τ, k)eikk̂·xF (τ, k)e−ikr̂·x dk dτ

=

∫ Υ

0

∫ k2

k1

ψ(τ, k)E∗
0(τ, k)F (τ, k)eik(k̂(τ)−r̂(τ))·x dk dτ. (4.13)

With multi-static data a summation over the measurements is added, i.e.,

Γ(x) =
N∑

n=1

Mn∑
m=1

∫ Υn

0

∫ k2

k1

ψ(τ, k)E∗
0n(τ, k)F mn(τ, k)eik(k̂n(τ)−r̂mn(τ))·x dk dτ. (4.14)

4.2 Dipole images of the FDTD vehicle

To illustrate the dipole scattering model or anisotropic scattering model FDTD
simulated SAR data is used [16], see also Figure 3 and the discussion in Section 3.1.

In Figure 9, the singular value decomposed dipole images for a 90◦ flight track
between 180◦ to 270◦ are shown. The images are given by a SVD of the reflection
matrix. It is observed that the first singular value dominates the 180◦, 240◦, and 270◦

cases, i.e., there is only one dominating scattering process in theses cases. However,
in the 210◦ and 225◦ cases there are orthogonal scattering processes in the front and
at the side of the vehicle. Notice the similarity with the directionally decomposed
images in Figure 3.

The dipole images and the point images are compared for the 180◦ to 270◦ cases
in Figure 10. Here, it is seen that the interference of the point images are eliminated
in the dipole images. Moreover, the physics of the scattering process is included in
the dipole images by the short line depicting the dipole directions and lengths.

In Figure 11, mono-static SAR images from the point scatter model (top row)
and dipole scatter model (bottom row) for the aperture angles 40◦, 80◦, 120◦, 160◦

are compared. It is noted that the point scatter model and dipole scatter model give
similar results for small to moderate aperture angles. This is also expected from
the theory since one polarization dominates the wave propagation for these cases.
As the aperture increases the polarization can not be neglected. At a 90◦ aperture
orthogonal polarizations are used in the horizontally polarized case.
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Figure 9: SAR images with a with an anisotropic source. The first and second
singular values are shown in the first and second row, respectively. The flight track
is between 180◦ to 270◦ with an average illumination indicated by the arrows.

210 225 240 270180

Figure 10: Comparison between the SAR images with a point source (top row) and
SAR images with an anisotropic source (bottom row). The flight track is between
180◦ to 270◦ with an average illumination indicated by the arrows.

In Figure 12, a comparison between bi-static SAR images for the point scatter
model and dipole scatter model is shown. The vehicle is illuminated with a fixed
horizontal wave from an elevation of 75◦ and azimuth indicated by the arrow. The
field is received on a circular path at elevation 65◦. The dipole image has only one
singular value for a bi-static setup with a fixed illumination.

4.3 Horizontal and vertical polarization

Consider a bi-static flight track in spherical coordinates {θi, φi} and {θo, φo}. With
a horizontally polarized antenna, the transmitted and received wave is of the form
φ̂iφ̂o. This gives the dyadic product of the form

φ̂iφ̂o =


 sin φi sin φo − sin φi cos φo 0
− sin φi cos φo cos φi cos φo 0

0 0 0


 (4.15)
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40, 0.08 80, 0.2 120, 0.5 160, 0.5

Figure 11: Comparison between mono-static SAR images from the point scatter
model (top row) and dipole scatter model (bottom row) for the aperture angles
40◦, 80◦, 120◦, 160◦ as indicated by the circular arcs. The vehicle is illuminated with
a horizontal wave from an elevation of 60◦.

Here it is observed that the dyad is independent of the θ0 angle. Moreover, it is only
the horizontal part, i.e., the {x, y}-subspace, of the dyad that is non-zero.

With a vertically polarized antenna, the transmitted and received wave is if the
form θ̂iθ̂o. This gives the dyadic product

θ̂iθ̂o =


cos φi cos θi cos φo cos θo cos φi cos θi cos φo sin θo − cos φi cos θi sin θo

sin φi cos θi cos φo cos θo sin φi cos θi cos φo sin θo − sin φi cos θi sin θo

− sin θi cos φo cos θo − sin θi cos φo sin θo sin θi sin θo




(4.16)
Here, all elements are in general non-zero. However, for low elevation angles, i.e.,
θ0 ≈ 90◦, the dyad is dominated by the vertical component, ẑẑ. It is also observed
that this component is independent of the φ-component.

