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I may not have gone where I intended to go,
but I think I have ended up where I needed to be
- Douglas Adams
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Abstract

Functional magnetic resonance imaging (fMRI) is a non-invasive technique used
for the investigation of brain function, which has found numerous applications
within basic neuroscience. The introduction of fMRI as a clinical tool for
presurgical mapping of pertinent cortical regions in patients with tumour or
epilepsy has facilitated neurosurgical planning, and most likely reduced the risk of
severe postoperative deficits. However, there is a fundamental difference between
the application of fMRI in experimental research and in the clinical setting. While
inference is often drawn from data on group level in neuroscientific applications of
fMRI, the clinical use of the method demands that reliable results be obtained in
individual patients.

The aims of the methodological studies presented in this thesis were to increase the
reliability and extend the usefulness of clinical fMRI. In one study, gradient-echo
field maps were utilized to assess the sensitivity of echo-planar imaging to the blood
oxygenation level dependent (BOLD) contrast. Theoretical expressions for the
calculation of the BOLD sensitivity were verified and improved. The BOLD
sensitivity was investigated in a group of healthy volunteers using a clinical
magnetic resonance imaging (MRI) system, and it was concluded that the field
map method accurately predicts BOLD sensitivity. In another study, a flexible
model was introduced in order to increase the confidence of clinical fMRI
examinations of patients unable to fully comply with a typical clinical fMRI
experiment. The method was applied to experimental and simulated data, and then
used to retrospectively analyse patient data. The conclusion drawn from this study
was that the proposed flexible model improves the detection of activation in
partially non-compliant subjects. In the third study included in this thesis, the
model-free algorithm locally linear embedding was applied to fMRI data analysis.
The proposed data-driven algorithm was optimized and investigated with respect
to reliability and possible benefits in a clinical setting. The algorithm was found to
compare well to the traditionally used method of principal component analysis,
and showed benefits when applied to simulated fMRI data exhibiting non-linear
characteristics. Finally, the test-retest reliability of resting-state fMRI was compared
with the reliability of traditional task-based fMRI. Resting-state fMRI compared
well with task-based fMRI experiments, thus possibly extending the use of fMRI to
patient groups that have hitherto not been able to benefit from fMRI
examinations.
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Abbreviations

BOLD
CBF
CBV
EPI
fMRI
GLM
HRF
ICA
LLE
MDS
MRI
PCA
RF
ROC
SNR
TC
TE
TR

Blood oxygenation level dependent
Cerebral blood flow

Cerebral blood volume
Echo-planar imaging

Functional magnetic resonance imaging
General linear model
Hemodynamic response function
Independent component analysis
Locally linear embedding
Multi-dimensional scaling
Magnetic resonance imaging
Principal component analysis
Radio frequency

Receiver operating characteristic
Signal-to-noise ratio

Nominal echo time

Effective echo time

Repetition time
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1. Introduction

Since its introduction in the early 1990s, functional magnetic resonance imaging
(fMRI) has become a successful non-invasive tool for probing the functional
architecture of the brain. The study of the physiology that governs the contrast
utilized in fMRI has, however, a much longer history. In 1890, Roy and
Sherrington (1) discovered that the regulation of blood flow and blood
oxygenation in the brain were closely coupled to neuronal activity. They observed
that stimulation of specific regions of the brain increased the blood flow in these
areas and, furthermore, that the amount of oxygen extracted from the blood was
smaller than the amount delivered. A study by Pauling and Coryell in 1936 (2),
established that the oxygen bound to haemoglobin is diamagnetic, whereas
deoxygenated haemoglobin is paramagnetic. The magnetic properties of deoxy-
haemoglobin and oxyhaemoglobin were further studied by Thulborn et al. who, in
1982, observed the dependence of the transverse relaxation rate of water protons
on the blood oxygenation level (3). The local increase in oxygen concentration in
the blood resulting from the stimulation of various regions of the brain is the
physiological foundation of the so-called blood oxygenation level dependent
(BOLD) contrast that is utilized in fMRI (4,5). The BOLD contrast was, however,
not utilized for studies of brain activation until the early 1990s, when several
research groups investigated this application (6-10).

1.1  Applications of fMRI

The initial applications of fMRI focused on the localization of various cerebral
functions, including the mapping of functional areas in the brain responsible for
motor control, sensory input, language and memory (6,8,11,12). These
applications have primarily been investigated by the use of prolonged blocks of
stimuli interleaved with some baseline condition (often represented by the subject
being at rest). With the introduction of higher magnetic field strengths and more
sophisticated analysis strategies, the investigation of the actual haemodynamic
response to a single stimulus was made possible. This also promoted the
application of other types of paradigms allowing the registration of subject response
to an individual stimulus. The use of more elaborate paradigms has further allowed
investigations of phenomena such as learning and attention (13,14). A subject of
great interest to the neuroscientific community is the establishment of functionally



connected networks, first demonstrated by Biswal et al., in 1995 (15). Such
networks, exhibiting correlating changes in brain activation, exist both during task
and in varied states of consciousness. The study of resting-state activation, i.e.,
spontaneous signal fluctuations observed in subjects at rest or asleep is an
important aspect of functional connectivity analysis. A number of reproducible
networks have been established, and the study of these networks may lead to a
deeper understanding of the brain, as well as possible clinical applications (16).

1.2 Clinical use of ftMRI
The reliability of BOLD fMRI has improved with the advent of robust paradigms,

new data analysis methods and hardware development, facilitating the introduction
of the method into the clinical environment. An important clinical application is
the mapping of functional areas of the brain at risk prior to surgical resection of
tumours, and of parts of the brain inflicting epileptic seizures (17-23). BOLD
fMRI has evolved into a complementary method for such procedures, replacing
invasive methods such as electrocortical stimulation (24) and the Wada test (25).

An important aspect of fMRI in general and of the clinical implementation of
fMRI in particular, is the sensitivity of the method. A method to be used as a tool
for presurgical mapping must perform well with respect to the detection of truly
activated brain areas, otherwise the risk of a surgical resection of pertinent areas at
risk will increase. While fMRI generally has been shown to exhibit good sensitivity,
methodological limitations exist that potentially prevent truly activated areas of the
brain to be detected. Such limitations arise from both the fMRI data acquisition
and the subsequent data analysis. Furthermore, the design and analysis of the
clinical fMRI experiment has, so far, restricted fMRI to patient groups able to fully
comply with a given task. Hence, noncompliant patient groups, such as children or
patients with certain cognitive or physiological deficits, cannot reliably be
presurgically assessed using fMRI. It is of importance to address such
methodological issues in order to increase the confidence in the fMRI results as
well as to extend the range of clinical fMRI applications.



1.3  Aims

The aims of the research projects reported in this thesis were to investigate and
optimize methodological aspects of importance for the use of BOLD fMRI as a
clinical tool.

Specifically, a method for quantification of BOLD sensitivity by the use of field
maps has been validated and improved (Paper I). Furthermore, the BOLD
sensitivity was assessed for a group of healthy volunteers in order to characterize a
clinical magnetic resonance imaging (MRI) system. The dependence of BOLD
sensitivity on subject motion and head positioning was also addressed. In an effort
to increase the sensitivity of clinical fMRI in partially non-compliant patients, a
flexible model was developed and validated with respect to its performance in
identifying relevant activation (Paper II). Furthermore, a non-linear dimensionality
reduction algorithm was introduced and characterized in terms of reliability and
possible benefits in a clinical setting (Paper III). In order to further extend the
clinical use of fMRI, the method of resting state fMRI was investigated with
respect to test-retest reliability (Paper IV). Measurements of resting-state activation
of the motor network were evaluated in a group of healthy volunteers and
compared with the corresponding results from a traditional task-based experiment.



