
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Processor Thermal Control Using Adaptive Bandwidth Resource Management

Romero Segovia, Vanessa; Kralmark, Mikael; Lindberg, Mikael; Årzén, Karl-Erik

2011

Link to publication

Citation for published version (APA):
Romero Segovia, V., Kralmark, M., Lindberg, M., & Årzén, K.-E. (2011). Processor Thermal Control Using
Adaptive Bandwidth Resource Management. Paper presented at 18th IFAC World Congress, 2011, Milan, Italy.

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 18. May. 2025

https://portal.research.lu.se/en/publications/169604a5-b535-44e6-947c-452e55f2c301


Processor Thermal Control Using Adaptive

Bandwidth Resource Management

Vanessa R. Segovia ∗ Mikael Kralmark ∗ Mikael Lindberg ∗

Karl-Erik Årzén ∗

∗ Department of Automatic Control, Lund University, Sweden,
vanessa,mikael.kralmark,lindberg,karlerik@control.lth.se

Abstract: An adaptive resource management system combined with a thermal controller is
presented. The aim of the system is to dynamically allocate computing resources to applications
competing for the same computing resources in such a way that the system is not overheated.
The approach has been implemented on a mobile robot. Experimental results are presented
showing the feasibility of the approach.

Keywords: resource management, thermal control, embedded systems, mobile systems.

1. INTRODUCTION

Dealing with resource constraints is a key challenge in de-
signing mobile embedded systems. Power, communication
bandwidth and computational resources are all instrumen-
tal to performance in fields such as mobile robotic or media
capable mobile phones. These resources are all typically
limited, i.e., the processor has a limited capacity or the
entire system is battery-driven.

Traditionally, embedded computing systems have been de-
signed using static worst case assumptions on availability
of resources, but for systems with large variability in use
cases or which are executing on uncertain executing plat-
forms this is increasingly difficult. An alternative approach
is to instead allocate resources to different applications or
systems dynamically, based on measurements of resource
consumption, resource availability, and the generated qual-
ity of service. This is also referred to as adaptive resource
management and is particularly suited for applications of a
soft real-time nature, e.g., media processing applications.
However, many control and service robotic applications
also fall within this domain.

The task of the adaptive resource manager is to decide
how resources should be allocated to different applications
on the system. If the total computational load is too high
the system will consume more power, which will also cause
the temperature of the computer chip to increase. In order
to prevent failures due to overheating, active cooling can
be used. However, this will also contribute to the power
consumption. An alternative is then to instead limit the
computer load, or utilization

In this paper an approach that combines a PI controller
for thermal control of the chip and an adaptive resource
management system is presented. The output from the PI
controller is used as the maximum allowed utilization of
the system, i.e., the maximal amount of CPU bandwidth
that the resource manager is allowed to distribute among
the applications executing on the system. In the paper an
adaptive resource manager from the EC ACTORS project

is used. The platform used is a Pioneer mobile robot with
an Intel PC computer, but the approach can be considered
for any system where energy or space constraints make
the use of active cooling infeasible. Such systems include
mobile phones and embedded controllers.

2. RELATED RESEARCH

Limiting temperature in the CPU by controlling utilization
has been proposed by Fu et al. (2010), but they do not
discuss the actual software performance. Software perfor-
mance metrics for a thermal control case was introduced
e.g. by Lindberg and Årzén (2010) but were only evaluated
through simulations.

The resource manager used in this work is based on
the resource manager developed within the ACTORS
project (Segovia et al. (2010)). The combined feedfor-
ward/feedback structure employed in the ACTORS re-
source manager is based on the AQuoSA architecture,
Abeni et al. (2005), employed in the EC FRESCOR
project. The way to model the resource requirements and
the generated quality of service of the applications is based
on the MATRIX project (Rizvanovic and Fohler (2007)).
The thermal dynamics model used is based on Ferreira
et al. (2007).

3. SYSTEM MODEL

In order to prevent CPU processor overheating, which
could cause performance degradation of all the applica-
tions executing on the system and even system failure, we
propose a system model that combines feedback and feed-
forward techniques to control both the temperature and
the utilization of the processor (CPU) through adaptive
bandwidth allocation. Figure 1 shows the proposed system
model, which combines the features of a thermal controller,
that keeps the temperature of the system bounded to a
desirable temperature acceptable to the processor, and
a resource manager, that dynamically allocates resources
to each application on the system. Here, T and TR are
the current temperature of the system, and the reference



Fig. 1. System model

temperature respectively, it is assumed that this last value
is specified by the system designer. The values U , Umin,
Umax and UL correspond to the utilization of the system,
the lower and upper utilization bounds and the utilization
limit defined by the thermal controller respectively.