In Figure 13, SAR images of the FDTD vehicle are shown in the point and
dipole approximation for a θo = 60◦ and 100◦ ≤ φ ≤ 350◦ flight track with either
a vertically or a horizontally polarized antenna. For the horizontal polarization,
it is observed that the interference behavior is reduced with the dipole model. In
the vertically polarized case, it is hard to observe any differences between the point
and dipole approximations. However, the vertically polarized case is not affected by
the point scatter interference to the same degree as the horizontally polarized case.
Due to the large aperture angle, 250◦, and the erroneous treatment of the ground
interaction there is an interference behavior between the scattering from the 180◦

ambiguity.
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point dipole

Figure 12: Comparison between bi-static SAR images for the point scatter model
and dipole scatter model. The vehicle is illuminated with a fixed horizontal wave
from an elevation of 75◦ and azimuth indicated by the arrow. The field is received
on a circular path at elevation 65◦.

5 Resolution

It is easy to have an intuitive understanding of the resolution of an imaging sys-
tems as the systems capability to resolve different object. Unfortunately, there are
several types of resolution, e.g., in SAR it is common to talk about angular resolu-
tion, azimuth resolution, range resolution, resolution cell, slant altitude resolution,
geometrical resolution, and radiometric resolution [7], hence it is necessary give def-
initions for the type of resolution that is used. In mono-static SAR with a moderate
aperture angle, the range resolutions is given by the bandwidth, i.e., c0/2/∆f . The
resolution of the transverse direction is given by the aperture angle and the fre-
quency [7]. In realistic systems, the resolution depends in the signal to noise ratio
(SNR), e.g., the ground reflection gives a large noise level in bi-static SAR, see
Figure 14.

Due to the vector nature of the EM field the resolution also depends on the
polarization. For a low elevation angle and a vertically polarized antenna the image
is given by a Fourier transform with the spectral coverage given by (3.5), see Figure 2.
For multi-static cases the SAR image in (4.14) is used. For vertically polarized
antennas it is sufficient to consider the spectral coverage of the image. From (4.14)
the spectral coverage is given by

N∑
n=1

Mn∑
m=1

k(k̂n(τ) − r̂mn(τ)) (5.1)

where 0 ≤ τ ≤ Υn and k1 ≤ k ≤ k2. In Figure 15, the case with four fixed
illuminations at azimuth angles 0◦, 90◦, 180◦, and 270◦ and a circular receiving flight
path is shown. The elevation angle is fix at 90◦, other elevation angles give a scaling
with sin θ in the spectral domain. In the figure, it is observed that the 360◦ and 180◦
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Figure 13: Comparison between point scatter images and dipole scatter images for
a vertical and horizontal polarized case.

cases has a complete angular spectral coverage, they only differ for small k values.
The spectral coverage of the 90◦ case is half the unit circle. However, observe that
360◦ and 180◦ cases require simultaneous reception of more than one signal. In the
90◦ case, only one signal is received for each position.

In Figure 16, the spectral coverage with four transmitting and receiving paths are
shown. The flight paths are gives by −∆φ/2 ≤ φ − nπ/2 ≤ ∆φ/2 for n = 0, 1, 2, 3
and ∆φ = 80◦, 40◦. Each plane transmits one wave and receives three separate
waves, i.e., the mono-static wave and the bi-static waves from its closes neighbors.
The wave in the forward direction gives only depths information. The mono-static
part of the 80◦ case gives almost complete angular spectral coverage, a 90◦ would
be equivalent to a circular flight path surrounding the object. In addition to the
mono-static part, there is a bi-static contribution. This part has smaller spectral
coverage in the radial direction.