2. Concepts of BOLD fMRI

The contrast mechanism utilized in BOLD fMRI is based on the local oxygenation
level of the cerebral blood. In this chapter, the physiology of the BOLD
phenomenon is described, as well as the way in which an fMRI experiment is
conducted with respect to the choice of pulse sequence and appropriate imaging
parameters.

2.1 The physiology of the BOLD contrast

2.1.1 Origin of the BOLD contrast

The BOLD effect on the MRI signal results from the fact that the magnetic
susceptibility of blood is dependent on its oxygenation state. The magnetic
susceptibility describes how a material is magnetized by an applied magnetic field,
and the induced magnetization results in geometry-dependent distortion of the
magnetic field lines in and around the material. The distortion of the magnetic
field lines depends on the magnetic susceptibility and shape of the magnetized
material. Hence, the induced magnetic field increases and decreases the applied
field in paramagnetic and diamagnetic materials, respectively.

Normal blood can exhibit both paramagnetic and diamagnetic properties
depending on its oxygenation state. When oxygen is bound to the haemoglobin it
is diamagnetic, while deoxygenated haemoglobin is paramagnetic (2). The effects
of the blood oxygenation level on the transverse relaxation rate were investigated by
Thulborn et al. (3). They concluded that oxygenation-state-dependent changes in
the transverse relaxation rate, R2, were due to the diffusion of water molecules
through magnetic field gradients caused by differences in susceptibility within the
intravascular space. The magnetic field gradient, occurring as deoxygenation of the
blood increases, will thus decrease T2 of the blood. The magnetic field gradients,
however, extend into the surrounding tissue, which leads to a change in tissue T2*
as well. This extravascular perturbation effect on the T2* relaxation rate, arising
from the increased intravascular susceptibility, was observed by Ogawa et al. using
gradient-echo images of a rat brain during hypoxia (5). The authors suggested that
this effect could be used to image effects related to neuronal activation.



In a typical BOLD fMRI experiment, an increase in the signal is seen as a result of
neuronal activation, which indicates that the oxygenation state of the blood has
been altered. In order to understand this change in oxygenation state, the
mechanisms of neuronal activation must be considered. In a simple description, a
neuron consists of the soma (the cell body), dendrites and an axon (Fig. 2.1). The
dendrites and the axon are filaments extending from the soma. The dendrites
branch as they extend from the soma, normally over a few micrometres, whereas
the axon can extend as far as a metre, branching several hundred times. Neuronal
activation is the process of signalling between neurons, where signals flow from the
axon of one neuron to the dendrites or the soma of another neuron. The interface
between the termination of an axon (the axon terminal) and a dendrite or soma is
called the synapse, which is the junction between the signalling neuron and the
receiving dendrite or soma. Electrical or chemical signals are then transmitted from
the membrane of the axon to the membrane of the dendrite or soma. This
signalling process is used by a number of specialized neurons, for example, sensory
and motor neurons, in order to facilitate sensory input to the central nervous
system or to cause muscle contraction.

Dendrite

“~Axon terminal

Figure 2.1. Schematic illustration of a neuron.

Neuronal activation increases the demand for energy, requiring more glucose and
oxygen to be delivered. The observed increase in BOLD signal following neuronal
activation may thus appear to be counterintuitive if one assumes that neuronal
activation implies an increase in oxygen demand, leading to deoxygenation of the
blood and thus a decrease in the signal due to shortening of the T2* of tissue.
However, as observed by Fox et al. (26,27), neuronal activation leads to an increase
in cerebral blood flow (CBF) that considerably overcompensates the increased
oxygen demand by an excess supply of oxygenated blood. This mechanism leads to



a decrease in the magnetic field gradient as the diamagnetic properties of
oxygenated blood are more similar to those of the surrounding tissue, thus leading
to an increase in the signal due to an increase in T2* of the tissue.

2.1.2 Temporal characteristics of the haemodynamic response

The time course of the BOLD response to a brief stimulus is called the haemo-
dynamic response function (HRF). The HRF is characterized by an initial dip,
approximately 0.5-1 s after the stimulus onset, as observed by Menon et al. (28).
This dip corresponds to a decrease in the signal below the baseline level (=0.5%),
and reflects an initial increase in the cerebral metabolic rate of oxygen in response
to the onset of stimulation (29,30). In a study on BOLD dynamics, Buxton et al.
developed the so-called balloon model (31), extending the work carried out by
Davis et al. (29), where the initial dip is explained by an initial rapid increase in
both CBF and the cerebral blood volume (CBV). In this initial phase,
deoxyhaemoglobin increases due to the increased CBV. Due to a slight latency in
the circulatory response, the signal increases after 5-8 s (the positive BOLD
response) as CBF increases, reaching a maximum. The balloon model states that
the volume in this phase increases more slowly than the flow, which leads to the
positive BOLD overshoot, since CBF reaches its steady-state level before the CBV.
As the CBV eventually reaches steady state, increasing the amount of
deoxyhaemoglobin, the BOLD signal decreases to a steady-state level in the case of
sustained stimulus, lasting until its cessation. The amplitudes of both the initial dip
and the positive response are dependent on the external magnetic field strength (4).
The signal then decreases, returning to the baseline level. This phase is often
accompanied by a so-called post-stimulus undershoot, during which the signal
passes below the baseline, remaining negative for several seconds, before finally
returning to the baseline. This is also explained by the CBV decreasing more slowly
than the CBF, leading to an elevated amount of deoxyhaemoglobin, and
consequently a lower BOLD signal (Fig. 2.2). It should be noted that although the
haemodynamic response function following a brief stimulation has been found to
be relatively invariant (32), the corresponding response to sustained stimulation is
somewhat variable (33). The overshoot and undershoot are not always present, and
their magnitudes, when present, are highly variable. Furthermore, a delay in the
haemodynamic response has been observed in stroke patients (34) and in tumour

patients (35).
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Figure 2.2. The haemodynamic response to sustained stimulus.
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2.2 The fMRI experiment

The BOLD contrast normally yields a signal difference of only a few percent
between the baseline state and the activation task. This emphasizes the need for the
collection of multiple data in time, in order to be able to separate the two states
statistically. Therefore, an fMRI experiment normally employs some kind of
paradigm, i.e., a scheme defining when one or several specific task(s) should be
performed during the course of the experiment. The simplest paradigm is the so-
called block paradigm, consisting of alternating task and baseline conditions; the
length of each block being typically 15-30 s. Normally, four or five blocks are used,
which, for a repetition time (TR) of 2-3 s yields 50-150 volumes of gradient-echo
echo-planar imaging (EPI) data acquired during 2-5 minutes. This type of
paradigm is robust and normally employed clinically. For example, finger-tapping
and foot movement paradigms are used for mapping the motor cortex. Word
generation tasks are also important clinical paradigms when mapping and
lateralizing the language areas.

However, investigators often try to detect the response to individual events. This
could be due to the nature of the task, which, for example, could be determined at
run-time or after the actual experiment. The investigator may, for instance, be
interested in events occurring only at times when the subject responded in a certain
way. An example is when the subject is asked a question, which the investigator
then will treat differently depending on if the subject gave the correct answer or the
wrong answer. This type of paradigm is called an event-related paradigm, and



offers greater flexibility. However, the small change in BOLD signal following a
single stimulus means that an eventrelated paradigm must be averaged over
multiple samples of the HRF in order to increase the statistical power, leading to
longer experiments.

2.3 Pulse sequences

2.3.1 Gradient.echo techniques

The initial observations of the BOLD effect by Ogawa et al. (4) were made using
the T2*-weighted 2D gradient-echo pulse sequence originally proposed by Haase
et al. (36) under the acronym FLASH (Fast Low-Angle Shot). This pulse sequence
was also used in other early studies for the detection of functional activation of the
human brain (7,37,38). When applied to fMRI, the FLASH sequence requires an
acquisition time of several seconds for a rather limited number of slices. This
significantly limits the spatial coverage at a temporal resolution sufficient to allow
dynamic monitoring of the BOLD contrast. An extension of the FLASH sequence
was proposed by Menon et al. (39), in which the polarity of the readout gradient
was reversed in order to form multiple echoes following a single radio frequency
(RF) excitation pulse. By applying the same phase-encoding gradient to all echoes,
multiple images can be acquired, reflecting the decay of transverse magnetization,
allowing T2* to be calculated on a pixel-by-pixel basis.