3.1 Software components

Due to system limitations, as well as performance speci-
fications, it is convenient to keep the temperature of the
system bounded to a desired value. From a software point
of view, this can be achieved using bandwidth reservation
techniques (Abeni and Buttazzo (1998)), which in com-
bination with control theory allow at runtime adaptive
allocation of CPU resources provided to the applications.
Reservation techniques such as the constant-bandwidth
server (CBS), guarantee to each application a certain
execution budget every server period, this is also known
as virtual processors (VP). In order to achieve this adap-
tive allocation of resources, we use a modified version
of the architecture proposed originally by ACTORS (see
e.g. Segovia and Årzén (2010)), which assumes a multicore
physical platform. For our particular case we employ a
single core physical platform. Figure 2 shows the modified

Fig. 2. Modified ACTORS architecture

architecture, which is composed mainly of three compo-
nents: the applications, the resource manager (RM) and
the reservation layer which includes the VPs of each ap-
plication.

The RM is a daemon application, composed of a central-
ized supervisor and several bandwidth controllers, these
elements will be explained in Section 4. The main tasks
of the RM are to accept applications that want to execute
on the system, to provide CPU resources to these appli-
cations, to monitor their behaviour over time, and to dy-
namically change the resources provided according to the
real needs of the application, and the performance criteria
of the system, e.g. to limit the maximum temperature of
the system.

The application can be composed of one or several tasks,
which may have dependencies between each other. It is
assumed that an application has different service levels.
The quality-of-service (QoS) provided by the application
is associated to the service level at which it executes,
the higher the service level the higher the QoS, and
the more resources it consumes over time, which implies
a higher utilization of the system. It is also assumed
that the application can communicate its service level
information to the RM. Table 1 shows an example of
this information for an application named A1 that has
three service levels and three VPs, and for application
A2 which has two service levels. In the table SL, QoS,

Application SL QoS α ∆ BWD
name [%] [%] [µs] [%]

A1 0 100 100 28-24-24 40-30-30
1 80 70 42-48-48 30-20-20
2 60 40 80-90-90 20-10-10

A2 0 100 60 20
1 80 40 50

Table 1. Service level table for applications A1
and A2, with SL, QoS, α, ∆ and BWD as
initial model parameters of the applications.

α, ∆, and BWD are a service level index, the quality
of service, the total bandwidth, the tolerable application
delay, and the bandwidth distribution respectively. The
delay ∆ represents a measure of the time granularity of
the specific service level, typically high QoS levels have a
low value of ∆. The bandwidth distribution is an optional
value, it is an indication from the application to the
RM how this total bandwidth should be distributed over
the individual virtual processors. Additionally the RM
is informed about the total number of VPs that each
application contains and the importance of the application
relative to others.

The information provided by the application (see Table 1)
represents an initial estimate of the resources required at
an specific service level. This information constitutes an
initial model of the application, which during run-time and
through the control mechanism implemented by the RM
will be tuned appropriately.

The reservation mechanism used by the RM is provided
by SCHED EDF, Manica et al. (2010), which is a new Linux
scheduling class developed in ACTORS that provides
support for partitioned hard CBS servers.

3.2 CPU thermal model

In this paper, we propose a model for the thermal dy-
namics based on Ferreira et al. (2007). According to this
model the dynamics from the CPU consumed power P to
the CPU temperature T is on the form

Ṫ = a(Ta − T ) + bP + d (1)

where a and b are constants that depend on the thermal
resistance and heat capacity of the processor and Ta is the
ambient temperature, d is a disturbance term which will be
assumed to have slow dynamics, such as heat generated by
direct sunlight or by being placed on a heated surface. For
off-the-shelf CPUs, a and b are in the order of 10−4 and
10−3 respectively (see e.g. Fu et al. (2010)), making the



dynamics relatively slow. It is therefore assumed that it is
possible to filter out measurement noise, which is therefore
omitted from the model.