To get a basic understanding of the resolving capabilities of a SAR imaging
system the image of a small PEC sphere is considered. The scattering properties of
a sphere are well known and given by analytic expressions. For a sufficiently small
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Figure 14: Setup for bi-static SAR. The received signal is given by the scattering
from the object (or objects) and the reflection from the ground.

sphere with radius a, the scattering matrix is

S(k, r̂) = k3a3

(
cos θ − 1

2
0

0 1 − cos θ
2

)
, (5.2)

where θ is the angle between the incident plane wave k and the scattering direction
r̂, see [12]. For low elevation angles, the terms cos θ − 1

2
and 1 − cos θ

2
correspond

to horizontally and vertically polarized antennas, respectively. The scattering dyad
can be interpreted as a sum of an electric dipole part and a magnetic dipole part.
The scattering is dominated by the electric part that has twice the amplitude as the
magnetic part. The mono-static case gives 3k3a3

2
. Observe that there are no cross

coupling term in the scattering matrix.
For a mono-static flight path parametrized by θ = θ0 and |φ| ≤ φ0/2 the dipole

SAR image

Γ(x) ∼ 3a3

2

∫ φ0/2

−φ0/2

∫ k0+∆k/2

k0−∆k/2

E0E
∗
0e

2ikk̂·x dk dφ

=
3a3

2

∫ φ0/2

−φ0/2

E0E
∗
0e

2ik0x·k̂ sin(∆kk̂ · x)

k̂ · x
dφ (5.3)

where the dyadic product is given by (4.15) and (4.16) in the horizontally and
vertically polarized cases, respectively. Cuts along the x-direction and y-direction
is seen in Figure 17. Plotting the image for the CARABAS-II frequencies, gives a
spot size radius of approximately 1 m, see also [18]. Hence it is difficult to separate
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Figure 15: The spectral coverage for a multi-static setup with four separate illumi-
nating waves from the azimuth angles 0◦, 90◦, 180◦, and 270◦ and a circular receiving
flight path.

objects smaller than 1 m. However, the scattering properties of theses types of small
objects can be very different, see e.g., Figure 5.

For a bi-static setup the SAR image of the sphere is

Γ(x) =

∫ Υ

0

∫ k0+∆k/2

k0−∆k/2

E0E
∗
0e

ik(k̂−r̂)·x dk dτ

= 2

∫ 0

−0

E0SE∗
0e

ik0x·(k̂−r̂) sin(∆k(k̂ − r̂) · x/2)

(k̂ − r̂) · x
dτ. (5.4)

The SAR images of a fixed illumination given by a horizontally polarized plane wave
in the k̂ = x̂ direction, i.e.,

E(x, τ, k) = E0ŷe−ikx, (5.5)

and a horizontally polarized receiving antenna along the path θo = 90◦, φ0−∆φ/2 ≤
φo ≤ φ0 − ∆φ/2 is shown in Figure 18. In the figure, it is seen that the resolution
is comparable with the mono-static case, cf. with Figure 17, for the 180◦ case, i.e.,
in the back-scattering direction. As the angle between the illumination and the
reception decreases the resolution deteriorate. This is partly due to the scattering
properties of the sphere, i.e., the backscattering dominates and there is no scattering
in 60◦. However it is also due to the decreased resolution of the imaging system, see
Figure 2. Notice that the resolution in the x̂ direction deteriorates much faster than
the ŷ resolution, cf. with Figure 2. The corresponding case with vertically polarized
antennas is shown in Figure 19. Here, it is also observed that the best resolution is
obtained in the back direction. It is also observed that image is in general better
than the horizontally polarized case, since the vector nature of the EM field can be
neglected.
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Figure 16: The spectral coverage with four transmitting and receiving paths given
by −∆φ/2 ≤ φ − nπ/2 ≤ ∆φ/2 for n = 0, 1, 2, 3 and ∆φ = 80◦, 40◦.

6 Non-linear inversion

As mentioned in Section 2.2, the SAR imaging problem can be formulated as a time-
domain least-squares problem. The electromagnetic field consists of the electric and
magnetic fields, i.e., the electric field intensity E, the magnetic field intensity H , the
electric flux density D, and the magnetic flux density B. The Maxwell equations
govern the evolution of electromagnetic waves. The Maxwell equations are given by
the Ampere’s law and the Faraday’s law. They are

{
∂tD −∇× H = 0,

∂tB +∇× E = 0.
(6.1)

The interaction between electromagnetic waves and matter is modeled with a set
of constitutive relations, i.e., a relation between the flux densities {D, B} and the
field intensities {E, H}.