In order to address the problem of long acquisition times, multiple echoes
following a single RF excitation pulse can also be utilized for rapid image
acquisition. By applying different phase-encoding gradients to each echo, the 4-
space can be filled very rapidly, thereby providing a means of acquiring multiple
slices with high temporal resolution. This concept was first introduced by
Mansfield (40), who proposed the EPI readout technique. In the original
formulation of the EPI pulse sequence, a constant phase-encoding gradient was
applied, whereas the dominating EPI pulse sequence of today utilizes the 4-space
traversal scheme proposed by Johnson et al. (41), according to which the whole 4-
space is sampled in a rectilinear fashion using a blipped phase-encoding gradient.
In a study by Turner et al. (10), the EPI technique was applied to monitor rapid
changes in blood oxygenation of the cat brain. The first reported human fMRI
experiments followed shortly, in which visual stimulation paradigms were used to
assess neuronal activation of the primary visual cortex. This was performed by
utilizing the BOLD contrast (8,9), and measurements of the changes in CBV using
a gadolinium-based paramagnetic contrast agent (42). Other early studies on



human BOLD fMRI successfully employed motor activation paradigms (6,8).
Although the rectilinear 4-space traversal strategy is the dominant strategy, spiral
EPI has also been used for fMRI (43).

The EPI technique offers very rapid imaging due to the use of a single excitation
RF pulse, allowing acquisition times as short as 50-70 ms for a single slice. Using a
TR of 2-3 s, full brain coverage can be obtained. Furthermore, when using a
repetition time of several seconds, the pulse sequence is relatively insensitive to
inflow effects, i.e., full longitudinal relaxation of the excited spins makes the effect

of inflowing spins negligible (44).

The EPI sequence is, however, sensitive to off-resonance effects, due to the low
bandwidth in the phase-encoding direction. This implies that chemical shift
artefacts are substantial in EPI, approaching several centimetres. However, this type
of artefact can be effectively suppressed by using different types of fat-saturation
techniques. The low bandwidth in the phase-encoding direction also creates
geometric image distortion and signal loss in areas exhibiting magnetic field
inhomogeneities arising from interfaces between materials with different magnetic
susceptibilities (e.g., brain and air). Distortion corrections can be performed by
measuring the local magnetic field in the object using so-called field maps (45).
However, signal loss due to magnetic field inhomogeneities cannot be recovered.
The introduction of parallel imaging techniques, using the individual sensitivity
profiles from multiple coils, shortens the readout time, thereby reducing the effects
of off-resonance conditions. Several different approaches to implementing this
general strategy have been proposed, including sensitivity encoding (46) and
simultaneous acquisition of spatial harmonics (47).

Furthermore, the switching of the gradients during a pulse sequence results in the
induction of eddy currents in the conducting surfaces of the MRI system. This
phenomenon is present in all types of MRI pulse sequences, but is more
pronounced in EPI due to the rapid switching of the gradients and the longer total
readout time. The eddy currents lead to magnetic field gradients which, in turn,
create time-dependent frequency shifts. The frequency shifts correspond to phase
differences between the lines in the raw data, resulting from the alternating
gradient polarity used in EPI, which ultimately manifest themselves as ghost
images in the magnitude EPI image. Strategies for the suppression of these eddy
current effects include effective coil design, minimizing eddy current induction, as
well as adjustment of the phase information after data acquisition. The third
strategy can be implemented by measuring the phase shifts in a reference data set,



which can subsequently be used to correct the raw EPI data (48). The correction
can also be performed by measuring the phase shifts in the actual EPI data, as
proposed by Buonocore & Gao (49). Furthermore, physiological sources such as
respiratory- or cardiac-induced phase variations or subject motion, can significantly
affect the stability of the signal when using pulse sequences with multiple
excitations. These effects can be minimized by the use of so-called navigator echoes
(50). Data acquisition can also be gated using hardware in order to minimize the
influence of respiratory- or cardiac-induced signal variations. This can, however,
lead to variations in TR, which in turn affect the longitudinal magnetization
recovery, and hence the signal stability over time, and gating methods are therefore
rarely used in fMRI experiments.

2.3.2 Spin-echo techniques

The 180° refocusing RF pulse utilized by a spin-echo pulse sequence will remove
the dephasing effects of macroscopic, time-invariant magnetic field
inhomogeneities, but will also reduce the effects of microscopic inhomogeneities
arising from the BOLD effect. Thus, a spin-echo pulse sequence, although
suffering less signal loss, will exhibit a smaller BOLD effect than the gradient-echo
sequence. In particular, the extravascular component of the BOLD signal will be
reduced. The intravascular BOLD signal will, however, be retained, thus providing
better localization of the BOLD effect.

Spin-echo EPI employs a single 180° refocusing pulse followed by the same
traversal of /A-space as described above for the gradient-echo EPI. The pulse
sequence is arranged so that the centre of k-space is covered at the time of the
centre of the spin echo. As explained above, extravascular BOLD effects will be
weaker than when using a gradient-echo pulse sequence, leading to a generally
lower BOLD contrast. In situations where the susceptibility-induced magnetic field
inhomogeneities cause the local T2* to be short, the spin-echo EPI can be
considered superior to gradient-echo EPI in detecting the BOLD effect. Also, spin-
echo EPI could be used at higher magnetic field strengths where the BOLD effect

is larger in order to acquire information on more localized regions of activation.

10



3. BOLD sensitivity

The gradient-echo EPI pulse sequence offers a high sensitivity to the BOLD effect.
The microscopic T2* variations arising from the BOLD effect can, however, be
obscured by the effects of macroscopic differences in susceptibility between air,
bone and tissue (51,52). Thus, the ability to detect neuronal activation, i.e., the
BOLD sensitivity, varies spatially across the brain, as has been observed in
emerging clinical applications of fMRI. For example, regions involved in memory
functions are particularly prone to susceptibility effects (53-56).

3.1  Calculating the BOLD sensitivity

The BOLD sensitivity (BS) has been defined by Deichmann et al. (57) and by
Lipschutz et al. (58) as:

BS=TE-/ (1)
where
I p-exp(-TE/T2%) ()

In Eq. (2), p is the local spin density. In Fig. 3.1 the dependence of the BOLD
sensitivity on the effective echo time (TE) is shown for several values of T2*
calculated with the help of Egs. (1) and (2). In Fig. 3.1 it can be seen that the
BOLD sensitivity is maximal for TE = T2*, as was shown by Gati et al. (59). The
effects of macroscopic magnetic field gradients on BOLD sensitivity have been
described previously (57,60-62) and are summarized below.

11
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Figure 3.1. Dependence of the BOLD sensitivity on TE for values of T2* between 30 and 90
ms.