Considering that the relationship between CPU utilization
U and the power consumption P is defined by the linear
formulation (see Heath et al. (2006))

P = Pidle + U(Pmax − Pidle) (2)

where Pidle and Pmax are the power consumption when
the processor is idle and fully utilized respectively.

Equations 1 and 2 show that by limiting the load of the
system, the temperature can be controlled even if the CPU
is only passively cooled. Sampling the combination of these
two equations can be done under ZOH assumptions.

4. CONTROL DESIGN

4.1 Control objectives

The proposed thermal control algorithm together with the
resource manager are designed to meet two fundamental
requirements: to prevent processor overheating by mini-
mizing the maximum temperature of the system, and to
provide desired system performance by maximizing the
QoS provided by the running applications subject to the
resource limitations.

4.2 Thermal control design

To fulfill the first objective of our control design, we
propose the use of a PI algorithm for the thermal con-
troller. As shown in Figure 3, the signal T from the

Fig. 3. Thermal controller structure

temperature sensor is passed through a lowpass filter with
FIR-structure, in order to reduce measurement noise. The
filtered temperature TF is then compared with the refer-
ence temperature TR, producing the error input of the PI
controller. Additionally to this input the controller uses
the utilization signal U provided by the resource manager,
which represents the current CPU load caused by the
applications running at an specific service level on the
system. This signal is used by the anti-windup component
of the PI controller to prevent wind up of the integral part.

The additional inputs Umin and Umax, represent the min-
imum utilization required by the applications to provide
the lowest permissible QoS, and the maximal available uti-
lization defined by the employed scheduling policy respec-
tively. Umin must be chosen so that thermal constraints
are not violated when running the enabled software at the
lowest possible QoS. These two inputs provide the lower
and upper limits that bound the PI controller output u(k)
such that, u(k) ∈ [Umin(k), Umax]. According to this the
control output of the thermal controller, or utilization limit

UL, can be defined as UL(k) = sat(u(k), Umin(k), Umax),
with

sat(u(k), Umin(k), Umax) =







Umin(k), u(k) < Umin(k)

Umax, u(k) > Umax

u(k), otherwise

The output of the thermal controller UL(k), decides the
maximum amount of CPU bandwidth available to the
RM. The resource manager dynamically allocates CPU
resources to the applications based on the utilization limit
UL, the measurements provided by the scheduler for each
of the running applications, and the performance criteria
of the system, e.g. maximization of the QoS.

4.3 CPU resource allocation

The different elements that constitute the resource man-
ager as shown in Figure 2, implement a control mechanism
that combines feedforward and feedback strategies, which
allow adaptive allocation of CPU resources at runtime.

The feedforward algorithm is carried out by the supervisor,
which responsibilities include acceptance or registration of
applications, monitoring of the minimum utilization Umin

required by the applications to provide and specific QoS,
and monitoring and control of the system utilization U ,
which is subject to the constraints defined by the thermal
controller.

During registration, each application communicates its
service level information (see Table 1) to the RM, in
particular to the supervisor. Based on this information
the supervisor assigns the service level at which each
application must execute. This assignment can be formu-
lated as an integer linear programming (ILP) optimization
problem, which objective is to maximize the global QoS of
the current applications running on the system including
the new application, under the constraint that the total
amount of resources is limited. The boolean variable yij is
1 if application i is assigned QoS level j, it is 0 otherwise.
For each application i, qij denotes the quality at level j,
and αij the bandwidth requirement. The problem can now
be stated as follows

max
∑

i

wi

∑

j

qijyij

∑

i

∑

j

αijyij ≤ C (3)

∑

j

yij ≤ 1 ∀i

where C is the total assignable bandwidth of the sys-
tem, which corresponds to the utilization limit UL value
defined by the thermal controller, and wi is the weight
(importance) of application i relative to other applications.
The importance values are assumed to be decided by the
system designer. The last constraint implies that, if nec-
essary, some low important applications might be turned
off, in order to allow the registration of more important
applications.

After the service level assignment of each application,
the supervisor calculates the reservation parameters of
each VP. Hence, it creates the VPs for the tasks of each
application by defining the budget Q, and the period P



of each VP. The calculation of the budget and the period
of the server is based on the corresponding (α, ∆) (see
Mok et al. (2001)) parameters described by the following
equation

Q = αP P =
∆

2
+ Q (4)

The service level assignment of the applications running on
the system, is carried out not only during registration, but
also when the thermal controller redefines the utilization
limit UL. This could be the result of abrupt temperature
increments in the system caused by internal factors, such
as a high computational load of the running applications,
or by external ones such as overheated adjacent equipment.
Any of these situations would trigger a new service level
assignment for all applications.