The least-squares inverse scattering formulation is based in minimizing the func-
tional

J[ε] =
∑

measurements

∫ Υ

0

∫ T

0

|E(r(τ), t) − E(m)(r(τ), t)|2 dt dτ (6.2)

where E satisfies the Maxwell equations(6.1) with material parameters ε. The up-
date directions are derived by a perturbation of the material parameters, i.e., the
constitutive relations [9]. The adjoint fields satisfy the Maxwell equations(6.1) and
are solved backwards in time. To find the gradient with respect to the constitutive
parameters ε, µ, and σ, the parameters are perturbed an amount δ, i.e.,


ε(x) → ε(x) + δε′(x) ,

µ(x) → µ(x) +δµ′(x) ,

σ(x) → σ(x) +δσ′(x) .
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PEC sphere for different aperture angles.
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Figure 18: Range and transverse cuts through point and dipole images of a small
PEC sphere for different scattering angles and a horizontally polarized antenna.
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Figure 19: Range and transverse cuts through point and dipole SAR images of a
small PEC sphere for different scattering angles and a vertically polarized antenna.
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The corresponding fields E and H in are perturbed as

{
E →E + δE′ + O(δ2),

H →H + δH ′ + O(δ2),
(6.3)

where O(δ2) is a term of the size δ2, i.e., ‖O(δ2)‖ ≤ Cδ2 as δ → 0. The gradients
of the misfit functional with respect to the parameters ε, µ, and σ are found by
calculating the increment of the misfit functional to the first order, i.e.,

J ′[ε, µ, σ] = lim
δ→0

J [ε + δε′, µ + δµ′, σ + δσ′] − J [ε, µ, σ]

δ

=4
∑

measurements

∫ Υ

0

∫ T

0

ΦE′ · (E − E(m)) dt dτ.
(6.4)

The first order perturbations of the calculated fields E′ and H ′ satisfy the Maxwell
equations {

ε∂tE
′ −∇× H ′ + σE′ = −ε′∂tE − σ′E,

µ∂tH
′ +∇× E′ = −µ′∂tH ,

(6.5)

where the induced sources are given by the unperturbed fields. The initial values
and boundary values are E′(x, 0) = H ′(x, 0) = 0 and no illuminating field.

The gradients are determined by the solution of an adjoint problem. The adjoint
fields {Ẽ, H̃} are determined by the Maxwell equations solved backwards in time
with quiescent initial conditions and an incident wave field far from the object.

{
∂tεẼ −∇× H̃ = −J̃ ,

∂tH̃ +∇× Ẽ = 0
(6.6)

This adjoint equation is solved backwards in time, from t = T to t = 0, with
quiescent initial values

Ẽ(x, T ) = H̃(x, T ) = 0.

At the receiving antenna, the adjoint current density is given by the difference
between the calculated output field and the given output field, i.e.,

J̃(x, t) = E(x, t) − E(m)(x, t) for x ∈ Ω, (6.7)

The adjoint equation is essentially the original equation (the conductivity changes
sign) solved backwards in time with a current density depending on the difference
between the calculated output and the given output fields.

Cross multiply the fields of the perturbed equation with the fields of the adjoint
problem, add and collect terms to get

E′ · J̃ + ∂t

( ε

2
E′ · Ẽ +

µ

2
H ′ · Ẽ

)
+ ∇ · (Ẽ × H ′ + E′ × Ẽ)

= −ε′Ẽ · ∂tE − µ′Ẽ · ∂tH − σ′Ẽ · E.
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Integrate this relation over time [0, T ] and space Ω. The second term vanishes
according to the initial values of the perturbed and adjoint problems, and the third
term gives an integral over the boundary that vanish if the radius of the region is
sufficiently large such that the field have not reached surface. , i.e.,
∫ Υ

0

∫ T

0

E′ · (E−E(m)) dt dτ = −
∫ T

0

∫
Ω

ε′Ẽ ·∂tE +µ′Ẽ ·∂tH +σ′Ẽ ·E dV dt (6.8)

where the definition (6.7) of the adjoint current has been used.
The first order perturbation of the misfit functional is