Susceptibility-induced, in-plane magnetic field gradients add to the imaging
gradients and therefore distort the 4-space trajectory. The shift in 4-space echo
location can be defined as d = (4, dp, d,) for k-space shifts in the readout, phase-

encoding, and slice directions, respectively, where d is given by:
d= 21 TE-VB 3)

and B is the macroscopically inhomogeneous magnetic field. For a gradient in the
readout direction, the echo will be shifted in the 4, direction, resulting in a sheared
k-space trajectory (Fig. 3.2 A). In the phase-encoding direction, the result is a
stretched or compressed 4-space trajectory, which can be interpreted as an apparent
change in spin density (Fig. 3.2 B). This will affect TE in relation to the nominal
echo time as defined in the pulse sequence (TC). The relationship between TE and
TCis:

— 4 (4)
TE=TC+ o, At

12



where Ak,=1/FOV,, and At is the inter-echo spacing in the EPI readout. FOV, is
the field of view in the phase-encoding direction. Eqs. (3) and (4) can be combined
to calculate TE:

— Y 9B A )
TE = TC/(I'zn' ap'AzeP)

A predicted image intensity (plI) can then be expressed as:
pIl = £.(d)f, () £.(d) ©)

where the three factors f (d), ]i) (dp) and f (d,) reflect the influence of the

magnetic field gradients in the readout, phase-encoding and slice directions,
respectively, on the signal. For the readout direction, f(d,) is given by:

Lif|d| < n, - Ak.J2 7)

0 otherwise

f@) =

where 7, is the k-space matrix size in the readout direction. The image intensity is
unaffected as long as the central echo obtained at TE is not shifted outside the
acquisition window. The effect on the signal due to magnetic field gradients in the
phase-encoding direction is given by:

f (d ) = {::_(F; ) exp(-(TE-TC)/T2*) iftstart < TE <fepq ®)
p\’P

0 otherwise

where #,,. and #.,4 are the points in time after excitation at which acquisition starts
and ends, respectively.

Finally, the effects of a susceptibility-induced gradient in the slice selection
direction causes through-plane spin dephasing (Fig. 3.2 C). The factor f.(4,) can
be expressed as the Fourier transform of the slice profile, which for a gaussian
profile yields:

£(d) = exp (-(domrz/ (242))) 9)

where Az is the slice thickness. Paper I presents the validation of the above
expressions for the effects of susceptibility-induced magnetic field gradients. EPI
images of a phantom were obtained together with corresponding field maps
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acquired in order to calculate the magnetic field gradients. A range of known
gradients was obtained by deliberately misadjusting the shim coils, and the
predicted image intensity was compared with the EPI image signal intensity. It was
found that better correspondence was obtained between the experimental and the
theoretical image intensities when an expression for a rectangular slice profile was
used instead of the gaussian slice profile above (Eq.(9)). Assuming a rectangular
slice profile, the expression for _]2 (d,), becomes:

]i(ds) = sinc(d,-Az) (10)
The predicted BOLD sensitivity (pBS) can then be derived from plI as:
= pIL. £ 11
pBS = pll- = (1)

where the second factor reflects the change in TE.

Read gradient: 80 uT/m Phase gradient: 60 uT/m Slice gradient: 160 uT/m

Simulated image

Corresponding k-space

Figure 3.2. Simulated images of a cylindrical object (top row) and the corresponding k-space
(bottom row) showing the effects of uniform linear gradients in: (A) the readout direction (80
uT/m), (B) the phase-encoding direction (60 uT/m) and (C) the slice selection direction (160
ullm).
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The field map used to calculate the magnetic field gradients in the study described
in Paper I was acquired using a double-echo gradient-echo pulse sequence (45).
The phase evolution resulting from magnetic field inhomogeneities can be scaled
to represent the actual magnetic field distribution by extracting the phase
difference between the first and second echo.

Fig. 3.2 (upper row) shows that the effects on the &-space trajectory caused by in-
plane, susceptibility-induced magnetic field gradients also manifest themselves as a
distortion of the image. This effect can be corrected by the use of field maps, i.c.,
the local magnetic field can be scaled to represent the actual amount of spatial shift
of the signal, which can then be reversed, resulting in a distortion-corrected image.

Signal loss due to susceptibility effects has been studied by Ojemann et al. (63) in
gradient-echo EPI images, and also by Lipschutz et al. (58), who proposed a
method of characterizing signal changes using only the functional EPI data. As can
be seen from the definition of BOLD sensitivity (Eq.(5)), the effects of variation in
local TE must, however, also be considered. Maps of BOLD sensitivity, taking the
echo time effects into account using a double-echo gradient-echo pulse sequence,
have been utilized in studies by Cusak et al. (60) and in the present work (Paper I).
Maps of BOLD sensitivity can also be obtained by using complex 4-space data
(57,61,62,64).

Reliable assessment of BOLD sensitivity can indeed be obtained by the use of field
maps. In the study described in Paper I, the assumptions underlying the theory
were validated, and it was found that the correct choice of slice profile is
important. A slight offset in the results obtained for the predicted image intensity
was also observed, probably due to a pulsed gradient, possibly an imperfectly
refocused slice selection gradient. Thus, the effects of slice profile and additional
gradients must be assessed in order to obtain accurate maps of BOLD sensitivity or
predicted image intensity. A field map can be obtained with an additional scan
time of approximately 30 s, which is feasible in the clinical setting.

However, the assumption that a single field map is valid for a full fMRI experiment
must also be verified. Subject motion and positioning will lead to changes in the
gradients, predominantly in the slice and phase-encoding directions, depending on
their relation to the main magnetic field. The dependence on orientation has been
investigated by Deichmann et al. (61), and an analytical model describing these
effects has been proposed by Andersson et al. (65). Paper I describes the effects of
subject motion and positioning. A finger-tapping paradigm was performed by one
subject while repeated field maps were acquired. The maximum translation and
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rotation during the performance of this task were 1.3 mm and 1.6°, respectively.
These values are within the normal range, although somewhat larger than those
found in other studies of patient motion. Seto et al. (66) found translational
motion in a group of stroke patients to be approximately 2 mm, while the
translational motion was smaller for a control group of healthy volunteers. In a
study by Hill et al. (67), foam padding and head restraining bands were used to
limit motion. The median values of translational motion and rotation in that study
were below]l mm and at most 0.5° for both epilepsy patients and volunteers. Thus,
the use of a single field map is feasible when assessing the BOLD sensitivity for a
complete fMRI experiment.

The study by Deichmann et al. (61) indicated that subject positioning can have a
considerable impact on the magnetic field distribution across the brain, and hence
influence the BOLD sensitivity. This was confirmed in the study presented in
Paper I, where the BOLD sensitivity in the hippocampus was found to be
significantly affected by the choice of subject positioning in terms of head pitch
relative to the main magnetic field. The effect of head pitch could thus be utilized
to minimize the effects of susceptibility-induced gradients in studies focused on
cognitive functions, including memory and awareness, localized in the
orbitofrontal cortex and in the medial temporal lobe.

The value of the BOLD sensitivity is by definition 1 when no susceptibility-
induced gradients are present. Interestingly, BOLD sensitivity values larger than
unity were observed in the hippocampus region (Paper I). This could arise from a
magnetic field gradient in the phase-encoding direction, as long as the acquired
central echo still lies within the sampled k-space. Thus, the fact that the BOLD
sensitivity was found to be larger than unity in most parts of the hippocampus
contradicts the results of previous studies explaining the inability to find neuronal
activation in these areas of the brain by the presence of susceptibility-induced

gradients (55).

Another application of fMRI for presurgical mapping is the determination of
language laterality. This is achieved by means of laterality indices, i.e., by
determining the relation between active voxels in the right and left parts of the
language area. This could be hampered if the BOLD sensitivity varies from right to
left in the brain, as was systematically found in a group of 8 volunteers in the
present work (Paper I). It was concluded that this effect arose from a large-scale,
right-left magnetic field gradient, most probably due to magnetic field
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inhomogeneities in the MRI system, but also, in part, to a slight asymmetry in the
standard regions of interest used.

The mapping of BOLD sensitivity by means of field maps and the expressions
given above are important in providing information about the effects of
susceptibility-induced magnetic field gradients on the EPI images. However, maps
of BOLD sensitivity or predicted image intensity are not directly related to the
final statistical maps. Nevertheless, the existence of false-negative voxels in the
statistical maps can result from low or zero BOLD sensitivity, implying that
information about BOLD sensitivity is of importance.