The service level assigned to each application running on
the system, sets an initial upper limit for the assigned
budget also known as ABL, this value can be directly cal-
culated from the information provided by the application
(see Table 1).

The feedback mechanism is implemented by the band-
width controllers of the VPs of each application. They
check, whether or not the tasks within the VPs make
optimal use of the bandwidth provided, or the assigned
budget (AB), and take actions to ensure this without
degrading the performance of the application. The band-
width controllers are executed periodically with a period
that is a multiple of the period of the VP that they are
controlling.

The bandwidth controllers measure the actual resource
consumption using two measurements provided by the
scheduler. The used budget (UB) is the average used
budget over the sampling period of the controller at the
current assigned service level. Considering that the linux
scheduler SCHED EDF supports hard reservations, the UB
is always less than or equal to the budget that has been
assigned to the VP by the RM. The hard reservation (HR)
is a value that tells the percentage of server periods over
the last sampling period that the task in the VP consumed
its full budget. This is an indicator of the number of
deadlines missed.

The bandwidth controllers have a cascade structure shown
in Figure 4. The hard reservation set point (HRSP ) cor-
responds to the maximum percentage of deadlines misses
that can be allowed in each sampling period. Based on the
difference between the HRSP and the HR values, the outer
controller C1 defines the new values of the set point for
the used budget (UBSP ), which in this case corresponds
to upper and lower bounds within which the UB mea-
surement should reside. The inner controller C2, which
corresponds to an exponential controller, requires that the
UB lays within the bounds, in case any of these bounds are
violated, C2 recalculates and adjusts the assigned budget
AB of the VP, subject to the limitation defined by the
supervisor. The value of HRSP can be related to the
performance of the application.

5. IMPLEMENTATION

The thermal control algorithm has been implemented to-
gether with the modified ACTORS framework. The imple-

Fig. 4. Resource manager controller structure

mentation was done on a Pioneer mobile robot [MobileR-
obots Inc (2006)] with an internal Intel Pentium III based
computer [Versalogic Corporation (2007)]. The thermal
sensor used is a National Semiconductor LM83 chip with
an accuracy of ±3◦C [National Semiconductor Corpora-
tion (1999)], and sample period of 2 seconds. The D/A-
conversion takes approximately 500 ms and the tempera-
ture measurement is updated by the sensor driver every
two seconds [Delvare (2010)]. In order to avoid aliasing
effects, the sampling period of the bandwidth controllers
is set to a multiple of the application granularity that is
higher than the A/D conversion time.

A PI controller, designed as discussed in Section 4.2 is used
to calculate the utilization limit parameter, that keeps
the temperature of the system around a reference value
provided by the user. To limit the measurement noise,
the temperature signal is passed through a FIR filter
with a rectangular window of one minute. The thermal
controller is set to run as often as new data is available
from the sensor, i.e. every two seconds, this is done to
get as much data as possible to improve the filtering. The
utilization limit UL calculated by the controller sets the
upper bound C of one of the constraints of the service
level assignment problem defined by equation 3. In order
to solve the ILP optimization problem, the RM uses the
GLPK linear programming toolkit(Makhorin (2000)).

The RM is implemented in C++. It consists of two threads
that execute within the same fixed-size reservation in one
of the cores. The RM communicates with the applica-
tions through a DBus interface and with the underly-
ing SCHED EDF scheduler using the control groups API of
Linux. The first thread handles incoming DBus messages
containing, e.g., the service level table information which
is sent when an application registers, and notifications
that an application has terminated. The second thread
periodically samples the VPs, measures the resource con-
sumption, and invokes the bandwidth controllers.

The reservation mechanism is provided by the Linux
scheduling class SCHED EDF. The measured system utiliza-
tion value only considers the applications that register
with the resource manager, and not the RM itself which
has a fixed amount of resources allocated by the system.
For this implementation the maximum utilization Umax

was set to 80%. Every time that the utilization limit
changes in any direction the system utilization will be
temporarily higher, this occurs while the RM is solving
the ILP optimization problem. To reduce this effect and
to limit the influence of the noise that might still be



present after filtering, the new calculated utilization limit
is passed to the RM only if it has changed by more than
five percentage points with respect to its previous value.