J ′[ε, µ, σ] = −2
∑

measurements

∫ T

0

∫
Ω

ε′Ẽ · ∂tE + µ′H̃ · ∂tH + σ′Ẽ · E dV dt

= 〈Gε, ε
′〉 + 〈Gµ, µ

′〉 + 〈Gσ/〈σ〉, σ
′/〈σ〉〉

(6.9)

where 〈·, ·〉 is the inner product in L2(Ω). In (6.9), a scaling 〈σ〉 of the conductivity is
introduced. The scaling is used to average the different components of the gradient
[9]. The gradient is identified from (6.9), i.e.,

G(x) = (Gε(x), Gσ/〈σ〉(x), Gµ(x))

where


Gε(x) = −
∑

measurements

2

∫ Υ

0

∫ T

0

Ẽ(x, t, m) · ∂tE(x, t, m) dt dτ,

Gσ/〈σ〉(x) = −
∑

measurements

2〈σ〉
∫ Υ

0

∫ T

0

Ẽ(x, t, m) · E(x, t, m) dt dτ,

Gµ(x) = −
∑

measurements

2

∫ Υ

0

∫ T

0

H̃(x, t, m) · ∂tH(x, t, m) dt dτ

(6.10)

The gradient points in the direction towards the fastest growth of the misfit func-
tional. Hence, the parameters are updated in the opposite direction of the gradient.
Observe the similarities with SAR imaging, i.e., gradients are given by correlat-
ing the illuminating wave field with the back propagated wave field. Hence, the
SAR imaging algorithm can be considered as an initial iteration of a least-squares
inversion algorithm.

The gradients with respect to general constitutive relations are derived in a
similar fashion. For the SAR application, anisotropic material parameters are of
particular importance. In the case of an anisotropic non-dispersive permittivity, the
first order perturbation of the least-square functional contains the factor

Ẽ · ε∂tE =
3∑

i=1

Ẽi

3∑
j=1

εij∂tEj =
3∑

i=1

3∑
j=1

Ẽi∂tEjεij (6.11)

and hence the gradient

Gij(x) = −2
∑

measurements

∫ Υ

0

∫ T

0

Ẽi(x, t)∂tEj(x, t) dt dτ (6.12)
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In the case of a homogeneous background, closed form solutions can be used for
the illuminating field and the adjoint field. This gives a gradient similar to back
propagation in classical SAR imaging, see e.g., [19]. To simplify the result, a Fourier
syntheses is used. The first term in the integral is usually removed by the use of
the far-field pattern. Observe, the similarities with the linearized SAR inversion
algorithm (4.13). For the SAR application it is natural to consider better initial
approximations than a homogeneous region, e.g., a layered model could easily be
used.

To iterate the algorithm it is necessary to use a numerical solver to compute the
illuminating wave field and the back-propagated (adjoint) wave field. The finite-
difference time-domain (FDTD) method is well suited for the computations [16].
In the FDTD calculation, it is advantageous to use a formulation with Huygens’
surfaces for the illuminating wave fields and near to far-field transformations for the
scattered field.

7 Conclusions

In this paper it is shown that the SAR point scattering model has to be generalized
when a large aperture angles are considered. A dipole scattering model is shown to
give consistent results for these cases. The dipole model is related to an anisotropic
reflectivity.

The preferred setup for a SAR system depends on several factors. In general it
is difficult to obtain sufficient data to satisfy the uniqueness criteria in Section 2.2.
However, it is likely to have sufficient amount of data such that the simple scalar
imaging algorithm is no longer valid. Hence, it it important to have a simple model
such that the data can be used consistently. Considering the case of limited data
and a linear inversion it is desired to obtain a setup with a large spectral coverage.
For the radial coverage it is observed that is it preferable to use a large bandwidth
and a high frequency. The angular coverage is given by a large aperture angle.
Here it is also observed that the backscattering direction gives the most efficient
angular coverage. The forward scattering direction gives limited coverage. For the
polarization it is observed that a vertically polarized antenna it preferable to a
horizontally polarized antenna. However, it is of course even better to have dual
polarized antennas.
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2003.

[18] C. J. Nolan and M. Cheney. Synthetic aperture inversion. Inverse Problems,
18, 221–235, 2002.

[19] L. M. H. Ulander, H. Hellsten, and G. Stenström. Synthetic-aperture radar
processing using fast factorized back-projection. IEEE Trans. Aerospace and
Electronic Systems, 39(3), 760–776, 2003.