3.2 Improving the BOLD sensitivity

Several methods aimed at improving the BOLD sensitivity have been proposed.
One approach is to optimize the shimming of the magnet, which can be performed
directly on the MRI scanner. The use of an intra-oral diamagnetic passive shim
device has also been proposed (60,68). The use of tailored RF pulses is another
approach, in which an RF pulse with a quadratic phase distribution along the slice
selection direction effectively cancels out phase dispersion effects from local
susceptibility-induced gradients (69). However, this method introduces dephasing
of regions not affected by susceptibility effects. A 3D version of this concept,
minimizing this drawback, was later suggested by Stenger et al. (70).

Another commonly used method is the so-called z-shimming technique (71-74).
This technique utilizes preparation gradient pulses in the slice selection direction
when constructing a series of images. These images can then be combined in order
to recover signal loss. Glover et al. proposed a 3D version of z-shimming that can
also be used for compensation of in-plane susceptibility gradients.

BOLD sensitivity is also affected by the voxel size of the EPI images due to partial
volume effects, and the spatial resolution can thus be increased to reduce the effects
of susceptibility-induced gradients (75,76). However, reducing the voxel size leads
to a lower signal-to-noise ratio (SNR), potentially reduced spatial coverage and
lower temporal resolution.
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4. Data analysis strategies for

fMRI

The methods of analysing fMRI data can be broadly classified into two approaches.
Historically, the most commonly used method of analysis relies on the specification
of a model for the expected time course of an activated voxel. The most flexible
framework for modelling activation-related time courses is the so-called general
linear model (GLM). The second approach avoids modelling which, to some
extent, introduces uncertainties regarding the expected temporal characteristics of
an activated area. Methods related to the latter approach are classified as data-
driven methods, and are characterized by the fact that no assumptions are made
regarding the expected temporal characteristics of the fMRI data. These two kinds
of analysis will be described below and discussed with respect to their inherent
strengths and weaknesses.

4.1  Preprocessing

Several preprocessing steps are usually performed before any statistical analysis can
be made of acquired fMRI data. The purpose of the preprocessing is to remove
various kinds of artefacts in the data. Also, preprocessing conditions the data in
order to increase the sensitivity of the subsequent statistical analysis.

4,.1.1 Slice timing correction

The first preprocessing step is often the correction of slice timing. This step
compensates for the fact that the individual slices of a volume are normally
acquired at time points equally spaced over the whole TR, meaning that the time
courses of the first and last slice in the volume can be offset by the duration of TR.
Therefore, the data are adjusted so that it appears as though all the slices were
acquired at the same time, which allows the whole data set to be modelled using a
single reference function in the subsequent analysis step.

4.1.2 Correction for subject motion

Subject motion can be a major source of error in fMRI data. If the patient moves
during the examination, the recorded time series for a particular voxel will not
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correspond to the same location in the brain. Assuming the volumes are rigid
bodies and that subject motion introduces no systematic change in global image
intensity, subject motion can be represented by 3 rotations and 3 translations. In
order to align an image volume to a reference volume, for example, the first volume
(77) or a calculated mean volume (78), the required translations and rotations can
be computed by minimization of the squared differences over all voxels. An
additional effect of subject motion is the so-called spin-history effect. This effect
arises from the fact that the position-dependent image intensity at a certain point
in time will also be dependent on the position at a previous point in time. The
effects of spin history can be modelled and removed from the time course of each
voxel utilizing the motion parameters described above (77).

4.1.3 Spatial filtering

At this stage, spatial smoothing of each volume is often employed, normally by
convolution of each volume by a 3D gaussian kernel, which increases the SNR. As
spatial smoothing introduces weighted local averaging to the images, the random
noise will cancel out, while the underlying signal will be retained. However, the
width of the smoothing kernel should match the expected size of the activated
region. If, for example, a filter width greater than the width of the activated region
is used, the contribution from non-activated areas will be large in the averaging
process, reducing the signal from the activated area. An additional reason for
performing spatial smoothing of the data is that later statistical processing requires
the images to be spatially smooth (79).

4.1.4 Temporal filtering

The purpose of temporal filtering is to remove unwanted components from the
voxel time series. Examples of such confounding signals in fMRI data are slowly
varying, scanner-related drift and physiological noise arising from the cardiac cycle
or breathing. Slowly varying signal fluctuations can be removed by high-pass
filtering, and this is important even if the noise is not correlated to the
experimental paradigm. Since such noise will result in poorer fitting of the model
to the data, the residuals will be higher, reducing the statistical significance.
However, it is necessary to determine the appropriate setting of the cut-off
frequency in order not to reduce the signal of interest in a block-designed
experiment.

Low-pass filtering can also be performed. This can be implemented as the spatial
smoothing described above, i.e., a convolution of a time series with a gaussian
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kernel, smoothing the time series. As for high-pass filtering, it is important to select
the appropriate cut-off frequency in order to remove noise without attenuating the
underlying signal of interest. For example, when an event-related paradigm is used,
too much smoothing could suppress signals arising from a single event, thus
reducing the power of the subsequent statistical analysis.

4.1.5 Spatial registration and normalization

Additional preprocessing steps include coregistration of a structural image in order
to facilitate the final overlay of the activation maps resulting from the statistical
analysis, onto this high-resolution image. This improves the interpretation of the
statistical results, as anatomical structures are easier to observe in a high-resolution
image than in the EPI images, which have inherently lower resolution. The
coregistration of images with different contrasts, however, requires a different
strategy from that described above concerning realignment of images of the same
type, for example, coregistration of a T1-weighted high-resolution image with a
low-resolution T2*-weighted image. This situation requires another measure of
similarity between the two types of image. Several such similarity measures have
been proposed, e.g., mutual information (80,81) and the correlation ratio (82).
The transformations that maximize the similarity between two images can then be
found using various optimization algorithms. Also, the coregistration of images
with different contrasts or resolutions differs from the rigid body translations
described above in the inclusion of linear local scaling and shearing, as well as
translation and rotation (so-called affine transformations). Coregistration can also
be extended to include non-linear transformations, although additional constraints
must be imposed in order to preserve the topology of the images.

Non-linear spatial registration algorithms can be used when performing a study in
which inference is drawn from a whole group of subjects (83). The volumes can be
transformed into a common standard space, a step often referred to as spatial
normalization. This is performed by transformation of the volumes in order to
obtain a good match between a template image, normally derived from the
averaging of multiple individual brain images, and the brain volume of the
individual subject. The two most widely used standard spaces are the Montreal
Neurological Institute space (84) and the roughly corresponding Talairach space
(85). When fMRI is used in a clinical setting, the normalization step is normally
omitted, but can be used, for example, when assessing language lateralization,
facilitating the use of standardized regions of interest defined in standard space.
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4.2 The general linear model

Following the preprocessing steps, statistical analysis is performed in order to
determine which voxels are activated by the stimulus. The GLM, currently the
most popular method, provides a univariate analysis, i.e., the time course of each
voxel is analysed independently (86,87). The GLM is based on the specification of
a model, i.e., a general signal time course which is expected to be seen in voxels
corresponding to locations in the brain that have become active in response to the
applied stimulus. This model is then fitted to the observed data and statistical
inference can be drawn. The measured data are expressed as a linear combination
of one or several explanatory variable(s) plus some residual error, reflecting the
amount of variation in the observed data that is not accounted for by the
explanatory variables. Applied to fMRI data, the GLM for a response variable x;,
(the measured signal value) at voxel j = 1, ..., / can be expressed as:
5= S b 12
where =1, ...,/ indexes the scans. The coefficients g, are the explanatory
variables that describe, for example, the experimental design in terms of onsets of
stimuli. Other measures that might reflect the conditions under which the
measured data were acquired, such as motion-related parameters, can also be
included. The relative contribution of each explanatory variable is represented by
,B’kj (K unknown parameters for each voxel j). The residual errors, ¢jj, are assumed
to be independent and identically normally distributed /NV(0, 072) The GLM can be

reformulated using matrix notation to give:
X=GB+e (13)

where X is the measured data matrix with one column for each voxel j and one row
for each scan, 7, corresponding to entries Xjje The matrix G is called the design
matrix and is composed of the explanatory variables ¢, . The unknown parameters
are contained in the column matrix B, and the residual errors in e. The GLM, as
stated here, does not contain any constant terms. This is normally remedied by
adding a column of ones to the design matrix G (Fig. 4.1), or by mean correcting
the data. The model is then fitted to data by a least-squares estimation of the