6. EXPERIMENTAL RESULTS

6.1 Thermal model validation and PI controller design

In order to validate the model structure presented by the
equations 1 and 2, a step response experiment was carried
out on the experimental platform. According to the results

0 5 10 15 20 25 30
20

40

60

80
Temperature step response for a Pentium 3 CPU

Time (min)

T
e

m
p

e
ra

tu
re

 (
d

e
g

 C
)

0 5 10 15 20 25 30

0

20

40

60

80

100

Utilization

Time (min)

L
o

a
d

 (
p

e
rc

e
n

ta
g

e
 o

f 
m

a
x
)

Fig. 5. Step response experiment performed on a Pioneer
mobile robot.

shown in Figure 5, the dynamics between utilization U and
chip temperature T can be roughly modeled by the first
order system with time delay

T (s)

U(s)
=

KP

Ts + 1
e−τs (5)

where the gain of the system corresponds to KP = 0.37,
the time constant to T = 32.54 s and the dead time to
τ = 31.1 s. A better fit could likely be achieved with a
more advanced model, as the step responses in Figure 5
do not correspond exactly to those of a first order system,
but it would not change the approach significantly.

According to this model, and the internal model control
(IMC) approach, Daniel E. Rivera and Skogestad (1986),
the tuning constants of the PI controller correspond to
K = 4.1792 and Ti = 48.09.

6.2 Experimental setup

In order to see the performance of the proposed algorithm
under normal and overloaded conditions, two different
experiments were carried out. In the first experiment the
reference temperature was set to 55◦C for a period of 10
minutes, and then changed to 45◦C for another 10 minutes.
For the second experiment the reference temperature was
kept constant at 50◦C.

Since the objective of these experiments is to show the
performance of the thermal controller working together
with the resource manager, we define the service level
tables of applications A1 and A2 such that, the ILP
optimization problem defined by Equation 3 always finds
a feasible solution. The infeasible solution case which is
handled by a bandwidth compression algorithm, and the
tuning of the values on the service level tables are outside
the scope of this paper.

For the first experiment, we used a pipeline application A1
consisting of two tasks T 1

1
and T 1

2
with random execution

times. As described in Section 4.3, during registration
the application provides its service level information (see
Table 2) to the RM. Since there are enough resources in
the system, the RM assigns service level 0 to A1.

Application SL QoS α ∆ BWD
name [%] [%] [ms] [%]

A1 0 100 60 24-32 40-20
1 90 30 32-36 20-10
2 75 20 36-36 10-10

Table 2. Service level table for application A1

The first plot in Figure 6 shows the behavior of the filtered
system temperature (green) with respect to the reference
temperature (red). The second plot displays the measured
utilization (green) and the utilization limit (red), which is
the output of the thermal controller. The third plot shows
the service levels of the application A1. The changes are
done to compensate for the reference temperature change.
The last plot of Figure 6 depicts the process variables
of the bandwidth controller (see Figure 4), i.e., the used
budget (green) and the hard reservation (blue) values,
and the assigned budget (red) which is the output of the
bandwidth controller.

0 200 400 600 800 1000
35

40

45

50

55

60
Reference temperature and CPU temperature

Time (s)

T
e

m
p

e
ra

tu
re

 (
d

e
g

 C
)

 

 

Setpoint

Filtered temperature

0 200 400 600 800 1000
0

20

40

60

80

100
System utilization and utilization limit

Time (s)

L
o

a
d

 (
p

e
rc

e
n

ta
g

e
 o

f 
m

a
x

)

 

 

Utilization limit

Measured utilization

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3
Assigned service level for application A1

Time (s)

S
e

rv
ic

e
 l

e
v

e
ls

 

 

Service level

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1
Assigned Budget, Used Budget and Hard Reservation values for application A1

Time (s)

A
B

, 
U

B
 a

n
d

 H
R

 m
e

a
s

u
re

m
e

n
ts

 

 

Assigned budget

Used budget

Hard reservation

Fig. 6. Performance results under normal conditions. One
application running on the system subject to changes
in the execution time, and in the system reference
temperature.