~

parameters, [B:
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B= (G'G) G"x (14)

In order to convert the parameter estimates B into a useful statistic, they are
compared with the uncertainty in their estimation, which produces a t-statistic
such as:

"B (15)

c CT(GTG)_lc

where the numerator expresses the size of the effect in terms of estimated f3, and

t=

the denominator is the standard error of the estimates. The factor o is the standard
deviation of the residuals and ¢ denotes the so-called contrast vector, which defines
the combination of explanatory parameters that is to be tested. This makes it
possible to describe how each voxel is related to each explanatory variable. For
example, a simple contrast vector could be created, comparing only the activation
resulting from a finger-tapping task to the rest condition in a blocked paradigm.
Using the contrast vector, an experiment described by multiple explanatory
variables (e.g., denoting the existence of several experimental conditions or
reflecting motion parameters) could then be analysed using several different
contrasts in order to investigate how combinations of different conditions affect

activation.
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Figure 4.1. Graphical illustration of GLM applied to signal from a single voxel. A blocked
paradigm is represented by the regressor g, and the constant term correspondingly represented in

4>

Most commonly in fMRI, the model for the different conditions is specified by
defining the columns of the design matrix G as integers, in order to denote
whether a stimulus or task is present or not at a certain point in time
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(corresponding to ones or zeros in the design matrix). Since this corresponds to a
naive boxcar model of the actual time course of a voxel being activated in response
to the condition, convolution with a function reflecting the characteristics of the
haemodynamic response function of a brief stimulus (cf. Section 2.1.2) makes the
model more physiologically plausible. The haemodynamic response function has
been modelled as a single gamma function (88), and was later extended to a
combination of two gamma functions, making it possible to capture the post-
stimulus undershoot (89).

The t-test in Eq. 15 results in a statistic map from which inference can be drawn.
Which parts of the brain were active is determined by thresholding the map at a
given level of significance (p). Those voxels exceeding the threshold can be colour-
coded and overlaid on an image containing anatomical information (Fig. 4.2).

However, a problem with this approach is that many voxels have been tested for
statistical significance. This multiple comparison problem introduces a large
number of voxels falsely determined as activated. If, for example, 50000 voxels are
tested at a significance level of p<0.01, then it would be expected that 500 voxels
were falsely classified as activated. The use of gaussian random field theory (90) or
the false discovery rate (91) method are, however, techniques that can be used to
correct for the number of false positive voxels.

The flexibility of the general linear model, in terms of modelling different
paradigms and constructing contrasts when making statistical inferences, can also
be used to increase confidence in detecting the BOLD signal in cases where subject
compliance can be expected to be low. This can be a problem in the clinical use of
fMRI, for example, when a patient cannot fully comply with the instructions given
with regard to the performance of a specific task. In Paper II, the impact of
reduced task compliance was reported. Modelling each block in a block-designed
paradigm as a separate column in the design matrix accounts for possible lower
response due to non-compliance in one or several blocks. However, increasing the
number of columns in the design matrix reduces the degrees of freedom, which
leads to lower statistical power. Thus, the use of a flexible model was compared
with the use of only one column as a model for the full fMRI experiment. This
analysis was performed using simulated and experimental data, as well as the
reanalysis of 14 fMRI data sets from patients who had previously been examined
using a single explanatory variable. Simulated and experimental data were
constructed to represent decreasing levels of subject compliance.
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Figure 4.2. Resulting thresholded map of t-values overlaid on the mean EPI volume from the
whole data set. The statistically significant activation (shown in colour) corresponds to the
primary motor cortex in response to a _finger-tapping task.

Both experimental and simulated data confirmed that even at 80% compliance
(corresponding to a subject not performing the required task during one of five
blocks), a flexible model outperforms standard statistical analysis. Furthermore, the
retrospective analysis of clinical fMRI examinations revealed that using the flexible
model yielded a gain in model performance with little or no penalty with regard to
sensitivity. Hence, in cases where patient non-compliance can be expected, the use
of a flexible model should be considered as this increases the probability of a
successful fMRI examination.
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4.3 Data-driven analysis methods

Although the GLM has proven to be a very robust method for the analysis of fMRI
data, the obvious drawback of the method is the need to specify a model. As stated
above, this renders the GLM less sensitive in cases where the model is misspecified.
Any method relying on a model can only extract information about how well the
observed data are explained by the model. This implies that it may be advantageous
to use a different kind of method allowing exploratory analysis of fMRI data. These
exploratory methods do not rely on any model, but impose assumptions with
varying degrees of stringency on the data distributions. In this section, two
established methods of model-free analysis of fMRI data are presented, together
with an alternative method.

4.3.1 Principal component analysis

A general approach when performing model-free analysis is to reduce the inherent
dimensionality of the data to a lower dimensionality and, in doing that, capture the
characteristics of the data. The basic idea of principal component analysis (PCA) is
to characterize the data in terms of covariance. The data can be described by a 2D
matrix, X, with » columns representing the individual voxels of an EPI volume,
and 7 rows representing the scans. The covariance between, for example, the
individual data volumes, can now be constructed yielding a covariance matrix of
size nxn. By calculating the 7 eigenvectors of the covariance matrix, so-called
principal components are extracted. Forming a matrix, W, of eigenvectors as rows
yields the following representation of the data:

Y =WX (16)

where the resulting data after PCA are represented by the matrix Y, obtained by
transformation of the original data, X, by multiplication with the eigenvector
matrix, W. This represents a rotation of the coordinate system. The first principal
component goes through the maximum variation in the data and explains most of
the variance in the data. Since all principal components are orthogonal, i.e.
uncorrelated, they account for decreasing amounts of variance in the data. The
relative amount of variation explained by the different principal components
(eigenvectors) is governed by the eigenvalues, i.e., the eigenvalue of the first
eigenvector is largest, explaining most of the variance. Hence, the rows of W
correspond to eigenvectors with correspondingly decreasing eigenvalues. This can
be utilized to reduce the dimensionality since less important principal components
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(i.e. those with small corresponding eigenvalues) can be omitted from W since they
make a very small contribution to the explained variance. Hence, a data set can
finally be represented as Y in a more compact sense, without losing its inherent
characteristics. For fMRI data, PCA can be seen as a reduction in, for example, the
time dimension. In a typical fMRI experiment, a total of approximately 100 time
points are used (i.e., 100 volumes of EPI data are acquired during the experiment).
This number can be regarded as the original dimensionality of the data. By
performing PCA and selecting those principal components that account for a
predetermined amount of variance (e.g., 90%), a significant reduction along that
direction can be obtained, reducing the data set along the time dimension from
100 to, for example, 20-40. Thus, the dimensionality-reduced data set can now be
represented as 20-40 spatial components, where each component is uncorrelated
with respect to the rest of the data set.

The components resulting from dimensionality reduction of fMRI data correspond
to spatial maps with an associated characteristic time course. Hence, some
components reflect task-related activation, while others reflect artefactual
activation, such as patient motion or respiratory-induced activation.

4.3.2 Independent component analysis

Although PCA can be used to compress fMRI data, and to reflect the essential
characteristics, a stronger criterion can be applied to the relationship between
individual voxel time courses. This can be achieved by independent component
analysis (ICA), where a rotation matrix is introduced that makes the components
as statistically independent as possible, in contrast to the components’ being
uncorrelated using PCA (92,93). The estimates can thus be improved when
decomposing fMRI data into separate components. Using PCA, the characteristics
of the matrix W lead to the final component maps in the matrix Y being
uncorrelated, whereas using ICA, the matrix W is selected so that the data in Y are
maximally statistically independent.

When performing ICA, the data are assumed to consist of linearly mixed
components. When trying to find the original components, assumed to be
statistically independent, ICA relies on the fact that linearly mixed signals are more
gaussian than the original sources, which is a reformulation of the central limit
theorem. When determining W, the so-called mixing matrix, ICA algorithms
therefore minimize the gaussianity of the mixed signals, which can be
parameterized using metrics such as kurtosis or negentropy. This can be described
as rotating the coordinate axes individually, in contrast to PCA where the whole
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coordinate system is rotated, thus potentially yielding non-orthogonal axes. It
should be noted that ICA is normally preceded by a reduction in dimensionality
utilizing PCA.

The use of ICA for the analysis of fMRI data was first suggested by McKeown et al.
(94), in a study showing that ICA was capable of isolating spatial patterns of
activation with characteristic time courses, such as task-related or transiently task-
related components. Artefactual components relating to abrupt or slow head
movement were also identified. Furthermore, it was shown that the characteristic
time courses obtained from a task-related component using ICA were significantly
better correlated to the imposed task reference function than those obtained using
PCA. Several ICA algorithms have been proposed, e.g. FastiCA (95,96) and
Infomax (97).

4.3.3 Non-linear dimensionality reduction

Although PCA has been shown to provide robust results when used for
dimensionality reduction, only linear decomposition of the data is possible, which
may not be sufficient to capture, for example, non-linear subject motion (98).
Others have challenged the assumption that sources are linearly mixed, and have
thus suggested the use of non-linear approaches (99,100). More recent studies have
suggested the use of Laplacian embedding (101) and the diffusion map algorithm
(102).

An example of an artificial data set with non-linear properties is shown in Fig. 4.3,
illustrating how PCA fails to capture the underlying characteristics, whereas an
algorithm that is designed to perform non-linear dimensionality reduction can
extract the true characteristics. Fig. 4.3 shows the so-called Swiss-roll data set with
an intrinsic dimensionality of 2, embedded in a 3D representation (left). PCA
cannot be expected to unfold this data set (middle), whereas this can be
accomplished by a non-linear dimensionality reduction algorithm (right). The
non-linear algorithm used in this example is the locally linear embedding (LLE)
algorithm, originally proposed by Roweis and Saul (103), and used as a tool for
dimensionality reduction of fMRI data in the study described in Paper III.
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Figure 4.3. The Swiss-roll data set (left), which is a 2D data set embedded in 3D. PCA
fails to unfold these data (middle), whereas LLE can map the data into their true 2
dimensions (right).

Briefly, non-linear dimensionality reduction techniques try to preserve some
property of the original data in the process of reducing it to a low-dimensional
representation. Examples of such properties are global or local distances.
Algorithms that preserve global properties are, for example, the Isomap algorithm
(104) and the multi-dimensional scaling (MDS) algorithm (105). These algorithms
preserve pairwise distances between the data points. The MDS algorithm uses
Euclidean distances, which may lead to erroneous short-cuts in a data set with
characteristics such as the Swiss-roll example. Isomap, on the other hand, preserves
geodesic distances, which avoids short-cutting. Algorithms that try to preserve local
distances include LLE and the Laplacian eigenmap algorithm (106).

The purpose of LLE is to find a compact representation of a data set, i.e., one
corresponding to the representation of the data in terms of principal components
in PCA. However, LLE does not summarize the data in terms of how much
variance is explained by choosing a number of eigenvectors from a covariance
matrix. Instead, LLE does this by finding an embedding of lower dimensionality
that preserves local relationships. Thus, the low-dimensional embedding will have
similar characteristics to the original high-dimensional data representation in terms
of the distance between points. This means that nearby points in the high-
dimensional input data will remain nearby in the dimensionality-reduced
representation. This is achieved by representing each point as a linear patch created
from its nearest neighbours. For fMRI data, this can be thought of as creating
patches of voxels with similar time courses. The patches can then be described as
linear coefficients that reconstruct each point from their neighbours. By
minimizing the sum of the squared distances between all the data points and their
reconstructions, an optimal reconstruction of the data can be obtained from:
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where (W) is the cost function to be minimized. The coefficients W;j contain the
contribution of the jth data point to the reconstruction of the 7th point. The time

-
course of each voxel in the fMRI data set is contained in the vector X. The low-
dimensional representation of the data can now be obtained by constraining the

coefficients W;;, which retain the geometrical properties of the data in the low-

jj)
dimensional mapping. The final step is to minimize the reconstruction error when

transforming the data into its low-dimensional representation:
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The cost function in Eq. (18) is similar to Eq. (17), and minimizes the
reconstruction error. However, in this case, the coefficients in W, are fixed, and

the low-dimensional output vectors Y are reconstructed.

The final step in LLE is an eigenvalue problem, and by solving for a suitable
number of eigenvalues, decomposition of the data is obtained in the same way as

for PCA.

LLE was applied to simulated and experimental fMRI data and the proposed
concept was evaluated and optimized (Paper III). The algorithm has one free
parameter, i.e., the number of neighbouring points used when constructing the
locally linear patches. It was found that the choice of neighbourhood size was not
critical, and that task-related components as well as motion-related components
could be reliably obtained. The results of the algorithm compared well with those
obtained using PCA. Using an example data set with non-linear properties to
simulate the physiologically plausible assumption of a delayed haemodynamic
response (34,35), it was shown that LLE could separate a group of active voxels
from non-active ones, whereas neither PCA nor non-linear PCA could achieve this.
Furthermore, LLE was applied to a resting-state data set and several networks were
identified by the algorithm. Hence, it is reasonable to conclude that LLE can be
used as a preprocessing step for ICA, with potential advantages when analysing
fMRI data sets pertaining to patients with a delayed haemodynamic response.
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5. Resting-state fMRI

The resting brain, represents only 2% of the total body mass and consumes 20% of
the available energy, although the task-related increase in neuronal metabolism is
less than 5% (16,107). Thus, a significant degree of neuronal activation cannot be
accounted for by task-related fMRI experiments. Spontaneous neuronal activation
in subjects at rest was first observed using BOLD fMRI in a study by Biswal et al.
(15), where time courses of low frequency (<0.1 Hz) were found to exhibit
significant correlation within the sensorimotor cortex. Similar results have been
reported in several subsequent studies (108-112). The frequency distribution of
resting-state fMRI signals has been further investigated by Cordes et al. (113), who
showed that signals from functionally connected cortical networks found using
resting-state measurements were predominantly of low frequency.

5.1  Analysis of resting-state data

The purpose of analysing resting-state data is to find functional connectivity
between brain voxels. This connectivity corresponds to areas in the brain with
coherent signal variations over the course of the experiment. The simplest tech-
nique for the identification of functionally connected networks is to extract the
mean time course for a region of interest, a so-called seed region. This time course
is used as a reference function, and the correlation with all other brain voxels can
be analysed. In order to find low-frequency time courses, the data are temporally
filtered using a low-pass filter with a cut-off frequency of approximately 0.1 Hz
before correlation analysis (15,113). Although simple, this technique has the
disadvantages of relying on a well defined region of interest, and of only being able
to investigate a single network.

One concern associated with resting-state fMRI measurements is that the signals
can be contaminated by non-neuronal physiological fluctuations arising from, for
example, the cardiac cycle or respiration. Several strategies have, however, been
employed to address the possible influence of such non-neuronal noise on the
resting-state signal. Physiological parameters can be measured (e.g., by using a
pulse-oximeter to monitor the cardiac cycle, or a pneumatic belt to monitor
respiration) and subsequently modelled as covariates of no interest using the GLM
(cf. Section 4.2) (114). Alternatively, physiological noise parameters can be
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obtained from areas where artefactual signals can be expected to be significantly
larger than neuronal activity, for example, in cerebrospinal fluid or white matter
(115,116). The global signal, being common to all voxels, can also be used as a
covariate of no interest (115,117,118).