As can be seen in Figure 6, after registration the band-
width controllers read the HR and UB values of each of
the application VPs and adjust them according to their



set points, the HRSP is defined as 0.1, that is, up to
10% deadline misses are allowed within each sampling
period. During the entire execution of the application,
the bandwidth controllers keep adapting the AB of the
application. At time t = 200s the execution time of the ap-
plication decreases around 10%, the bandwidth controllers
react reducing the assigned budget AB. A new execution
variation can be seen at time t = 300s, this causes the HR
value to equal 0.9, which is quickly compensated by the
cascade controller.

Since during the first 10 minutes the system temperature
keeps below 55◦C, the UL value set by the thermal con-
troller does not force a service level change in the appli-
cation A1. At time t = 600s the reference temperature
changes to 45◦C, here the thermal controller sets the UL

according to the algorithm described in Section 4.3. The
changes in UL trigger the feedforward mechanism of the
RM, which assigns a new service level to A1. In order to
compensate for the large temperature change, 3 service
level changes are carried out, from 0 to 1, from 1 to 2 and
finally from 2 to 1, where it remains. Notice that after
time t = 600s the filtered temperature TF does not drop
as rapidly as one could expect, this is the effect of solving
the optimization problem that leads to a new service level
assignment, and which increases momentarily the load on
the system.

For the second experiment, we used a new pipeline applica-
tion A1 and a simple application A2 consisting of one task
T 2

1
, where application A1 has a higher importance than

application A2. Table 3 shows the service level information
provided by applications A1 and A2. At the beginning the

Application SL QoS α ∆ BWD
name [%] [%] [ms] [%]

A1 0 100 40 28-36 30-10
1 90 30 32-36 20-10
2 75 20 36-36 10-10

A2 0 100 20 32 20
1 85 10 72 10
2 35 5 152 5

Table 3. Service level table for applications A1
and A2

only running application is A1, to which the RM assigns
the service level 0. At time t = 300s application A2
registers with the RM, which assigns service level 0 for
A2 and keeps A1 at service level 0.

Figure 7 shows the behavior of both of the applica-
tions when it is required to keep the system temperature
bounded to 50◦C. This figure contains the same variables
as described for the first experiment, together with the
additional measurements corresponding to the second ap-
plication A2. This can be seen specifically in the third
plot, which shows the service levels for A1 (red) and
A2 (green), and in the fifth plot which represents the
measurement variables and the controller output of the
bandwidth controller of the application A2.

When the application A2 registers with the RM, the
utilization of the system increases causing an increment
on the system temperature. Around time t = 720s the
thermal controller sets the utilization limit UL to a value
that requires a new service level change from the RM.

This is carried out for both of the applications, but since
application A1 has a higher importance than A2, the
RM reduces the service level of A2 from 0 to 2. Once
the system temperature gets below 50◦C, the thermal
controller increases the value of UL, this causes a new
service level assignment for application A2, from 2 to 1.
The bandwidth controllers for both of the applications are
also shown.

0 200 400 600 800 1000 1200
35

40

45

50

55

60
Reference temperature and CPU temperature

Time (s)

T
e

m
p

e
ra

tu
re

 (
d

e
g

 C
)

 

 

Setpoint

Filtered temperature

0 200 400 600 800 1000 1200
0

20

40

60

80

100
System utilization and utiliyation limit

Time (s)

L
o

a
d

 (
p

e
rc

e
n

ta
g

e
 o

f 
m

a
x

)
 

 

Utilization limit

Measured utilization

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5

3
Assigned service levels for applications A1 and A2

Time (s)

S
e

rv
ic

e
 l

e
v

e
ls

 

 

SL A1

SL A2

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1
Assigned Budget, Used Budget and Hard Reservation values for application A1

Time (s)

A
B

, 
U

B
 a

n
d

 H
R

 m
e

a
s

u
re

m
e

n
ts

 

 

Used budget

hard reservation

Assigned budget

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5
Assigned Budget, Used Budget and Hard Reservation values for application A2

Time (s)

B
u

d
g

e
t 

(p
e

rc
e

n
ta

g
e

 o
f 

m
a

x
)

 

 

Used budget

hard reservation

Assigned budget

Fig. 7. Performance results under overloaded conditions.
Two applications running on the system subject to
system temperature constraints.

7. CONCLUSIONS AND FUTURE WORK

An algorithm that combines the features of a proces-
sor thermal controller with the qualities of adaptive re-
source management is described. We present an applica-
tion model where the application defines the QoS that can
be expected at an specific service level. The combination
of feedforward and feedback techniques allows adaption
at two different levels, at the central level, where all the
applications on the system adapt to the temperature con-
straints of the system, and at a distributed level, where
the system adapts to the particular resource requirements
of each application.



In future work we plan to extend this approach for multi-
core systems, where due to the complexity of the system,
the solution could lead to partial or even total migration
of applications to other processors on the system.

8. ACKNOWLEDGEMENTS

This work has been supported by the EC ICT FP7 project
ACTORS (ICT-216586).

REFERENCES

Abeni, L. and Buttazzo, G. (1998). Integrating multimedia
applications in hard real-time systems. In Proceedings of
the 19th IEEE Real-Time Systems Symposium (RTSS),
3–13. Madrid, Spain.

Abeni, L., Cucinotta, T., Lipari, G., Marzario, L., and
Palopoli, L. (2005). Qos management through adaptive
reservations. Real-Time Systems, 29(2-3), 131–155.

Daniel E. Rivera, M.M. and Skogestad, S. (1986). Internal
model control 4: Pid controller design. In Industrial and
Engineering Chemestry Research, 252–265.

Delvare, J. (2010). Kernel driver lm83.
http://www.mjmwired.net/kernel/Documentation/
hwmon/lm83.

Ferreira, A.P., Mosse, D., and Oh, J.C. (2007). Thermal
faults modeling using a rc model with an application
to web farms. In Proceedings of the 19th Euromicro
Conference on Real-Time Systems (ECRTS 2007), 113–
124. Pisa, Italy.

Fu, Y., Kottenstette, N., Chen, Y., Lu, C., Koutsoukos,
X.D., and Wang, H. (2010). Feedback thermal control
for real-time systems. In Proceedings of the 16th Real-
Time and Embedded Technology and Applications Sym-
posium (RTAS 2010), 111–120. Stockholm, Sweden.

Heath, T., Centeno, A.P., George, P., Ramos, L., Jaluria,
Y., and Bianchini, R. (2006). Mercury and freon: Tem-
perature emulation and management for server systems.
In Proceedings of the 2006 ASPLOS Conference, 106–
116. San Jose, CA, USA.

Lindberg, M. and Årzén, K.E. (2010). Feedback control of
cyber-physical systems with multi resource dependen-
cies and model uncertainties. In Proceedings of the 31st
Real-Time Systems Symposium. San Diego, California
USA.

Makhorin, A. (2000). Gnu linear programming kit.
http://www.gnu.org/software/glpk.

Manica, N., Abeni, L., Palopoli, L., Faggioli, D., and
Scordino, C. (2010). Schedulable device drivers: Im-
plementation and experimental results. In Proceed-
ings of International Workshop on Operating Systems
Platforms for Embedded Real-Time Applications (OS-
PERT), 3–13. Brussels, Belgium.

MobileRobots Inc (2006). Pioneer 3 Operations Manual.
Amherst, NH, US.

Mok, K., A., Feng, X., and Chen, D. (2001). Resource
partition for real-time systems. In Proceedings of the
7th IEEE Real-Time Technology and Applications Sym-
posium, 75–84. Taipei, Taiwan.

National Semiconductor Corporation (1999). LM83
Triple-Diod Input and Logical Digital Temperature Sen-
sor with Two-Wire Interface, DS101058.

Rizvanovic, L. and Fohler, G. (2007). The matrix - a
framework for real-time resource management for video

streaming in networks of heterogenous devices. In
The International Conference on Consumer Electronics
2007, 1–2. Las Vegas, USA.

Segovia, V.R. and Årzén, K.E. (2010). Towards adaptive
resource management of dataflow applications on multi-
core platforms. In Proceedings Work-in-Progress Session
of the 22nd Euromicro Conference on Real-Time Sys-
tems, ECRTS 2010, 13–16. Brussels, Belgium.

Segovia, V.R., Årzén, K.E., Schorr, S., Guerra, R., Fohler,
G., Eker, J., and Gustafsson, H. (2010). Adaptive
resource management framework for mobile terminals
- the actors approach. In Proceedings of Workshop on
Adaptive Resource Management, WARM 2010, 28–33.
Stockholm, Sweden.

Versalogic Corporation (2007). Model VSBC-8 Reference
manual. Eugene, OR, US.