By using a data-driven algorithm instead, such as ICA or LLE (Paper III), noise
sources are isolated into separate components, and specific modelling of these
sources can be omitted. Also, a data-driven algorithm does not require the
specification of a seed region, and decomposition of the data into multiple-
component maps can identify several functionally connected networks. A
disadvantage of using ICA is the need for interpretation of the component maps.
This has been addressed by De Martino et al. (119), who suggested the use of
spatial and temporal parameters characterizing each component, thereby
facilitating the classification of each component into, for example, BOLD-related
or artefactual components.

5.2 Resting-state networks

Following the initial observations that the sensorimotor system shows coherent
temporal characteristics, several networks have been shown to exhibit coherent
activity at rest, including the visual system, the auditory system, the language
system, the dorsal attention system, the frontoparietal system and the default mode
network. The default mode network is also active during the execution of a task,
but is attenuated relative to resting conditions. The default mode network has been
found to be active when subjects are engaged in remembering the past, imaging
future events and during self-referential thoughts (120).

Although spontaneous activation was originally observed in adult subjects during
awake rest, these networks have also been observed under other conditions.
Spontaneous activation has been shown to persist during periods of extended rest
and sleep (121-125), and also under the influence of anaesthesia (126,127).
Furthermore, resting-state activation has been used to map several networks in the
infant brain (128-130).
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Default mode network

Figure 5.1. Example slices showing spatial maps and characteristic time courses for the
sensorimotor network (top row) and the default mode network (bottom row) in a single subject.
The data were analysed using ICA.

5.3  Clinical applications of resting-state networks

The study of spontaneous activation using fMRI offers the possibility to gain
deeper insight into the dynamics of the brain, and its maturation and evolution.
Several clinical applications of resting-state fMRI may also be of interest. A number
of studies have focused on comparing normal subjects with patients with
neurological or psychiatric diseases, to determine whether the appearance of
spontaneous activation can be used as a diagnostic or prognostic tool. Disturbances
in resting-state networks have been demonstrated in patients suffering from, e.g.,
Alzheimer’s disease (131-134), multiple sclerosis (135,136), depression (137-139),
schizophrenia (140-143), epilepsy (144) and attention deficit hyperactivity disorder
(145-147). It has been suggested that information could be obtained about the
severity of disease and recovery from disease-related functional deficits, and applied
clinically through the study of changes in these networks.

Another clinical application could be the use of resting-state fMRI as a presurgical
mapping method. Presurgical mapping has been implemented by using traditional
task-based fMRI, in order to map functional areas at risk, thereby providing the
neurosurgeon with information on the risk of functional deficits following brain
surgery (17-23). In certain cases, it can be difficult to perform task-based fMRI, for
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example, in non-compliant patient groups such as children, or in patients with
severe disease-related impairment. The use of resting-state fMRI in such patient
groups may thus be a feasible complement, provided that networks corresponding
to areas in the vicinity of, for example, a tumour can be reliably detected.

5.4  Reliability of resting-state networks

If resting-state fMRI is to be considered feasible in a clinical setting, the reliability
of the detected networks must be assessed, and several studies have addressed this
issue. Significant overlap of activated areas for both hand and tongue activation was
found in a group of surgical candidates by Chen et al. using the seed-based method
(148). The same approach was used by Shimony et al. (149), who demonstrated
the feasibility of resting-state measurements for presurgical mapping in tumour
patients. A drawback of using the seed-based method in a clinical setting is that the
anatomical information required to define an appropriate seed region might not be
available. Anatomical landmarks of different functional areas are not always
present, and may be severely distorted, for example, in patients with a tumour.
This drawback can, however, be avoided by the use of a model-free method such as
ICA.

The studies by Chen et al. and Shimony et al. did not address the repeatability of
the registration of the spontaneous networks, an aspect which is crucial in any
method being considered as a clinical tool. This was addressed by. Chen et al.
(150) who showed that a number of resting-state networks are consistent over
time, while good reliability between two sessions was observed by Van Dijk et al.
(151) in a study using spatial overlap of activated areas as a reliability
measurement.

Paper IV presents a test-retest reliability investigation on group of 10 healthy
volunteers, based on a method described by Genovese et al. (152) and Noll et al.
(153). This method yields estimates of true-positive and false-positive ratios, which
can be assessed for a range of statistical thresholds. These estimates constitute a
receiver operating characteristic (ROC) curve, and reliability can be assessed using
the area under the ROC curve as a quantitative measure. It was found that resting-
state sensorimotor networks assessed using ICA compared well with corresponding
areas activated using a bilateral finger-tapping paradigm. In most cases, the area
under the ROC curve was smaller for the resting-state measurements than the
corresponding area for task-based fMRI. However, the differences were not large,
and were not significant on a group level. The results presented in Paper IV,
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together with those of other studies investigating the reliability of resting-state
measurements, suggest that this method could be used as a supplement to
traditional task-based fMRI examinations in a clinical setting.
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6. Concluding remarks

In BOLD fMR], it is of considerable relevance to characterize the local sensitivity
to the BOLD effect. The dominating pulse sequence used for BOLD fMRI is the
gradient echo EPI, which allows rapid imaging with good spatial coverage. The
EPI pulse sequence is, however, inherently sensitive to susceptibility-induced
magnetic field gradients, which potentially impairs the BOLD sensitivity in certain
regions. In Paper I, the method of utilizing field maps was verified and an
expression for an alternative slice profile was proposed. Furthermore, the verified
expressions were used to investigate how the characteristics of a typical clinical
MRI system influenced the BOLD sensitivity in a group of healthy volunteers. It
was also established that a field map is valid for an entire fMRI experiment under
normal subject motion, i.e. a reliable BOLD sensitivity map can be derived from a

single field map.

Patient compliance is a limiting factor in the clinical use of fMRI, and several
methods have been introduced to make fMRI clinically useful even if patient
compliance is restricted. The modeling of each block of activation in a clinical
paradigm as a single regressor is an easily implemented approach that increases the
sensitivity of fMRI data analysis in subjects unable to fully comply with a normal
clinical paradigm (Paper II). In simulated, experimental and retrospectively
analyzed clinical fMRI examinations, the use of a flexible model yielded a gain in
model performance. Hence, a flexible model is a feasible approach that could

improve reliability of clinical fMRI.

Data-driven methods are not in widespread use for analysis of clinical fMRI data,
mainly because of larger interpretational demands than for data processed using the
model based GLM framework. However, data driven methods can potentially
provide additional information in clinical fMRI experiments, such as information
about several functional areas extracted from a single experiment. In Paper III, it
was demonstrated that the proposed LLE algorithm for dimensionality reduction
was capable of separating the fMRI data into spatial component maps capturing
task-evoked activation as well as motion related activation. The performance of
LLE compared well to the normally used PCA algorithm, and in a data set with
simulated delay of HRF onset, LLE was able to identify activated voxels, whereas
PCA and non-linear PCA failed in doing so. The algorithm was thus proposed as a

35



preprocessing step to ICA, with potential advantages in cases when the HRF is
varying.

Recently, considerable interest has been shown in the possible diagnostic value of
the resting state network, and measurements of resting state activation is
potentially of great value in patient groups presently excluded from conventional
fMRI, for example, children or severely impaired patients unable to cooperate
during a classic task based experiment. In the study reported in Paper IV, the
resting state motor network activation was found to be comparable to task evoked
activation in terms of test-retest reproducibility. Further investigations are,
however, needed in order to establish the validity of this method on an individual
patient basis.
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